Dram Chips
Yoichi Oshima,
Bing J. Sheu,
Steve H. Jen,
Yoichi Oshima
Japanese Patent Office, 3-4-3 Kasumigaseki Chiyoda-ku, Tokyo, Japan, 100
Search for more papers by this authorBing J. Sheu
University of Southern California, Los Angeles, CA, 90089
Search for more papers by this authorSteve H. Jen
University of Southern California, Los Angeles, CA, 90089
Search for more papers by this authorYoichi Oshima,
Bing J. Sheu,
Steve H. Jen,
Yoichi Oshima
Japanese Patent Office, 3-4-3 Kasumigaseki Chiyoda-ku, Tokyo, Japan, 100
Search for more papers by this authorBing J. Sheu
University of Southern California, Los Angeles, CA, 90089
Search for more papers by this authorSteve H. Jen
University of Southern California, Los Angeles, CA, 90089
Search for more papers by this authorFirst published: 27 December 1999
Abstract
The sections in this article are
- 1 Dram Memory Cell
- 2 Basic Dram System
- 3 Low-Power Design Technology
- 4 High-Throughput Dram Technology
- 5 Acknowledgments
Bibliography
- 1 T. Masuhara et al. VLSI memories: Present status and future prospect, J. Inst. Electron. Inf. Commun. Eng., E74 (1): 130–141, 1991.
- 2 H. Komiya Future technological and economical prospects for VLSI, IEEE Int. Solid-State Circuits Conf., San Francisco, pp. 16–19, 1993.
- 3 H. Sasaki Multimedia complex on a chip, IEEE Int. Solid-State Circuits Conf., San Francisco, pp. 16–19, 1996.
- 4 K. Ishibashi et al. A 6-ns 4-Mb CMOS SRAM with offset-voltage insensitive current sense amplifiers, IEEE J. Solid-State Circuits, 30 (4): 480–485, 1995.
- 5 K. Kashihara T. Okudaira H. Itoh A novel metal-ferroelectric insulator-semiconductor (MFS) capacitor using PZT/SrTiO3 layered insulator, IEEE Symp. VLSI Tech. Dig., Kyoto, Japan, pp. 49–50, 1993.
- 6 T. V. Rajeevakumar G. B. Bronner A novel trench capacitor structure for ULSI DRAMs, IEEE Symp. VLSI Tech. Dig., Oiso, Kanagawa, Japan, pp. 7–8, 1991.
- 7 D. Kenney et al. A buried-plate trench cell for 64-Mb DRAM, IEEE Symp. VLSI Tech. Dig., Oiso, Kanagawa, Japan, pp. 14–15, 1991.
- 8 T. Kaga et al. Crown-shaped stacked-capacitor cell for 1.5-V operation 64-Mb DRAM’s, IEEE Trans. Electron Devices, 38: 255–261, 1991.
- 9 H. Watanabe et al. A novel stacked capacitor with porous-Si electrodes for high density DRAMs, IEEE Symp. VLSI Tech. Dig., Honolulu, HI, pp. 19–20, 1994.
- 10 K. W. Kwon et al. Ta2O5/TiO2 composite films for high density DRAM capacitors, IEEE Symp. VLSI Tech. Dig., Kyoto, Japan, pp. 45–46, 1993.
- 11 J. H. Ahn et al. Microvillus patterning technology for 256 Mb DRAM stack cell, IEEE Symp. VLSI Tech. Dig., Seattle, WA, pp. 12–13, 1992.
- 12 K. Itoh K. Sasaki Y. Nakagome Trends in low-power RAM circuit technologies, IEEE Symp. Low Power Electron., San Diego, CA, pp. 84–87, 1994.
- 13 H. Koinumai T. Kimura ×32 bit 16 M DRAM structure, Nikkei Microdevices, June, pp. 84–85, 1995.
- 14 M. Aoki et al. New DRAM noise generation under half-Vcc precharge and its reduction using a transposed amplifier, IEEE J. Solid-State Circuits, 24 (4): 889–894, 1989.
- 15 Texas Instruments, MOS Memory Data Book, June 1995.
- 16 Y. Takai et al. 250 M Byte/s sychronous DRAM using a 3-stage-pipelined architecture, IEEE J. Solid-State Circuits, 29 (4): 426–431, 1994.
- 17 N. Kushiyama et al. 500 M Byte/sec data-rate 512 K bits ×9 DRAM using a novel I/O interface, IEEE Symp. VLSI Circuits Dig., Seattle, WA, pp. 66–67, 1992.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: