Abstract
The sections in this article are
- 1 Introduction
- 2 Genetic Algorithms
- 3 Fuzzy Sets and Systems
- 4 Neural Computing
- 5 Rough Sets
Bibliography
- 1
J. C. Bezdek,
On the relationship between neural networks, pattern recognition and intelligence,
Int. J. Approximate Reasoning,
6,
1992,
85–107.
10.1016/0888-613X(92)90013-P Google Scholar
- 2 J. C. Bezdek, What is Computational Intelligence? In: J. Zurada, R. Marks, C. Robinson (Eds.), Computational Intelligence: Imitating Life, Piscataway, IEEE Press, 1994, 1–12.
- 3 W. Pedrycz, Computational Intelligence: An Introduction. Boca Raton, FL: CRC Press, 1998.
- 4 W. Pedrycz, J. F. Peters (Eds.), Computational Intelligence in Software Engineering, Advances in Fuzzy Systems—Applications and Theory, vol. 16. Singapore: World Scientific, 1998.
- 5 D. Poole, A. Mackworth, R. Goebel, Computational Intelligence: A Logical Approach. Oxford: Oxford University Press, 1998.
- 6 N. Cercone, A. Skowron, N. Zhong (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing Special Issue. Computation Intelligence: An International Journal, vol. 17, no. 3, 2001, 399–603.
- 7 A. Skowron, S. K. Pal (Eds.), Rough Sets, Pattern Recognition and Data Mining Special Issue. Pattern Recognition Letters, vol. 24, no. 6, 2003, 829–933.
- 8 A. Skowron, Toward intelligent systems: Calculi of information granules. In: T. Terano, T. Nishida, A. Namatane, S. Tsumoto, Y. Ohsawa, T. Washio (Eds.), New Frontiers in Artificial Intelligence, Lecture Notes in Artificial Intelligence 2253. Berlin: Springer-Verlag, 2001, 28–39.
- 9 J. F. Peters, A. Skowron, J. Stepaniuk, S. Ramanna, Towards an ontology of approximate reason, Fundamenta Informaticae, vol. 51, nos. 1–2, 2002, 157–173.
- 10 R. Marks, Intelligence: Computational versus Artificial, IEEE Trans. on Neural Networks, 4, 1993, 737–739.
- 11 D. Fogel, Review of “Computational Intelligence: Imitating Life”, IEEE Trans. on Neural Networks, 6, 1995, 1562–1565.
- 12 J. F. Peters, Time and Clock Information Systems: Concepts and Roughly Fuzzy Petri Net Models. In: J. Kacprzyk (Ed.), Knowledge Discovery and Rough Sets. Berlin: Physica Verlag, a division of Springer Verlag, 1998.
- 13 Z. Pawlak, A. Skowron, Rudiments of rough sets, Information Sciences, 177, 2006, 3–27. See, also, J. F. Peters, A. Skowron, Zdzislaw Pawlak life and work (1926–2006), Information Sciences, 177, 1–2, Z. Pawlak, A. Skowron, Rough sets: Some extensions, Information Sciences, 177, 28–40 and Z. Pawlak, A. Skowron, Rough sets and Boolean reasoning, Information Sciences, 177, 41–73.
- 14 J. H. Holland, Adaptive plans optimal for payoff-only environments, Proc. of the Second Hawaii Int. Conf. on System Sciences, 1969, 917–920.
- 15 J. R. Koza, Genetic Programming: On the Progamming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press, 1993.
- 16 C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. London: John Murray, 1959.
- 17
L. Chambers,
Practical Handbook of Genetic Algorithms, vol.
I.
Boca Raton, FL:
CRC Press,
1995.
10.1201/9781420050073 Google Scholar
- 18 L. J. Fogel, A. J. Owens, M. J. Walsh, Artificial Intelligence through Simulated Evolution, Chichester, J. Wiley, 1966.
- 19 L. J. Fogel, On the organization of the intellect. Ph.D. diss., UCLA, 1964.
- 20 R. R. Yager and D. P. Filev, Essentials of Fuzzy Modeling and Control. NY: John Wiley & Sons, Inc., 1994.
- 21 L. A. Zadeh, Fuzzy sets, Information and Control, 8, 1965, 338–353.
- 22 L. A. Zadeh, Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. on Systems, Man, and Cybernetics, 2, 1973, 28–44.
- 23 W. Pedrycz, Fuzzy Control and Fuzzy Systems, NY: John Wiley & Sons, Inc., 1993.
- 24 R. Kruse, J. Gebhardt, F. Klawonn, Foundations of Fuzzy Systems. NY: John Wiley & Sons, Inc., 1994.
- 25
W. S. McCulloch,
W. Pitts,
A logical calculus of ideas immanent in nervous activity,
Bulletin of Mathematical Biophysics
5,
1943,
115–133.
10.1007/BF02478259 Google Scholar
- 26
F. Rosenblatt,
Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms,
Washington:
Spartan Press,
1961.
10.21236/AD0256582 Google Scholar
- 27 M. Minsky, S. Pappert, Perceptrons: An Introduction to Computational Geometry, Cambridge: MIT Press, 1969.
- 28 E. Fiesler, R. Beale (Eds.), Handbook on Neural Computation. UK: Institute of Physics Publishing and Oxford University Press, 1997.
- 29
C. M. Bishop,
Neural Networks for Pattern Recognition.
Oxford:
Oxford University Press,
1995.
10.1093/oso/9780198538493.001.0001 Google Scholar
- 30 B. Widrow, M. E. Hoff, Adaptive switching circuits, Proc. IRE WESCON Convention Record, Part 4, 1960, 96–104.
- 31 B. Widrow, Generalization and information storage in networks of adaline “neurons”. In M. C. Yovits, G. T. Jacobi, G. D. Goldstein (Eds.), Self-Organizing Systems. Washington, Spartan, 1962.
- 32 J. A. Freeman and D. M. Skapura, Neural Networks: Algorithms, Applications and Programming Techniques. Reading, MA, Addison-Wesley, 1991.
- 33
Z. Pawlak,
Rough sets,
Int. J. of Information and Computer Sciences, vol.
11, no. 5,
1982,
341–356, 1982
10.1007/BF01001956 Google Scholar
- 34 Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning about Data, Dordrecht, Kluwer Academic Publishers, 1991.
- 35 W. Pedrycz, Shadowed sets: Representing and processing fuzzy sets, IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 28/1, Feb. 1998, 103–108.
- 36 S. Lesniewski, O podstawach matematyki (in Polish), Przeglad Filozoficzny, vol. 30, 164–206, vol. 31, 261–291, vol. 32, 60–101, and vol. 33, 142–170, 1927.
- 37 L. Polkowski and A. Skowron, Implementing fuzzy containment via rough inclusions: Rough mereological approach to distributed problem solving, Proc. Fifth IEEE Int. Conf. on Fuzzy Systems, vol. 2, New Orleans, Sept. 8–11, 1996, 1147–1153.
- 38 L. Polkowski, A. Skowron, Rough mereology: A new paradigm for approximate reasoning, International Journal of Approximate Reasoning, vol. 15, no. 4, 1996, 333–365.
- 39 L. Polkowski, A. Skowron, Rough mereological calculi of granules: A rough set approach to computation, Computational Intelligence: An International Journal, vol. 17, no. 3, 2001, 472–492.
- 40 Bazan, H. S. Nguyen, A. Skowron, M. Szczuka: A view on rough set concept approximation, In: G. Wang, Q. Liu, Y. Y. Yao, A. Skowron, Proceedings of the Ninth International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing RSFDGrC'2003), Chongqing, China, 2003, LNAI 2639, 181–188.
- 41 J. Bazan, H. S. Nguyen, J. F. Peters, A. Skowron, M. Szczuka: Rough set approach to pattern extraction from classifiers, Proceedings of the Workshop on Rough Sets in Knowledge Discovery and Soft Computing at ETAPS'2003, April 12–13, 2–3, Warsaw University, electronic version in Electronic Notes in Computer Science, Elsevier, 20–29. G. Frege, Grundlagen der Arithmetik, 2, Verlag von Herman Pohle, Jena, 1893.
- 42 T. Munakata, Z. Pawlak, Rough control: Application of rough set theory to control, Proc. Eur. Congr. Fuzzy Intell. Technol. EUFIT'96, 1996, 209–218.
- 43 J. F. Peters, A. Skowron, Z. Suraj, An application of rough set methods to automatic concurrent control design, Fundamenta Informaticae, 43(1–4), 2000, 269–290.
- 44 T. Y. Lin, Fuzzy controllers: An integrated approach based on fuzzy logic, rough sets, and evolutionary computing. In: T. Y. Lin, N. Cercone (Eds.), Rough Sets and Data Mining: Analysis for Imprecise Data. Norwell, MA, Kluwer Academic Publishers, 1997, 109–122.
- 45
J. Grzymala-Busse,
S. Y. Sedelow,
W. A. Sedelow,
Machine learning & knowledge acquisition, rough sets, and the English semantic code. In:
T. Y. Lin,
N. Cercone (Eds.),
Rough Sets and Data Mining: Analysis for Imprecise Data.
Norwell, MA,
Kluwer Academic Publishers,
1997,
91–108.
10.1007/978-1-4613-1461-5_5 Google Scholar
- 46 S. K. Pal, L. Polkowski, A. Skowron (Eds.), Rough-Neuro Computing: Techniques for Computing with Words. Berlin: Springer-Verlag, 2003.
- 47
R. Hashemi,
B. Pearce,
R. Arani,
W. Hinson,
M. Paule,
A fusion of rough sets, modified rough sets, and genetic algorithms for hybrid diagnostic systems. In:
T. Y. Lin,
N. Cercone (Eds.),
Rough Sets and Data Mining: Analysis for Imprecise Data.
Norwell, MA,
Kluwer Academic Publishers,
1997,
149–176.
10.1007/978-1-4613-1461-5_9 Google Scholar
- 48
R. Ras,
Resolving queries through cooperation in multi-agent systems. In
T. Y. Lin,
N. Cercone (Eds.),
Rough Sets and Data Mining: Analysis for Imprecise Data.
Norwell, MA,
Kluwer Academic Publishers,
1997,
239–258.
10.1007/978-1-4613-1461-5_13 Google Scholar
- 49
A. Skowron,
Z. Suraj,
A parallel algorithm for real-time decision making: a rough set approach.
J. of Intelligent Systems, vol.
7,
1996,
5–28.
10.1007/BF00125520 Google Scholar
- 50
J. F. Peters,
T. C. Ahn,
M. Borkowski,
V. Degtyaryov,
S. Ramanna,
Line-crawling robot navigation: A rough neurocomputing approach. In:
C. Zhou,
D. Maravall,
D. Ruan (Eds.),
Autonomous Robotic Systems.
Berlin:
Physica-Verlag,
2003,
141–164.
10.1007/978-3-7908-1767-6_5 Google Scholar
- 51 J. F. Peters, T. C. Ahn, M. Borkowski, Object-classification by a line-crawling robot: A rough neurocomputing approach. In: J. J. Alpigini, J. F. Peters, A. Skowron, N. Zhong (Eds.), Rough Sets and Current Trends in Computing, LNAI 2475. Springer-Verlag, Berlin, 2002, 595–601.
- 52
M. S. Szczuka,
N. H. Son,
Analysis of image sequences for unmanned aerial vehicles. In:
M. Inuiguchi,
S. Hirano,
S. Tsumoto (Eds.),
Rough Set Theory and Granular Computing.
Berlin:
Springer-Verlag,
2003,
291–300.
10.1007/978-3-540-36473-3_28 Google Scholar
- 53 H. S. Son, A. Skowron, M. Szczuka, Situation identification by unmanned aerial vehicle. In: Proc. of CS&P 2000, Informatik Berichte, Humboldt-Universitat zu Berlin, 2000, 177–188.
- 54 J. F. Peters, L. Han, S. Ramanna, Rough neural computing in signal analysis, Computational Intelligence, vol. 1, no. 3, 2001, 493–513.
- 55 J. F. Peters, S. Ramanna, Towards a software change classification system: A rough set approach, Software Quality Journal, vol. 11, no. 2, 2003, 87–120.
- 56 M. Reformat, W. Pedrycz, N. J. Pizzi, Software quality analysis with the use of computational intelligence, Information and Software Technology, 45, 2003, 405–417.
- 57 J. F. Peters, S. Ramanna, A rough sets approach to assessing software quality: Concepts and rough Petri net models. In: S. K. Pal and A. Skowron (Eds.), Rough-Fuzzy Hybridization: New Trends in Decision Making. Berlin: Springer-Verlag, 1999, 349–380.
- 58 W. Pedrycz, L. Han, J. F. Peters, S. Ramanna, R. Zhai, Calibration of software quality: Fuzzy neural and rough neural approaches. Neurocomputing, vol. 36, 2001, 149–170.
- 59 J. F. Peters, C. Henry, Reinforcement learning with approximation spaces. Fundamenta Informaticae, 71 (2-3), 2006, 323–349.
- 60 W. Pedrycz, Granular computing with shadowed sets. In: D. Slezak, G. Wang, M. Szczuka, I. Duntsch, Y. Yao (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, LNAI 3641. Springer, Berlin 2005, 23–31.
- 61 W. Pedryz, Granular computing in knowledge integration and reuse. In: D. Zhang, T. M. Khoshgoftaar, M.-L. Shyu (Eds.), IEEE Int. Conf. on Information Reuse and Integration. Las Vegas, NV, USA, 15–17 Aug. 2005.
- 62 W. Pedrycz, G. Succi, Genetic granular classifiers in modeling software quality. Journal of Systems and Software, 76(3), 2005, 277–285.
- 63 W. Pedrycz, M. Reformat, Genetically optimized logic models. Fuzzy Sets & Systems, 150(2), 2005, 351–371.
- 64
J. F. Peters,
Rough ethology: Towards a biologically-inspired study of collective behavior in intelligent systems with approximation spaces.
Transactions on Rough Sets
III, LNCS 3400,
2005,
153–174.
10.1007/11427834_7 Google Scholar
- 65
L. Polkowski,
Rough mereology as a link between rough and fuzzy set theories: A survey.
Transactions on Rough Sets
II, LNCS 3135,
2004,
253–277.
10.1007/978-3-540-27778-1_13 Google Scholar
- 66 L. Polkowski, Rough Sets. Mathematical Foundations. Advances in Soft Computing, Physica-Verlag, Heidelberg, 2002.
- 67
Z. Pawlak,
Some issues on rough sets.
Transactions on Rough Sets
I, LNCS 3100,
2004,
1–58.
10.1007/978-3-540-27794-1_1 Google Scholar
- 68
Z. Pawlak,
A treatise on rough sets.
Transactions on Rough Sets
IV, LNCS 3700,
2005,
1–17.
10.1007/11427834_1 Google Scholar
- 69 E. Orlowska, Semantics of Vague Concepts. Applications of Rough Sets. Institute for Computer Science, Polish Academy of Sciences, Report 469, March 1981.
- 70 A. Skowron, J. Stepaniuk, Generalized approximation spaces. In: T. Y. Lin, A. M. Wildberger (Eds.), Soft Computing, Simulation Councils, San Diego, 1995, 18–21.
- 71 A. Skowron, J. Stepaniuk, J. F. Peters, R. Swiniarski, Calculi of approximation spaces. Fundamenta Informaticae, 72 (1–3), 2006, 363–378.
- 72 A. Skowron, J. Stepaniuk, Tolerance approximation spaces. Fundamenta Informaticae, 27(2–3), 1996, 245–253.
- 73
A. Skowron,
R. Swiniarski,
P. Synak,
P., Approximation spaces and information granulation.
Transactions on Rough Sets
III, LNCS 3400,
2005,
175–189.
10.1007/11427834_8 Google Scholar
- 74 A. Skowron, J. F. Peters, Rough sets: Trends and Challenges. In: G. Wang Q. Liu, Y. Yao, A. Skowron (Eds.), Proceedings 9th Int. Conf. on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing (RSFDGrC2003), LNAI 2639, Springer-Verlag, Berlin, 2003, 25–34.
- 75 IEEE World Congress on Computational Intelligence. Vancouver, B.C., Canada, 16–21 July 2006.
- 76 M. H. Hamza (Ed.), Proceedings of the IASTED Int. Conf. on Computational Intelligence. Calgary, AB, Canada, 4–6 July 2005.
- 77 Z. Pawlak, Classification of Objects by Means of Attributes. Institute for Computer Science, Polish Academy of Sciences, Report 429, March 1981.
- 78 Z. Pawlak, Rough Sets. Institute for Computer Science, Polish Academy of Sciences, Report 431, 1981.
- 79 Z. Pawlak, Rough classification. Int. J. of Man-Machine Studies, 20 (5), 1984, 127–134.
- 80 Z. Pawlak, Rough sets and intelligent data analysis, Information Sciences: An International Journal, 147 (1–4), 2002, 1–12.
- 81 Z. Pawlak, Rough sets, decision algorithms and Bayes' theorem, European Journal of Operational Research, 136, 2002, 181–189.
- 82
E. P. Kement,
R. Mesiar,
E. Pap,
Triangular Norms,
Kluwer,
Dordrecht,
2000.
10.1007/978-94-015-9540-7 Google Scholar
- 83 J. Bazan, A. Skowron, R. Swiniarski, Rough sets and vague concept approximation: From sample approximation to adaptive learning, Transactions on Rough Sets V, LNCS 4100, Springer, Heidelberg, 2006, 39–62.
Citing Literature
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: