Age-dependent consequences of seizures: Relationship to seizure frequency, brain damage, and circuitry reorganization
Corresponding Author
F.A. Lado
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
Albert Einstein College of Medicine–Montefiore Medical Center Epilepsy Management Center, Bronx, New York
Department of Neurology, K313, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461Search for more papers by this authorR. Sankar
Departments of Neurology and Pediatrics, UCLA School of Medicine and Mattel Children's Hospital at UCLA, Los Angeles, California
Search for more papers by this authorD. Lowenstein
Department of Neurology and Epilepsy Research Laboratory, University of California, San Francisco, California
Search for more papers by this authorS.L. Moshé
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
Albert Einstein College of Medicine–Montefiore Medical Center Epilepsy Management Center, Bronx, New York
Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, Bronx, New York
Search for more papers by this authorCorresponding Author
F.A. Lado
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
Albert Einstein College of Medicine–Montefiore Medical Center Epilepsy Management Center, Bronx, New York
Department of Neurology, K313, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461Search for more papers by this authorR. Sankar
Departments of Neurology and Pediatrics, UCLA School of Medicine and Mattel Children's Hospital at UCLA, Los Angeles, California
Search for more papers by this authorD. Lowenstein
Department of Neurology and Epilepsy Research Laboratory, University of California, San Francisco, California
Search for more papers by this authorS.L. Moshé
Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
Albert Einstein College of Medicine–Montefiore Medical Center Epilepsy Management Center, Bronx, New York
Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, Bronx, New York
Search for more papers by this authorAbstract
Seizures in the developing brain pose a challenge to the clinician. In addition to the acute effects of the seizure, there are questions regarding the impact of severe or recurrent seizures on the developing brain. Whether provoked seizures cause brain damage, synaptic reorganization, or epilepsy is of paramount importance to patients and physicians. Such questions are especially relevant in the decision to treat or not treat febrile seizures, a common occurrence in childhood. These clinical questions have been addressed using clinical and animal research. The largest prospective studies do not find a causal connection between febrile seizures and later temporal lobe epilepsy. The immature brain seems relatively resistant to the seizure-induced neuronal loss and new synapse formation seen in the mature brain. Laboratory investigations using a developmental rat model corresponding to human febrile seizures find that even though structural changes do not result from hyperthermic seizures, synaptic function may be chronically altered. The increased understanding of the cellular and synaptic mechanisms of seizure-induced damage may benefit patients and clinicians in the form of improved therapies to attenuate damage and changes induced by seizures and to prevent the development of epilepsy. MRDD Research Reviews 2000;6:242–252. © 2000 Wiley-Liss, Inc.
REFERENCES
- Ackermann RF, Lear JL. 1989. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled flurodeoxyglucose and glucose. J Cereb Blood Flow Metab 9: 774–785.
- Albala BJ, Moshé SL, Okada R. 1984. Kainic-acid–induced seizures: a developmental study. Dev Brain Res 13: 139–148.
- Annegers JF, Hauser WA, Elveback LR, et al. 1979. The risk of epilepsy following febrile convulsions. Neurology 29: 297–303.
- Babb TL, Kupfer WR, Pretorius JK. 1988. Recurrent excitatory circuits by “sprouted” mossy fibers into the fascia dentata of human hippocampal epilepsy. Epilepsia 29: 674.
- Babb TL, Kupfer WR, Pretorius JK, et al. 1991. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42: 351–363.
- Baraban SC, Schwartzkroin PA. 1996. Flurothyl seizure susceptibility in rats following prenatal methylazoxymethanol treatment. Epilepsy Res 23: 189–194.
- Baram TZ, Ribak CE. 1995. Peptide-induced infant status epilepticus causes neuronal death and synaptic organization. Neuroreport 6: 277–280.
- Bekenstein JW, Lothman EW. 1993. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 259(5091): 97–100.
- Ben-Ari Y. 1985. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neurosci 14: 375–403.
- Ben-Ari Y, Represa A. 1990. Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus. Trends Neurosci 13: 312–318.
- Ben-Ari Y, Tremblay E, Berger M, et al. 1984. Kainic acid seizure syndrome and binding sites in developing rats. Dev Brain Res 14: 284–288.
- Berg AT, Shinnar S. 1991. The risk of seizure recurrence following a first unprovoked seizure: a quantitative review. Neurology 41: 965–972.
- Berg AT, Shinnar S, Levy SR, et al. 1999. Childhood-onset epilepsy with and without preceding febrile seizures. Neurology 53: 1742–1748.
- Bortoletto ZA, Fitzjohn SM, Collingridge GL. 1999. Roles of metabotropic glutamate receptors in LTP and LTD in hippocampus. Curr Opin Neurobiol 9: 299–304.
- Braak H, Braak E, Yilmazer D, et al. 1996. Functional anatomy of human hippocampal formation and related structures. J Child Neurol 11: 265–275.
-
Bratz E.
1899.
Ammonshornbefunde bei epileptikern.
Arch Psychiatri Nervenkr
32:
820–835.
10.1007/BF02047162 Google Scholar
- Brown TH, Zador AM. 1990. Hippocampus. In: G Shepherd, editor. The synaptic organization of the brain. 3rd ed. New York: Oxford University Press. p 346–388.
- Bruton CJ. 1988. The neuropathology of temporal lobe epilepsy. New York: Oxford University Press.
- Carlson H, Ronne EE, Ungerstedt U, et al. 1992. Seizure related elevations of extracellular amino acids in human focal epilepsy. Neurosci Lett 140: 30–32.
- Cascino GD. 1995. Clinical correlations with hippocampal atrophy. Magn Reson Imaging 13: 1133–1136.
- Cavalheiro EA, Leite JP, Bartolotto Z, et al. 1991. Long-term effects of pilocarpine in rats: structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia 32: 778–782.
- Cavalheiro LA, Riche DA, Le Gal La Salle G. 1982. Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electroenceph Clin Neurophysiol 53: 581–589.
- Cavazos JE, Sutula TP. 1990. Progressive neuronal loss induced by kindling: a possible mechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527: 1–6.
- Chen K, Baram TZ, Soltesz I. 1999. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5: 888–894.
- Chevassus-au-Louis N, Baraban SC, Gaiarsa J-L, et al. 1999. Cortical malformations and epilepsy: new insights from animal models. Epilepsia 40: 811–821.
- Choi DW. 1992. Excitotoxic cell death. J Neurobiol 23: 1261–1276.
- Collaco MY, De BJ. 1995. Differential temporal patterns of expression of immediate early genes in cerebral cortex induced by intracerebral excitotoxin injection: sensitivity to dexamethasone and MK-801. Neuropharmacology 34: 521–531.
- Condorelli DF, Dell'Albani P, Amico C, et al. 1992. Development profile of metabotropic glutamate3 receptor mRNA in rat brain. Mol Pharmacol 41(4): 660–664.
- Corcoran ME, Armitage LA, Gilbert TH, et al. 1998. Kindling and spatial cognition. In: ME Corcoran, SL Moshé, editors. Kindling 5. New York: Plenum Press. p 377–393.
- Corsellis JAN, Bruton CJ. 1983. Neuropathology of status epilepticus in humans. In: AV Delgado-Escueta, CG Wasterlain, DM Treiman, RJ Porter, editors. Status epilepicus: mechanisms of brain damage and treatment. New York: Raven Press. p 129–139.
- Cronin J, Dudek FE. 1988. Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats. Brain Res 474: 181–184.
- Cronin J, Obenaces A, Houser CR, et al. 1992. Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res 573: 305–310.
- Dam AM. 1980. Epilepsy and neuron loss in the hippocampus. Epilepsia 21: 617–629.
- Davies KG, Hermann BP, Dohan FJ, et al. 1996. Relationship of hippocampal sclerosis to duration and age of onset of epilepsy, and childhood febrile seizures in temporal lobectomy patients. Epilepsy Res 24: 119–126.
- Dodd PR, Bradford HF. 1976. Release of amino acids from the maturing cobalt-induced epileptic focus. Brain Res 11: 377–388.
- Dragunow M, Preston K. 1995. The role of inducible transcription factors in apoptotic nerve cell death. Brain Res Brain Res Rev 21: 1–28.
- Dragunow M, Young D, Hughes P, et al. 1993. Is c-Jun involved in nerve cell death following status epilepticus and hypoxic-ischaemic brain injury? [published erratum appears in Brain Res Mol Brain Res 1993;20(1-2):179]. Brain Res Mol Brain Res 18: 347–352.
- Du F, Eid T, Lothman EW, et al. 1995. Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J Neurosci 15: 6301–6313.
- Dube C, Brunson K, Eghbal-Ahmadi M, et al. 1999. Febrile seizures lead to increased susceptibility to limbic seizures during adulthood. Epilepsia 40(suppl 7): 159.
- Dugich-Djordjevic MM, Tocco G, Willoughby DA, et al. 1992. BDNF expression in the developing rat brain following kainic acid–induced seizure activity. Neuron 8: 1127–1138.
- During MJ, Spencer DD. 1993. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341: 1607–1610.
- Engel J Jr. 1989. Seizures and epilepsy. Philadelphia: FA Davis.
- Engel J, Williamson PD, Wieser HG. 1997. Mesial temporal lobe epilepsy. In: J Engel, T Pedley, editors. Epilepsy: a comprehensive textbook. New York: Lippincott-Raven Press. p 2417–2426.
- Falconer MA. 1974. Mesial temporal (Ammon's Horn) sclerosis as a common cause of epilepsy: etiology, treatment, and prevention. Lancet 2: 767–770.
- Falconer MA, Serafetinides EA, Corsellis JAN. 1964. Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 10: 233–248.
- Feldblum S, Ackermann RF. 1987. Increased susceptibility to hippocampal and amygdala kindling following intrahippocampal kainic acid. Exp Neurol 97: 255–269.
- Fernandez G, Effenberger O, Vinz B, et al. 1998. Hippocampal malformation as a cause of familial febrile convulsions and subsequent hippocampal sclerosis. Neurology 50: 909–916.
- Fisher PD, Sperber EF, Moshe SL. 1998. Hippocampal sclerosis revisited. Brain Dev 20: 563–573.
- French JA, Williamson PD, Thadani VM, et al. 1993. Characteristics of medial temporal lobe epilepsy, I: results of history and physical examination. Ann Neurol 34: 774–780.
- Friedman LK, Pellegrini-Giampietro DE, Sperber EF, et al. 1994. Kainate-induced status epilepticus alters glutamate and GABA-A receptor gene expression. J Neurosci 14(5): 2697–2707.
- Friedman LK, Sperber EF, Moshé SL, et al. 1997. Developmental regulation of glutamate and GABAA receptor gene expression in rat hippocampus following kainate-induced status epilepticus. Dev Neurosci 19: 529–542.
- Fujikawa DG. 1996. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res 725(1): 11–22.
- Gass P, Herdegen T, Bravo R, et al. 1993. Spatiotemporal induction of immediate early genes in the rat brain after limbic seizures: effects of NMDA receptor antagonist MK-801. Eur J Neurosci 5: 933–943.
-
Germano IM,
Sperber EF.
1998.
Transplacentally induced neuronal migration disorders: an animal model for the study of the epilepsies.
J Neurosci Res
51:
473–488.
10.1002/(SICI)1097-4547(19980215)51:4<473::AID-JNR7>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- Germano IM, Sperber EF, Ahuja S, et al. 1998. Evidence of enhanced kindling and hippocampal neuronal injury in immature rats with neuronal migration disorders. Epilepsia 39(12): 1253–1260.
- Germano IM, Sperber EF, Moshé SL. 1996a. Molecular and experimental aspects of neuronal migration disorders. In: R Guerrini, F Andermann, R Canapichi, J Roger, BG Zifkin, P Pfanner, editors. Dysplasias of cerebral cortex and epilepsy. New York: Lippincott-Raven Press. p 22–34.
- Germano IM, Zhang YF, Sperber EF, et al. 1996b. Neuronal migration disorders increase seizure susceptibility to febrile seizures. Epilepsia 37: 902–910.
- Gilbert ME, Cain DP. 1985. A single neonatal pentylenetetrazol or hypothermia convulsion increases kindling susceptibility in the adult rat. Dev Brain Res 22: 169–180.
- Gloor P. 1997. The temporal lobe and limbic system. New York: Oxford University Press.
- Gruenthal M, Armstrong DR, Ault B, et al. 1986. Comparison of seizures and brain lesions produced by intracerebroventricular kainic acid and bicuculline methiodide. Exp Neurol 93: 621–630.
- Haas K, Sperber EF, Moshé SL, et al. 1996. Kainic acid induced seizures enhance dentate inhibition by down regulation of GABAB receptors. J Neurosci 16(13): 4250–4260.
- Haas KZ, Sperber EF, Benenati B, et al. 1998. Idiosyncrasies of limbic kindling in developing rats. In: ME Corcoran, SL Moshé, editors. Kindling 5. New York: Plenum Press. p 15–25.
- Haas KZ, Sperber EF, Opanashuk LA, Sutula T, Stanton PK, Moshé SL. 2000. Resistance of the immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocampus, in press.
- Hamati-Haddad A, Abou-Khalil B. 1998. Epilepsy diagnosis and localization in patients with antecedent childhood febrile convulsions. Neurology 50: 917–922.
- Hammill JF, Carter S. 1966. Febrile convulsions. N Engl J Med 274: 563–565.
-
Harvey A.
1999.
The role of febrile convulsions in mesial temporal sclerosis. In:
The epilepsies: etiologies and prevention.
New York:
Academic Press. p
125–131.
10.1016/B978-012422150-5/50018-4 Google Scholar
- Hauser WA. 1981. The natural history of febrile seizures. In: KB Nelson, JH Ellenberg, editors. Febrile seizures. New York: Raven Press. p 5–18.
- Hauser WA. 1990. Status epilepticus: epidemiologic considerations. Neurology 40(2): 9–13.
- Hickenbottom SL, Grotta J. 1998. Neuroprotective therapy. Semin Neurol 18: 485–492.
- Holmes GL, Thompson JL. 1988. Effects of kainic acid on seizure susceptibility in the developing brain. Dev Brain Res 39: 51–59.
- Holmes GL, McCabe B. 1999. Seizures during brain development: effects on plasticity. In: J Engel, DH Lowenstein, SL Moshé, PA Schwartzkroin, editors. Brain Plasticity and Epilepsy: A Tribute to Frank Morrell. New York: Academic Press. p 17–41.
- Holmes GL, Thompson JL, Marchi T, et al. 1988. Behavioral effects of kainic acid administration on the immature brain. Epilepsia 29(6): 721–730.
-
Holmes GL,
Sarkisian M,
Ben-Ari Y, et al.
1999.
Mossy fiber sprouting after recurrent seizures during early development in rats.
J Comp Neurol
404:
537–553.
10.1002/(SICI)1096-9861(19990222)404:4<537::AID-CNE9>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- Holscher C, Gigg J, O'Mara SM. 1999. Metabotropic glutamate receptor activation and blockade: their role in long-term potentiation, learning and neurotoxicity. Neurosci Biobehav Rev 23: 399–410.
- Houser CR, Miyashiro JE, Swartz BE, et al. 1990. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 10: 267–282.
- Inestrosa NC, Marzolo MP, Bonnefont AB. 1998. Cellular and molecular basis of estrogen's neuroprotection: potential relevance for Alzheimer's disease. Mol Neurobiol 17: 73–86.
- Insel TR, Miller LP, Gelhard RE. 1990. The ontogeny of excitatory amino acid receptors in the rat forebrain, I: N-methyl-D-aspartate and quisqualate receptors. Neuroscience 35(1): 31–43.
- Jackson GD, McIntosh AM, Briellmann RS, et al. 1998. Hippocampal sclerosis studied in identical twins. Neurology 51: 78–84.
- Johnston D, Amaral D. 1997. Hippocampus. In: G Shepherd, editor. The synaptic organization of the brain. 4th ed. New York: Oxford University Press. p 417–458.
- Kaneko Y, Wada JA, Kimura H. 1981. Is the amygdaloid neuron necessary for amygdaloid kindling? In: J Wada, editor. Kindling 2. New York: Raven Press. p 249–264.
- Kobayashi T, Mori Y. 1998. Ca2+ channel antagonists and neuroprotection from cerebral ischemia. Eur J Pharmacol 363: 1–15.
- Koh JY, Goldberg MP, Hartley DM, et al. 1987. Non-NMDA-receptor-mediated neruotoxicity in cortical culture. J Neurosci 10: 693–705.
- Koh S, Storey TW, Santos TC, et al. 1999. Early-life seizures in rats increase susceptibility to seizure-induced brain injury in adulthood. Neurology 53: 915–921.
- Kornblum HI, Sankar R, Shin DH, et al. 1997. Induction of brain derived neurotrophic factor mRNA by seizures in neonatal and juvenile rat brain. Brain Res Mol Brain Res 44(2): 219–228.
- Lallement G, Carpentier P, Collet A, et al. 1991. Effects of soman-induced seizures on different extracellular amino acid levels and on glutamate uptake in rat hippocampus. Brain Res 563: 234–240.
- Leite JP, Bortolotto AA, Cavalheiro EA. 1990. Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy. Neurosci Behav Rev 14: 511–517.
- Leite JP, Babb TL, Pretorius JK, et al. 1996. Neuron loss, mossy fiber sprouting, and interictal spikes after intrahippocampal kainate in developing rats. Epilepsy Res 26: 219–231.
- Lipton SA, Rosenberg PA. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330: 613–622.
- Lipton SA, Choi YB, Sucher NJ, et al. 1998. Neuroprotective versus neurodestructive effects of NO-related species. Biofactors 8: 33–40.
- Liu Z, Gatt A, Werner SJ, et al. 1994. Long-term behavioral deficits following pilocarpine seizures in immature rats. Epilepsy Res 19(3): 191–204.
- Liu Z, Mikati M, Holmes G. 1995. Mesial temporal sclerosis: pathogenesis and significance. Pediatr Neurol 12: 5–16.
- Longo BM, Mello LE. 1997. Blockade of pilocarpine- or kainate-induced mossy fiber sprouting by cycloheximide does not prevent subsequent epileptogenesis in rats. Neurosci Lett 226: 163–166.
- Longo BM, Mello LE. 1998. Supragranular mossy fiber sprouting is not necessary for spontaneous seizures in the intrahippocampal kainate model of epilepsy in the rat. Epilepsy Res 32: 172–182.
- Lorente de Nó R. 1934. Studies on the structure of the cerebral cortex, II: continuation of the study of the ammonic system. J Psychol Neurol 46: 113–177.
- Lothman EW, Collins RC. 1981. Kainic acid induced limbic seizures: metabolic, behavioral, electroencephalographic and neuropathological correlates. Brain Res 218: 299–318.
- Margerison JH, Corsellis JA. 1966. Epilepsy and the temporal lobes: a clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89: 499–530.
- Marks JD, Friedman JE, Haddad GG. 1996. Vulnerability of CA1 neurons to glutamate is developmentally regulated. Dev Brain Res 97: 194–206.
- Mathern G, Babb T, Armstrong D. 1997. Mesial temporal lobe epilepsy. In: J Engel, T Pedley, editors. Epilepsy: a comprehensive textbook. New York: Lippincott-Raven Publishers. p 133–155.
- Mathison G. 1975. Pathology of temporal lobe foci. In: W Friedlander, editor. Advances in neurology. New York: Raven Press. p 163–185.
- Maytal J, Shinnar S. 1990. Febrile status epilepticus. Pediatrics 86: 611–616.
- Meldrum BS, Brierley JB. 1973. Prolonged epileptic seizures in primates: ischemic cell change and its relation to ictal physiological events. Arch Neurol 28: 10–17.
- Meldrum BS, Vigouroux RA, Brierley JB. 1973. Systemic factors and epileptic brain damage: prolonged seizures in paralyzed, artificially ventilated baboons. Arch Neurol 29: 82–87.
- Millan MH, Chapman AG, Meldrum BS. 1993. Extracellular amino acid levels in hippocampus during pilocarpine-induced seizures. Epilepsy Res 14: 139–148.
- Miller LP, Johnson AE, Gelhard RE, et al. 1990. The ontogeny of excitatory amino acid receptors in the rat forebrain, II: kainic acid receptors. Neuroscience 35(1): 45–51.
- Minamoto Y, Itano T, Tokuda M, et al. 1992. In vivo microdialysis of amino acid neurotransmitters in the hippocampus in amygdaloid kindled rat. Brain Res 573: 345–348.
- Monoghan DT, Cotman CW. 1985. Distribution of N-methyl-D-aspartate-sensitive L-[3H] glutamate-binding sites in rat brain. J Neurosci 5: 2909–2919.
- Moshé SL, Albala BJ. 1982. Kindling in developing rats: persistence of seizures into adulthood. Dev Brain Res 4: 67–71.
- Moshé SL, Albala BJ. 1983. Maturational changes in postictal refractoriness and seizure susceptibility in developing rats. Ann Neurol 13: 552–557.
- Moshé SL, Ludvig N. 1988. Kindling. In: TA Pedley, BS Meldrum, editors. Recent advances of epilepsy 4. Edinburgh: Churchill Livingstone. p 21–44.
- Moshé S, Shinnar S, Swann J. 1995. Partial (focal) seizures in developing brain. In: PA Schwartzkroin, SL Moshé, JL Noebels, JW Swann, editors. Brain development and epilepsy. New York: Oxford University Press. p 34–65.
- Nadler JV. 1981. Minireview: kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 29: 2031–2042.
- Nadler JV, Perry BW, Cotman CW. 1978. Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells. Nature 271: 676–677.
- Nelson KB, Ellenberg JH. 1976. Predictors of epilepsy in children who have experienced febrile seizures. N Engl J Med 295: 1029–1033.
- Nelson KB, Ellenberg JH. 1978. Prognosis in children with febrile seizures. Pediatrics 61: 720–727.
- Nelson KB, Ellenberg JH. 1981. Consensus statement on febrile seizures. In: Febrile seizures. New York: Raven Press. p 301–306.
- Nitecka L, Tremblay E, Charton G, et al. 1984. Maturation of kainic acid seizure-brain damage syndrome in the rat, II: histopathological sequelae. Neuroscience 13: 1073–1094.
- Obrenovitch TP. 1998. Neuroprotective strategies: voltage-gated Na+-channel down-modulation versus presynaptic glutamate release inhibition. Rev Neurosci 9: 203–211.
- Ojeda SR, Urbanski HF. 1994. Puberty in the rat. In: E Knobil, editor. The physiology of reproduction. New York: Raven Press. p 363–411.
- Okada R, Moshé SL, Albala BJ. 1984. Infantile status epilepticus and future seizure susceptibility in the rat. Dev Brain Res 15: 177–183.
- Okazaki H. 1989. Fundamentals of neuropathology. New York: Igaku-Shoin.
- O'Keefe J, Nadel L. 1978. The hippocampus as a cognitive map. Oxford, England: Clarendon Press.
- Olney JW, deGubareff T, Sloviter RS. 1983. “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path, II: ultrastructural analysis of acute hippocampal pathology. Brain Res Bull 10: 699–712.
- Orrenius S, Nicotera P. 1994. The calcium ion and cell death. J Neural Transm Suppl 43: 1–11.
- Pellegrini GD, Bennett MV, Zukin RS. 1992. Are Ca(2+)-permeable kainate/AMPA receptors more abundant in immature brain? Neurosci Lett 144: 65–69.
- Pellicciari R, Costantino G, Marinozzi M, et al. 1998. Modulation of glutamate receptor pathways in the search for new neuroprotective agents. Farmaco 53: 255–261.
- Pujic Z, Matsumoto I, Wilce PA. 1993. Expression of the gene coding for NR1 subunit of the NMDA receptor during rat brain development. Neurosci Lett 162: 67–70.
- Represa A, Ben-Ari Y. 1992. Kindling is associated with the formation of novel mossy fibre synapses in the CA3 region. Exp Brain Res 92: 69–78.
- Ribak CE, Navetta MS. 1994. An immature mossy fiber innervation of hilar neurons may explain their resistance to kainate cell death in 15 day old rats. Brain Res Dev Brain Res 79(1): 47–62.
- Ribak CE, Baram TZ. 1996. Selective death of hippocampal CA3 pyramidal cells with mossy fiber afferents after CRH-induced status epilepticus in infant rats. Brain Res Dev Brain Res 91: 245–251.
- Rothman SM, Olney JW. 1987. Excitotoxicity and NMDA receptor. Trends Neurosci 10: 299–302.
- Roy M, Sapolsky R. 1999. Neuronal apoptosis in acute necrotic insults: why is this subject such a mess? Trends Neurosci 22: 419–422.
- Sagar HJ, Oxbury JM. 1987. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann Neurol 22: 334–340.
- Sankar R, Shin DH, Wasterlain CG. 1997a. GABA metabolism during status epilepticus in the developing rat brain. Brain Res Dev Brain Res 98: 60–64.
- Sankar R, Shin DH, Wasterlain CG. 1997b. Serum neuron-specific enolase is a marker for neuronal damage following status epilepticus in the rat. Epilepsy Res 28(2): 129–136.
- Sankar R, Shin DH, Liu H, et al. 1998. Patterns of status epilepticus-induced neuronal injury during development and long-term consequences. J Neurosci 18: 8382–8393.
- Sarkisian MR, Tandon P, Liu Z, et al. 1997. Multiple kainic acid seizures in the immature and adult brain: ictal manifestations and long term effects on learning and memory. Epilepsia 38(11): 1157–1166.
- Sarkisian MR, Holmes GL, Carmant L, et al. 1999. Effects of hyperthermia and continuous hippocampal stimulation on the immature and adult brain. Brain Dev 21: 318–325.
- Savitz SI, Rosenbaum DM. 1998. Apoptosis in neurological disease. Neurosurgery 42: 555–572; discussion 573–574.
- Scharfman HE. 1999. The role of nonprincipal cells in dentate gyrus excitability and its relevance to animal models of epilepsy and temporal lobe epilepsy. Adv Neurol 79: 805–820.
- Schmitt J, Dux E, Gissel C, et al. 1996. Regional analysis of developmental changes in the extent of GluR6 mRNA editing in rat brain. Brain Res 91(1): 153–157.
- Semkova I, Krieglstein J. 1999. Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. Brain Res Brain Res Rev 30: 176–188.
- Shinnar S. 1998. Prolonged febrile seizures and mesial temporal sclerosis. Ann Neurol 43: 211–212.
- Shinnar S, Berg AT, Moshe SL, et al. 1990. Risk of seizure recurrence following a first unprovoked seizure in childhood: a prospective study. Pediatrics 85: 1076–1085.
- Shinnar S, Maytal J, Krasnoff L, et al. 1992. Recurrent status epilepticus in children [published erratum appears in Ann Neurol 1992;32(3):394]. Ann Neurol 31: 598–604.
- Shinnar S, Berg AT, Moshe SL, et al. 1996. The risk of seizure recurrence after a first unprovoked afebrile seizure in childhood: an extended follow-up. Pediatrics 98(2 Pt 1): 216–225.
- Sloviter RS. 1983. “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path, I: acute electrophysiological and light microscopic studies. Brain Res Bull 10: 675–697.
- Sloviter RS. 1992. Possible functional consequences of synaptic reorganization in the dentate gyrus of kainate-treated rats. Neuroscience Letters 137: 91–96.
- Sloviter RS, Pedley TA. 1998. Subtle hippocampal malformation: importance in febrile seizures and development of epilepsy. Neurology 50: 846–849.
-
Sloviter RS,
Dean E,
Sollas AL, et al.
1996.
Apoptosis and necrosis induced in different hippocampal neuron populations by repetitive perforant path stimulation in the rat.
J Comp Neurol
366:
516–533.
10.1002/(SICI)1096-9861(19960311)366:3<516::AID-CNE10>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
-
Sommer W.
1880.
Erkankung des Ammonshorns als aetiologisches Moment der Epilepsie.
Arch Psychiatr Nervenkr
10:
631–675.
10.1007/BF02224538 Google Scholar
- Soriano E, Frotscher M. 1993. Spiney nonpyramidal neurons in the CA3 region of the rat hippocampus are glutamate-like immunoreactive and receive convergent mossy fiber input. J Comp Neurol 333: 435–448.
- Sperber EF, Haas KZ, Stanton PK, et al. 1991a. Resistance to damage of the immature hippocampus to flurothyl induced status epilepticus. Ann Neurol 30: 495.
- Sperber EF, Haas KZ, Stanton PK, et al. 1991b. Resistance of the immature hippocampus to seizure-induced synaptic reorganization. Dev Brain Res 60: 88–93.
- Sperber EF, Haas KZ, Romero MT, et al. 1999. Flurothyl status epilepticus in developing rats: behavioral, electrographic, histological and electrophysiological studies. Brain Res Dev Brain Res 116: 59–68.
- Stafstrom CE, Thompson JL, Holmes GL. 1992. Kainic acid seizures in the developing brain: status epilepticus and spontaneous seizures. Dev Brain Res 65: 227–236.
- Stafstrom CE, Chronopoulos A, Thurber S, et al. 1993. Age-dependent cognitive and behavioral deficits after kainic acid seizures. Epilepsia 34: 420–432.
- Sutula TP, Hermann B. 1999. Progression in mesial temporal lobe epilepsy. Ann Neurol 45: 553–556.
- Sutula T, He XX, Cavazos J, et al. 1988. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 239: 1147–1150.
- Sutula T, Cascino G, Cavazos J, et al. 1989. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26: 321–330.
- Tandon P, Yang Y, Das K, et al. 1999. Neuroprotective effects of brain-derived neurotrophic factor in seizures during development. Neuroscience 91: 293–303.
- Tasch E, Cendes F, Li LM, et al. 1999. Neuroimaging evidence of progressive neuronal loss and dysfunction in temporal lobe epilepsy. Ann Neurol 45: 568–576.
- Tauck DL, Nadler JV. 1985. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid–treated rats. J Neurosci 5: 1016–1022.
- Toth Z, Yan XX, Haftoglou S, et al. 1998. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 18: 4285–4294.
- Tremblay E, Roisin MP, Represa A. 1988. Transient increased density of NMDA binding sites in the developing rat hippocampus. Brain Res 461: 393–396.
- Turski L, Cavalheiro EA, Schwarz M, et al. 1983. Limbic seizures produced by pilocarpine in rats: a behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9: 315–335.
- VanLandingham KE, Heinz ER, Cavazos JE, et al. 1998. Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 43: 413–426.
- Vaughan CJ, Delanty N. 1999. Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke 30: 1969–1973.
- Veliskova J, Galanopoulou A, Velisek L, et al. 1999. Estrogens have neuroprotective effects on hippocampal cells in adult females following kainic acid–induced status epilepticus. Epilepsia 40: 27.
- Verity CM, Golding J. 1991. Risk of epilepsy after febrile convulsions: a national cohort study [published erratum appears in BMJ 1992;304(6820):147]. BMJ 303: 1373–1376.
- Wuarin JP, Dudek FE. 1996. Electrographic seizures and new recurrent excitatory circuits in the dentate gyrus of hippocampal slices from kainate-treated epileptic rats. J Neurosci 16: 4438–4448.
- Yang Y, Tandon P, Liu Z, et al. 1998. Synaptic reorganization following kainic acid–induced seizures during development. Brain Res Dev Brain Res 107: 169–177.