Hierarchically Porous Polymer and Carbon Monoliths via Controlled/Living Radical Polymerization
Kazuki Nakanishi
Kyoto University, Kyoto, Japan
Nagoya University, Nagoya, Japan
Search for more papers by this authorKazuki Nakanishi
Kyoto University, Kyoto, Japan
Nagoya University, Nagoya, Japan
Search for more papers by this authorAbstract
Cross-linked monolithic polymer networks (or dried gels) with hierarchically porous structures have been prepared by controlled/living radical polymerization techniques such as nitroxide-mediated radical polymerization (NMP), atom transfer radical polymerization (ATRP), and organotellurium-mediated living radical polymerization (TERP). Well-controllable macropores are formed as a transient structure of spinodal decomposition induced during the polymerization of monomers, and smaller pores in the macropore skeletons are resulted from secondary phase separation during the phase separation–gelation process. Also, the obtained networks are pyrolyzed in an inert atmosphere to obtain carbonaceous materials with abundant micropores while preserving the macro- and mesoporous morphology. In addition, applications of such hierarchically porous monolithic materials to separation media and electrochemical devices are demonstrated. In the present article, the concept, mechanism, methodology, and experimental results are discussed in detail.
Bibliography
- 1K. Matyjaszewski and N. V. Tsarevsky, Nat. Chem. 1, 276–288 (2009).
- 2K. Matyjaszewski, Adv. Mater. 30, 1706441 (2018).
- 3O. W. Webster, Science 251, 887–893 (1991).
- 4N. Ide and T. Fukuda, Macromolecules 30, 4268–4271 (1997).
- 5N. Ide and T. Fukuda, Macromolecules 32, 95–99 (1999).
- 6C. Jiang, Y. Shen, S. Zhu, and D. Hunkeler, J. Polym. Sci. A 39, 3780–3788 (2001).
- 7T. Norisuye, T. Morinaga, Q. Tran-Cong-Miyata, A. Goto, T. Fukuda, and M. Shibayama, Polymer 46, 1982–1994 (2005).
- 8Q. Yu, M. Zhou, Y. Ding, B. Jiang, and S. Zhu, Polymer 48, 7058–7064 (2007).
- 9H. Gao, K. Min, and K. Matyjaszewski, Macromolecules 40, 7763–7770 (2007).
- 10H. Gao, W. Li, and K. Matyjaszewski, Macromolecules 41, 2335–2340 (2008).
- 11Q. Yu, Z. Qin, J. Li, and S. Zhu, Polym. Eng. Sci. 48, 1254–1260 (2008).
- 12S. Seiffert, Polym. Chem. 8, 4472–4487 (2017).
- 13J. Bastide and L. Leibler, Macromolecules 21, 2649–2651 (1988).
- 14Y. Y. Chiu and J. Lee, J. Polym. Sci. A 33, 257–267 (1995).
- 15Y. Y. Chiu and J. Lee, J. Polym. Sci. A 33, 269–283 (1995).
- 16T. Norisuye, Y. Kida, N. Masui, Q. Tran-Cong-Miyata, Y. Maekawa, M. Yoshida, and M. Shibayama, Macromolecules 36, 6202–6212 (2003).
- 17M. Shibayama, Polym. J. 43, 18–34 (2011).
- 18O. Okay, Prog. Polym. Sci. 25, 711–779 (2000).
- 19I. Gusev, X. Huang, and C. Horváth, J. Chromatogr. A 855, 273–290 (1999).
- 20E. C. Peters, M. Petro, F. Svec, and J. M. J. Fréchet, Anal. Chem. 69, 3646–3649 (1997).
- 21P. Krajnc, N. Leber, D. Stefanec, S. Kontrec, and A. Podgornik, J. Chromatogr. A 1065, 69–73 (2005).
- 22I. Nischang, J. Chromatogr. A 1287, 39–58 (2013).
- 23S. A. Saba, M. P. S. Mousavi, P. Bühlmann, and M. A. Hillmyer, J. Am. Chem. Soc. 137, 8896–8899 (2015).
- 24F. Maya and B. Paull, J. Sep. Sci. 42, 1564–1576 (2019).
- 25M. R. Buchmeiser, Polymer 48, 2187–2198 (2007).
- 26F. Svec and Y. Lv, Anal. Chem. 87, 250–273 (2015).
- 27P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, 1971.
- 28P. A. Small, J. Appl. Chem. 3, 71–80 (1953).
- 29A. J. Ashworth and G. J. Price, Macromolecules 19, 362–363 (1986).
- 30T. Nose, Polymer 36, 2243–2248 (1995).
- 31P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979.
- 32P. J. Flory, J. Am. Chem. Soc. 63, 3083–3090 (1941).
- 33P. J. Flory, J. Am. Chem. Soc. 63, 3091–3096 (1941).
- 34P. J. Flory, J. Am. Chem. Soc. 63, 3096–3100 (1941).
- 35W. H. Stockmayer, J. Chem. Phys. 11, 45–55 (1943).
- 36W. H. Stockmayer, J. Chem. Phys. 11, 125–131 (1944).
10.1063/1.1723922 Google Scholar
- 37O. Okay, Polymer 40, 4117–4129 (1999).
- 38K. Kanamori, J. Hasegawa, K. Nakanishi, and T. Hanada, Macromolecules 41, 7186–7193 (2008).
- 39T. Izumitani and T. Hashimoto, J. Chem. Phys. 83, 3694–3701 (1985).
- 40J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes, and B. Charleux, Prog. Polym. Sci. 38, 63–235 (2013).
- 41T. G. Ribelli, F. Lorandi, M. Fantin, and K. Matyjaszewski, Macromol. Rapid Commun. 40, 1800616 (2019).
- 42S. Yamago, J. Polym. Sci. A 44, 1–12 (2006).
- 43E. C. Peters, F. Svec, J. M. J. Fréchet, C. Viklund, and K. Irgum, Macromolecules 32, 6377–6379 (1999).
- 44U. Meyer, F. Svec, J. M. J. Fréchet, C. J. Hawker, and K. Irgum, Macromolecules 33, 7769–7775 (2000).
- 45C. Viklund, A. Nordström, K. Irgum, F. Svec, and J. M. J. Fréchet, Macromolecules 34, 4361–4369 (2001).
- 46K. Kanamori, K. Nakanishi, and T. Hanada, Adv. Mater. 18, 2407–2411 (2006).
- 47E. Malmström, R. D. Miller, and C. J. Hawker, Tetrahedron 53, 15225–15236 (1997).
- 48K. Nakanishi, J. Porous. Mater. 4, 67–112 (1997).
- 49A. K. Nyhus, S. Hagen, and A. Berge, J. Appl. Polym. Sci. 76, 152–169 (2000).
- 50Y. Li, Y. Fan, and J. Ma, React. Funct. Polym. 50, 57–65 (2001).
- 51R. Takahashi, S. Sato, T. Sodesawa, T. Goto, K. Matsutani, and N. Mikami, Mater. Res. Bull. 40, 1148–1156 (2005).
- 52A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, J. Am. Ceram. Soc. 89, 1771–1789 (2006).
- 53S. Yamago, K. Iida, and J. Yoshida, J. Am. Chem. Soc. 124, 2874–2875 (2002).
- 54A. Goto, Y. Kwak, T. Fukuda, S. Yamago, K. Iida, M. Nakajima, and J. Yoshida, J. Am. Chem. Soc. 125, 8720–8721 (2003).
- 55S. Xie, F. Svec, and J. M. J. Fréchet, J. Chromatogr. A 775, 65–72 (1997).
- 56C.-M. Zeng, J.-L. Liao, K. Nakazato, and S. Hjertén, J. Chromatogr. A 753, 227–234 (1996).
- 57D. Hogger and R. Freitag, J. Chromatogr. A 914, 211–222 (2001).
- 58F. M. Pliva, J. Andersson, I. Y. Galaev, and B. Mattiasson, J. Sep. Sci. 27, 828–836 (2004).
- 59G. Zhu, H. Yuan, P. Zhao, L. Zhang, Z. Liang, W. Zhang, and Y. Zhang, Electrophoresis 27, 3578–3583 (2006).
- 60K. S. Soppimath, A. R. Kulkarni, and T. M. Aminabhavi, J. Control. Release 75, 331–345 (2001).
- 61X.-Z. Zhang, D.-Q. Wu, and C.-C. Chu, Biomaterials 25, 3793–3805 (2004).
- 62M. Teodorescu and K. Matyjaszewski, Macromolecules 32, 4826–4831 (1999).
- 63J. T. Rademacher, M. Baum, M. E. Pallack, W. J. Brittain, and W. J. Simonsick, Macromolecules 33, 284–288 (2000).
- 64S. Jewrajka and B. M. Mandal, Macromolecules 36, 311–317 (2003).
- 65G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem. 58, 379–410 (2005).
- 66J. F. Quinn, T. P. Davis, and E. Rizzardo, Chem. Commun. 1044–1045 (2001).
- 67D. B. Thomas, B. S. Sumerlin, A. B. Lowe, and C. L. McCormick, Macromolecules 36, 1436–1439 (2003).
- 68A. J. Convertine, N. Ayres, C. W. Scales, A. B. Lowe, and C. J. McCormick, Biomacromolecules 5, 1177–1180 (2004).
- 69Y. Kwak, A. Goto, T. Fukuda, Y. Kobayashi, and S. Yamago, Macromolecules 39, 4671–4679 (2006).
- 70J. Hasegawa, K. Kanamori, K. Nakanishi, T. Hanada, and S. Yamago, Macromolecules 42, 1270–1277 (2009).
- 71T. Ohnaga, W. Chen, and T. Inoue, Polymer 35, 3774–3781 (1994).
- 72T. Inoue, Prog. Polym. Sci. 20, 119–153 (1995).
- 73E. Girard-Reydet, H. Stautereau, J. P. Pascault, P. Keates, P. Navard, G. Thollet, and G. Vigier, Polymer 39, 2269–2280 (1998).
- 74H. Tanaka, Phys. Rev. E 47, 2946–2949 (1993).
- 75J. Tao, M. Okada, and T. Nose, Polymer 36, 3909–3917 (1995).
- 76T. Sigehuzi and H. Tanaka, Phys. Rev. E 70, 051504 (2004).
- 77J. Hasegawa, K. Kanamori, K. Nakanishi, T. Hanada, and S. Yamago, Macromol. Rapid Commun. 30, 986–990 (2009).
- 78G. Hasegawa, K. Kanamori, K. Nakanishi, and S. Yamago, Polymer 52, 4644–4647 (2011).
- 79K. Rezwan, G. Z. Chen, J. J. Blaker, and A. R. Boccaccini, Biomaterials 27, 3413–3431 (2006).
- 80G. Hasegawa, K. Kanamori, N. Ishizuka, and K. Nakanishi, ACS Appl. Mater. Interfaces 4, 2343–2347 (2012).
- 81Q. C. Wang, F. Svec, and J. M. J. Fréchet, Anal. Chem. 65, 2243–2248 (1993).
- 82D. Josic, A. Buchacher, and A. Jungbauer, J. Chromatogr. B 752, 191–205 (2001).
- 83F. Svec, J. Chromatogr. A 1217, 902–924 (2010).
- 84I. Nischang, F. Svec, and J. M. J. Fréchet, J. Chromatogr. A 1216, 2355–2361 (2009).
- 85I. Nischang and O. Brüggemann, J. Chromatogr. A 1217, 5389–5397 (2010).
- 86F. Svec, J. Chromatogr. A 1228, 250–262 (2012).
- 87M. Laher, T. J. Causon, W. Buchberger, S. Hild, and I. Nischang, Anal. Chem. 85, 5645–5649 (2013).
- 88F. Svec and J. M. J. Fréchet, Science 273, 205–211 (1996).
- 89S. H. Lubbad and M. R. Buchmeiser, J. Sep. Sci. 32, 2521–2529 (2009).
- 90J. Urban, F. Svec, and J. M. J. Fréchet, Anal. Chem. 82, 1621–1623 (2010).
- 91F. Maya and F. Svec, J. Chromatogr. A 1317, 32–38 (2013).
- 92K. Kanamori, H. Yonezawa, K. Nakanishi, K. Hirao, and H. Jinnai, J. Sep. Sci. 27, 874–886 (2004).
- 93A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature 386, 377–379 (1997).
- 94S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Nature 412, 169–172 (2001).
- 95R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 13, 677–681 (2001).
- 96S. A. Al-Muhtaseb and J. Ritter, Adv. Mater. 15, 101–114 (2003).
- 97J. Lee, J. Kim, and T. Hyeon, Adv. Mater. 18, 2073–2094 (2006).
- 98J. Hasegawa, K. Kanamori, K. Nakanishi, and T. Hanada, C. R. Chim. 13, 207–211 (2010).
- 99G. Hasegawa, K. Kanamori, K. Nakanishi, and T. Hanada, Carbon 48, 1757–1766 (2010).
- 100J. W. Neely, Carbon 19, 27–36 (1981).
- 101S. B. Brijmohan, S. Swier, R. A. Weiss, and M. T. Shaw, Ind. Eng. Chem. Res. 44, 8039–8045 (2005).
- 102A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources 157, 11–27 (2006).
- 103L. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520–2531 (2009).
- 104F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Adv. Mater. 26, 2219–2251 (2014).
- 105G. Hasegawa, K. Kanamori, K. Nakanishi, and T. Abe, J. Phys. Chem. C 116, 26197–26203 (2012).
- 106G. Hasegawa, A. Kitada, S. Kawasaki, K. Kanamori, K. Nakanishi, Y. Kobayashi, H. Kageyama, and T. Abe, J. Electrochem. Soc. 162, A77–A85 (2015).
- 107G. Hasegawa, T. Deguchi, K. Kanamori, Y. Kobayashi, H. Kageyama, T. Abe, and K. Nakanishi, Chem. Mater. 27, 4703–4712 (2015).
- 108G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, T. Abe, and K. Nakanishi, Chem. Mater. 28, 3944–3950 (2016).
- 109G. Hasegawa, M. Aoki, K. Kanamori, K. Nakanishi, T. Hanada, and K. Tadanaga, J. Mater. Chem. 21, 2060–2063 (2011).
- 110K. T. Lee, J. C. Lytle, N. S. Ergang, S. M. Oh, and A. Stein, Adv. Funct. Mater. 15, 547–556 (2005).
- 111R. Zhang, X. Jing, Y. Chu, L. Wang, W. Kang, D. Wei, H. Li, and S. Xiong, J. Mater. Chem. A 6, 17730–17739 (2018).
- 112N. Brun, S. R. S. Prabaharan, M. Morcrette, C. Sanchez, G. Pécastaings, A. Derré, A. Soum, H. Deleuze, M. Birot, and R. Backov, Adv. Funct. Mater. 19, 3136–3145 (2009).
- 113V. Ruiz, C. Blanco, R. Santamaría, J. M. Ramos-Fernández, M. Martínez-Escandell, A. Sepúlveda-Escribano, and F. Rodríguez-Reinoso, Carbon 47, 195–200 (2009).
- 114C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm, and C. J. Drummond, Chem. Mater. 21, 5300–5306 (2009).