Fault Detection and Just-in-Time Maintenance in Adjustable-Speed Drives
Mahesh Krishnamurthy
Illinois Institute of Technology–Electrical and Computer Engineering
Search for more papers by this authorYao DA
Illinois Institute of Technology–Electrical and Computer Engineering
Search for more papers by this authorMahesh Krishnamurthy
Illinois Institute of Technology–Electrical and Computer Engineering
Search for more papers by this authorYao DA
Illinois Institute of Technology–Electrical and Computer Engineering
Search for more papers by this authorAbstract
With growing electrification in transportation systems and widespread adoption of renewable energy systems, there is a growing need for the development of high-efficiency motor/generator drives that can perform well under a wide range of operating conditions with a high degree of robustness and fault tolerance. In this article, different components of the drive have been explored and some of the potential causes of failure have been identified. Furthermore, some configurations that can be used for increasing fault tolerance of the drive have been presented and some common approaches used for this purpose have been discussed.
Bibliography
- 1 P. Venet, A. Lahyani, G. Grellnet, and A. Ah-Gaco. Influence of Aging on Electrolytic Capacitors Function in Static Converters: Fault Prediction Method. Eur. Phys., 1999, pp 71–83.
- 2 D. U. Campos-Delgado, D. R. Espinoza-Trejo, and E. Palacios. Fault-Tolerant Control in Variable Speed Drives: A Survey. IET Electric Power Appl. 2008, 2, pp 121–134.
- 3 D-W Chung and S-K Sul. Analysis and Compensation of Current Measurement Error in Vector-Controlled AC Motor Drives. IEEE Trans. Ind. Appl. 1998, 34, pp 340–345.
- 4 F. Meinguet and J. Gyselinck. Fault Detection, Isolation and Reconfiguration of Three-Phase AC Drive with Current Sensor Fault. In Electric Machines & Drives Conference (IEMDC); 2011 IEEE International, 2011, pp 200–205.
- 5 F. R. Salmasi and T. A. Najafabadi. An Adaptive Observer With Online Rotor and Stator Resistance Estimation for Induction Motors With One Phase Current Sensor. IEEE Trans. Energ. Convers. 2011, 26, pp 959–966.
- 6 M. E. Benbouzid, D. Diallo, and M. Zeraoulia. Advanced Fault-Tolerant Control of Induction-Motor Drives for EV/HEV Traction Applications: From Conventional to Modern and Intelligent Control Techniques. IEEE Trans. Veh. Tech. 2007, 56, pp 519–528.
- 7 J. R. Frus and B. C. Kuo. Closed-Loop Control of Step Motors Using Waveform Detection, in Proc. International Conference of Stepping Motors and Systems; Leeds, U.K., 1976.
- 8 M. E. Haque, L. Zhong, and M. F. Rahman. A Sensorless Initial Rotor Position Estimation Scheme for a Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drive. IEEE Trans. Power Electron. 2003, 18, pp 1376–1383.
- 9 S. Ogasawara and H. Akagi. An Approach to Real-Time Position Estimation at Zero and Low Speed for a PM Motor Based On Saliency. IEEE Trans. Ind. Appl. 1998, 34, pp 163–168.
- 10 M. J. Corley and R. D. Lorenz. Rotor Position and Velocity Estimation for a Salient-Pole Permanent Magnet Synchronous Machine at Standstill and High Speeds. IEEE Trans. Ind. Appl. 1998, 34, pp 784–789.
- 11 J-I Ha, K. Ide, T. Sawa, and S-K Sul. Sensorless Rotor Position Estimation of an Interior Permanent-Magnet Motor from Initial States. IEEE Trans. Ind. Appl. 2003, 39, pp 761–767.
- 12 K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri. Microcomputer Control for Sensorless Brushless Motor. IEEE Trans. Ind. Appl. 1985, IA-21, pp 595–601.
- 13 X. Shi, J. P. Serradilla, and M. Krishnamurthy. A Back EMF-Based Rotor Position Prediction in Permanent Magnet Machines for Survivable Wind Generator Systems, in IECON 2010–36th Annual Conference on IEEE Industrial Electronics Society; Glendale, AZ, 2010.
- 14 S. Bolognani, M. Zordan, and M. Zigliotto. Experimental Fault-Tolerant Control of a PMSM Drive. IEEE Trans. Ind. Electron. 2000, 47, pp 1134–1141.
- 15
M. Beltrao de Rossiter Correa,
C. Brandao Jacobina,
E. R. Cabral da Silva, and
A. M. Nogueira
Lima.
An Induction Motor Drive System with Improved Fault Tolerance.
IEEE Trans. Ind. Appl.
2001,
37, pp
873–879.
10.1109/28.924770 Google Scholar
- 16 R. L. de Araujo Ribeiro, C. B. Jacobina, E. R. da Silva, and A. M. Lima. Fault-Tolerant Voltage-Fed PWM Inverter AC Motor Drive Systems. IEEE Trans. Ind. Electron. 2004, 51, pp 439–446.
- 17 T. M. Jahns. Improved Reliability in Solid-State AC Drives by Means of Multiple Independent Phase Drive Units. IEEE Trans. Ind. Appl. 1980, IA-16, pp 321–331.
- 18 C. B. Jacobina, R. L. de Araujo Ribeiro, A. M. Lima, and E. R. da Silva. Fault-Tolerant Reversible AC Motor Drive System. IEEE Trans. Ind. Appl. 2003, 39, pp 1077–1084.
- 19 S. Kwak and H. A. Toliyat. An Approach to Fault-Tolerant Three-Phase Matrix Converter Drives. IEEE Trans. Energy Convers. 2007, 22, pp 855–863.
- 20 Y. Da, X. Shi, and M. Krishnamurthy. Health Monitoring, Fault Diagnosis and Failure Prognosis Techniques for Brushless Permanent Magnet Machines, in Vehicle Power and Propulsion Conference (VPPC); IEEE, 2011.
- 21 L. Hao, S. Nawrocki, and X. Tang. Modeling Amp: Analysis of Weld Short Faults of Bar-Wound Propulsion IPM Machine Part I: Turn Short, in Vehicle Power and Propulsion Conference (VPPC); IEEE, 2011.
- 22 S. Nawrocki, L. Hao, and X. Tang. Modeling Amp: Analysis of Weld Short Faults of Bar-Wound Propulsion IPM Machine Part II: Phase-To-Phase Short, in Vehicle Power and Propulsion Conference (VPPC); IEEE, 2011.
- 23 A. Sayed-Ahmed, B. Mirafzal, and N. A. O. Demerdash. A Fault-Tolerant Technique for Delta-Connected Vector-Control AC Motor-Drives, in Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC); 2011.
- 24 B. A. Welchko, T. M. Jahns, and S. Hiti. IPM Synchronous Machine Drive Response to a Single-Phase Open Circuit Fault. IEEE Trans. Power Electron. 2002, 17, pp 764–771.
- 25 S. Rajagopalan, W. Roux, T. G. Habetler, and R. G. Harley. Dynamic Eccentricity and Demagnetized Rotor Magnet Detection in Trapezoidal Flux (Brushless DC) Motors Operating Under Different Load Conditions. IEEE Trans. Power Electron. 2007, 22, pp 2061–2069.
- 26 J. Hong, D. Hyun, S. B. Lee, J. Yoo, and K. Lee. Automated Monitoring of Magnet Quality for Permanent Magnet Synchronous Motors at Standstill, in Energy Conversion Congress and Exposition, 2009; IEEE, 2009.
- 27 J.-R. R. Ruiz, J. A. Rosero, A. G. Espinosa, and L. Romeral. Detection of Demagnetization Faults in Permanent-Magnet Synchronous Motors Under Nonstationary Conditions. IEEE Trans. Magn. 2009, 45, pp 2961–2969.
- 28 W. Yang, P. J. Tavner, and M. Wilkinson. Condition Monitoring And Fault Diagnosis Of A Wind Turbine With A Synchronous Generator Using Wavelet Transforms, in Power Electronics, Machines and Drives, 200, PEMD 2008, 4th IET Conference; 2008.
- 29 G.-H. Kang, Y.-D. Son, and G.-T. Kim. The Noise and; Vibration Analysis of BLDC Motor Due to Asymmetrical Permanent-Magnet Overhang Effects. IEEE Trans. Ind. Appl. 2008, 44, pp 1569–1577.
- 30 T. Yoon. Magnetically Induced Vibration in a Permanent-Magnet Brushless DC Motor with Symmetric Pole-Slot Configuration. IEEE Trans. Magn. 2005, 41, pp 2173–2179.
- 31 H.-S. Ko and K.-J. Kim. Characterization of Noise and Vibration Sources in Interior Permanent-Magnet Brushless DC Motors. IEEE Trans. Magn. 2004, 40, pp 3482–3489.
- 32 I. Lasurt, A. F. Stronach, and J. Penman. A Fuzzy Logic Approach to the Interpretation of Higher Order Spectra Applied to Fault Diagnosis in Electrical Machines, in 19th International Conference of the North American Fuzzy Information Processing Society; 2000.
- 33 C. Combastel, S. Gentil, and J.-P. Rognon. A Symbolic Reasoning Approach to Fault Detection and Isolation Applied to Electrical Machines, in Proceedings of the 1998 IEEE International Conference on Control Applications, vol. 1; pp 475-479.
- 34 G. Goddu, B. Li, M.-Y. Chow, and J. C. Hung. Motor Bearing Fault Diagnosis by a Fundamental Frequency Amplitude Based Fuzzy Decision System, in Proc. of the 24th Annual Conference of the IEEE Industrial Electronics Society, 4; pp 1961–1965.
- 35 M. A. Awadallah, M. M. Morcos, S. Gopalakrishnan, and T. W. Nehl. A Neuro-Fuzzy Approach to Automatic Diagnosis and Location of Stator Inter-Turn Faults in CSI-Fed PM Brushless DC Motors. IEEE Trans. Energ. Convers. 2005, 20, pp 253–259.
- 36 S. Altug, M.-Y. Chen, and H. J. Trussell. Fuzzy Inference Systems Implemented on Neural Architectures for Motor Fault Detection and Diagnosis. IEEE Trans. Ind. Electron. 1999, 46, pp 1069–1079.
- 37 M.-Y. Chow. Methodologies of Using Neural Network and Fuzzy Logic Technologies for Motor Incipient Fault Detection. World Scientific Publishing Company: Hackensack, NJ, 1998.
- 38
S. Nandi,
H. A. Toliyat, and
X. Li.
Condition Monitoring and Fault Diagnosis Of Electrical Motors-A Review.
IEEE Trans. Energy Convers.
2005,
20, pp
719–729.
10.1109/TEC.2005.847955 Google Scholar
- 39 G. B. Kliman, W. J. Premerlani, R. A. Koegl, and D. Hoeweler. A New Approach to On-Line Turn Fault Detection in AC Motors, in Conference Record of the 1996 IEEE Industry Applications Conference, Thirty-First IAS Annual Meeting, vol. 1; pp 687–693.
- 40 J. Sottile and J. L. Kohler. An On-Line Method to Detect Incipient Failure of Turn Insulation in Random-Wound Motors. IEEE Trans. Energy Convers. 1993, 8, pp 762–768.
- 41 M. A. Cash, T. G. Habetler, and G. B. Kliman. Insulation Failure Prediction in AC Machines Using Line-Neutral Voltages. IEEE Trans. Ind. Appl. 1998, 34, pp 1234–1239.
- 42 X.-Q. Liu, H.-Y. Zhang, J. Liu, and J. Yang. Fault Detection and Diagnosis of Permanent-Magnet DC Motor Based on Parameter Estimation and Neural Network. IEEE Trans. Ind. Electron. 2000, 47, pp 1021–1030.
- 43 W. le Roux, R. G. Harley, and T. G. Habetler. Detecting Rotor Faults in Low Power Permanent Magnet Synchronous Machines. IEEE Trans. Power Electron. 2007, 22, pp 322–328.
- 44 L. Liu, D. A. Cartes, and W. Liu. Application of Particle Swarm Optimization to PMSM Stator Fault Diagnosis, in International Joint Conference on Neural Networks; 2006, pp 1969–1974.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: