Photolithography
Kevin D. Lucas,
Clifford L. Henderson, Andrzej J. Strojwas,
Kevin D. Lucas
Motorola Advanced Process Development and External Research Laboratory
Search for more papers by this authorKevin D. Lucas,
Clifford L. Henderson, Andrzej J. Strojwas,
Kevin D. Lucas
Motorola Advanced Process Development and External Research Laboratory
Search for more papers by this authorFirst published: 27 December 1999
Abstract
The sections in this article are
- 1 Overview of Optical Lithography
- 2 Patterning Issues
- 3 Optical Lithography Extensions
- 4 Successors to Optical Lithography
- 5 Conclusion
- 6 Acknowledgments
Bibliography
- 1 G. E. Moore Proc. IEEE, 64: 837, 1976.
- 2 Semiconductor Industry Association, Lithography, The International Technology Roadmap for Semiconductors, San Jose, CA, 2001. Available at: http://public.itrs.net
- 3 H. J. Levinson W. H. Arnold Optical lithography, in Handbook of Microlithography, Micromachining, and Microfabrication, Vol. 1. Bellingham, WA: SPIE Optical Engineering Press, 1997, 111–138.
- 4 S. M. Sze VLSI Technology, New York: McGraw-Hill, 1988.
- 5 N. Weste K. Eshraghian Principles of CMOS VLSI Design, Reading, MA: Addison-Wesley, 1988.
- 6 C. G. Willson Organic resist materials, in Introduction to Microlithography, 2nd ed. M. Bowden, L. Thompson, C. Willson, (eds.), Washington, DC: ACS Professional Reference Book, 1994.
- 7 B. S. Stine et al. A simulation methodology for assessing the impact of spatial/pattern dependent interconnect parameter variation on circuit performance, IEDM Tech. Dig., 1997, p. 133.
- 8 D. G. Chesebro et al. Overview of gate linewidth control in the manufacture of CMOS logic chips, IBM J. Res. Develop., 39: 189, 1995.
- 9 W. Maly Modeling of lithography related yield losses for CAD of VLSI circuits, IEEE Trans. Comput.-Aided Des., CAD-4: 166, 1985.
- 10 L. F. Thompson Resist-processing, in Introduction to Microlithography, 2nd ed. M. Bowden, L. Thompson, C. Willson, (eds.), Washington, DC: ACS Professional Reference Book, 1994, 2nd ed.
- 11 R. N. Singh et al. High-numerical-aperture optical designs, IBM Journal of Research and Development, 41(1/2): 39, 1997.
- 12 R. R. Dammel Diazonapthoquinone-based Resists, Bellingham, WA: SPIE Optical Engineering Press, 1993.
- 13 J. M. Shaw M. Hatzakis Performance characteristics of diazo-type photoresists under e-beam and optical exposure, IEEE Trans. Electron Devices, ED-25: (4), 425–430, 1978.
- 14 K. J. Orvek M. L. Dennis Deep UV and thermal hardening of novalak resists, Proc. SPIE, 771: 281–288, 1987.
- 15 L. J. Lauchlan D. Nyyssonen N. Sullivan Metrology methods in photolithography, in Handbook of Microlithography, Micromachining, and Microfabrication, Vol. 1, p. 475–596. Bellingham, WA: SPIE Optical Engineering Press, 1997, P. Rai-Choudhury, ed.
- 16 W. Maly Atlas of IC Technologies, Menlo Park, CA: Benjamin Cummins, 1987.
- 17 C. Mead L. Conway Introduction to VLSI Systems, Reading, MA: Addison-Wesley, 1980.
- 18 K. Jeppson S. Christensson N. Hedenstierna Formal definitions of edge-based geometric design rules, IEEE Trans. Comput.-Aided Des., 12: 59, 1993.
- 19 R. Razdan A. Strojwas A statistical design rule developer, IEEE Trans. Comput.-Aided Des., 5: 508, 1986.
- 20 T. R. Farrel et al. Challenge of 1-Gb DRAM development when using optical lithography, Proc. SPIE, 3051: 333, 1997.
- 21 M. McCord M. Rooks Electron beam lithography, in Handbook of Microlithography, Micromachining, and Microfabrication, Vol. 1. Bellingham, WA: SPIE Optical Engineering Press, 1997. P. Rai-Choudhury, ed.
- 22 F. Abboud et al. Advanced electron-beam pattern generation technology for 180 nm masks, Proc. SPIE, 3236: 19, 1997.
- 23 C.A.T.S. version 12 Release Notes, Los Gatos, CA: Transcription Enterprises, 1996.
- 24 J. G. Skinner et al. Photomask fabrication procedures and limitations, Handbook of Microlithography, Micromachining, and Microfabrication, Vol. 1, p. 377–474. Bellingham, WA: SPIE Optical Engineering Press, 1997, P. Rai-Choudhury, ed.
- 25 P. Buck Understanding CD error sources in optical mask processing, Proc. SPIE, 1809: 62, 1992.
- 26 M. D. Cerio Methods of error source identification and process optimization for photomask fabrication, Proc. SPIE, 2512, 88–98, 1995.
- 27 R. Dean C. Sauer Further work in optimizing PBS, Proc. SPIE, 2621: 386, 1995.
- 28 J. Potzick Re-evaluation of the accuracy of NIST photomask linewidth standards, Proc. SPIE, 2439: 232–242, 1995.
- 29 K. Yamanaka et al. NA and σ optimization for high-NA I-line lithography, Proc. SPIE, 1927: 320–331, 1993.
- 30 C. A. Mack Inside PROLITH: A Comprehensive Guide to Optical Lithography Simulation, Austin, TX: FINLE Technologies, 1997.
- 31 B. Lin The optimum numerical aperture for optical projection microlithography, Proc. SPIE, 1463: 42–53, 1991.
- 32 P. Yan J. Langston Mask CD control requirement at 0.18 μm design rules for 193 nm lithography, Proc. SPIE, 3051: 164–169, 1997.
- 33 R. W. McCleary et al. Performance of a KrF excimer laser stepper, Proc. SPIE, 922: 396–399, 1988.
- 34 M. Brink et al. Step-and-scan and step-and-repeat, a technology comparison, Proc. SPIE, 2726: 734–753, 1996.
- 35 B. Schwartz H. Robbins Chemical etching of silicon: IV. Etching technology, J. Electrochem. Soc., 123: 1903, 1976.
- 36 S. Pang Applications of dry etching to microsensors, field emitters, and optical devices, in Handbook of Microlithography, Micromachining, and Microfabrication, Vol. 2, p. 99–152. Bellingham, WA: SPIE Optical Engineering Press, 1997, P. Rai-Choudhury, ed.
- 37 L. Reimer Scanning Electron Microscopy, New York: Springer-Verlag, 1995.
- 38 M. W. Cresswell et al. Electrical Test Structures replicated in silicon-on-insulator material, Proc. SPIE, 2725: 659–676, 1996.
- 39 J. L. Sturtevant et al. Full-field CD control for sub-0.20 μm patterning, Proc. SPIE, 3051: 137–145, 1997.
- 40 P. Boher et al. Precise measurement of ARC optical indices in the deep-UV range by variable-angle spectroscopic ellipsometry, Proc. SPIE, 3050: 205–214, 1997.
- 41 J. N. Hilfiker R. A. Synowicki Employing spectroscopic ellipsometry for lithography applications, Semicond. Fabtech, 5: October 1996.
- 42 R. A. Synowicki et al. Refractive index measurements of photoresist and antireflective coatings with variable angle spectroscopic ellipsometry, Proc. SPIE, 3332, 384–390, 1998.
- 43 C. J. Progler Optical lens specifications from the user's perspective, Proc. SPIE, 3334, 256–268, 1998.
- 44 M. Perkins J. Stamp Intermix technology: The key to optimal stepper productivity and cost efficiency, Proc. SPIE, 1674: 559, 1992.
- 45 C. M. Yuan A. J. Strojwas Modeling of optical alignment and metrology schemes used in integrated circuit manufacturing, Proc. SPIE, 1264: 209, 1990.
- 46 K. Lucas C. Yuan A. Strojwas A rigorous and practical vector model for phase shifting masks in optical lithography, Proc. SPIE, 1674: 253, 1992.
- 47 J. Sturtevant B. Roman Antireflection strategies for advanced photolithography, Microlithogr. World, 4 (4): 13–15, 18–21, 1995.
- 48 K. D. Lucas et al. Plasma anti-reflective coating optimization using enhanced reflectivity modeling, Proc. SPIE, 3050: 194–204, 1997.
- 49 K. D. Lucas et al. Manufacturability of subwavelength features using reticle and substrate enhancements, Proc. SPIE, 3332, 391–402, 1998.
- 50 M. McCallum K. D. Lucas Sub-wavelength contact and trench characterization using lithography simulation, Future Fab Int., 1 (3): 1997.
- 51 R. D. Allen W. E. Conley R. R. Kunz Deep-UV resist technology: The evolution of materials and processes for 250 nm lithography and beyond, in Handbook of Microlithography, Micromachining, and Microfabrication, Vol. 1, p. 321–376, Bellingham, WA: SPIE Optical Engineering Press, 1997, P. Rai-Choudhury, ed.
- 52 A. R. Neureuther C. A. Mack Optical lithography modeling, in Handbook of Microlithography, Micromachining, and Microfabrication, Vol. 1, p. 597–680. Bellingham, WA: SPIE Optical Engineering Press, 1997.
- 53 C. L. Henderson et al. Photoresist characterization for lithography simulation. Part 2: Exposure parameter measurements, Proc. SPIE, 3049: 816–828, 1997, P. Rai-Choudhury, ed.
- 54 E. W. Charrier C. A. Mack C. J. Progler Comparison of simulated and experimental CD-limited yield for submicron i-line process, Solid State Technol., 38 (11): 105–106, 108, 111–112, 1995.
- 55 A. Erdmann et al. Lithographic process simulation for scanners, Proc. SPIE, 3334, 164–175, 1998.
- 56 J. P. Stirniman M. L. Rieger Spatial-filter models to describe IC lithographic behavior, Proc. SPIE, 3051: 469–478, 1997.
- 57 J. Rey Terrain: Deposition and etch simulation, TMATimes, 8 (4): 6, 1996.
- 58 B. Roman personal communication, December, 1997.
- 59 T. L. Perkinson et al. Who needs I-line, Future Fab Int., 1 (3): 179, 1997.
- 60 T. Byrd A. Maggi Challenges to plug and play CIM, Future Fab Int., 1 (3): 77, 1997.
- 61 A. R. Neureuther Understanding lithography technology issues through simulation, Univ. Calif., Berkeley, Electron. Res. Lab Memo., UCB/ERL 93–40: 1993.
- 62 H. Chuang et al. Practical applications of 2-D optical proximity corrections for enhanced performance of 0.25 um random logic devices, IEDM Tech. Dig., 1997, p. 483.
- 63 M. L. Rieger J. P. Stirniman Using behavior modelling for proximity correction, Proc. SPIE, 2197: 371–376, 1994.
- 64 R. C. Henderson O. W. Otto Correcting for proximity effect widens process latitude, Proc. SPIE, 2197: 361–370, 1994.
- 65 H. Eisenmann T. Waas H. Hartmann PROXECCO—proximity effect correction by convolution, J. Vac. Sci. Technol., B11: 2741, 1993.
- 66 M. Kling et al. 0.25 um logic manufacturing using proximity correction, Proc. SPIE, 3334, 204–214, 1998.
- 67 M. D. Levenson et al. The phase shifting mask II: imaging simulations and submicrometer resist exposure, IEEE Trans. Electron Devices, ED-31: 753, 1984.
- 68 Y. Ham et al. Fundamental analysis on fabrication of 256 MB DRAM using the phase shift mask technology, Proc. SPIE, 2197: 243, 1994.
- 69 G. Wojcik et al. Some image modeling issues for I-line, 5X phase shifting masks, Proc. SPIE, 2197: 455–465, 1994.
- 70 Y. T. Wang et al. Systematic design of phase-shifting masks, Proc. SPIE, 2197: 377–387, 1994.
- 71 R. Schmidt et al. Impact of Coma on CD control for multiphase PSM design, Proc. SPIE, 3334, 15–24, 1998.
- 72 H. Y. Liu et al. Application of alternating phase-shifting masks to 140-nm gate patterning: II. Mask design and manufacturing tolerances, Proc. SPIE, 3334, 2–14, 1998.
- 73 B. J. Lin The attenuated phase-shifting mask, Solid State Technol., 35 (1): 43–47, 1992.
- 74 B. Smith S. Turgut Phase-shift mask issues for 193 nm lithography, Proc. SPIE, 2197: 201–210, 1994.
- 75 T. Chijimatsu et al. Implementation of attenuated PSMs in DRAM production, Proc. SPIE, 2726: 461–472, 1996.
- 76 K. Douki T. Kajita S. Iwanaga A study for the design of I-line photoresist capable of sub-quarter micron lithography: The effects of end group control of novel phenolic resins, Proc. SPIE, 3333: 1998.
- 77 Q. Lin et al. Extension of 248 nm optical lithography: A thin film imaging approach, Proc. SPIE, 3333, 384–392, 1998.
- 78 S. V. Postnikov et al. Top surface imaging through silylation, Proc. SPIE, 3333, 997–1008, 1998.
- 79 R. Schenker F. Piao W. G. Oldham Durability of experimental fused silicas to 193-nm-induced compaction, Proc. SPIE, 3051: 44–53, 1997.
- 80 M. Rothschild D. J. Ehrlich D. C. Shaver Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silicas, Appl. Phys. Lett., 55: 1276–1278, 1989.
- 81 R. Schenker F. Piao W. G. Oldham Material limitations to 193-nm lithographic system lifetimes, Proc. SPIE, 2726: 698–706, 1996.
- 82 M. Rothschild Photolithography at wavelengths below 200 nm, Proc. SPIE, 4278: 222–228, 1998.
- 83 K. Patterson et al. 193 nm lithographic process evaluation of alicyclic polymer-based photoresists, Proc. SPIE, 4278, 222–228, 1998.
- 84 R. D. Allen et al. Design of an etch-resistant cyclic olefin photoresist, Proc. SPIE, 3333, 463–471, 1998.
- 85 T. Steinhausler et al. Optimization of etch conditions for a silicon-containing methacrylate-based bilayer resist for 193 nm lithography, Proc. SPIE, 3333, 122–131, 1998.
- 86 R. R. Dammel et al. Lithographic performance of an etch-stable methacrylate resist at 193 nm, Proc. SPIE, 3333, 144–151, 1998.
- 87 S. Hirukawa K. Matsumoto K. Takemasa New projection optical system for beyond 150 nm patterning with KrF and ArF sources, Proc. SPIE, 3334, 414–422, 1998.
- 88 R. Schenker F. Piao W. G. Oldham Material limitations to 193-nm lithographic system lifetimes, Proc. SPIE, 2726: 698–706, 1996.
- 89 K. Brown SEMATECH and the national technology roadmap: Needs and challenges, Proc. SPIE, 2440: 33, 1995.
- 90 T. Fahey et al. SVG 157nm Lithography Technical Review, Proc. SPIE, 4346: 72–80, 2001.
- 91 R. Hung et al. Resist materials for 157-nm microlithography: an update, Proc. SPIE, 4345: 385–95, 2001.
- 92 J. A. Liddle C. A. Volkert Mechanical stability of thin-membrane masks, J. Vac. Sci. Technol., B12: 3528, 1994.
- 93 T. E. Jewell Optical system design issues in development of projection camera for EUV lithography, Proc. SPIE, 2437: 340–346, 1995.
- 94 S. Y. Chou P. R. Krauss P. J. Renstrom Imprint lithography with 25-nanometer resolution, Science, 272 (5258): 85–87, 1996.
- 95 J. Haisma et al. Mold-assisted nanolithography: A process for reliable pattern replication, J. Vac. Sci. Technol., B14: 4124–4128, 1996.
- 96 S. Y. Chou P. R. Krauss Imprint lithography with sub-10 nm feature size and high throughput, Microelectron. Eng., 35: 237–240, 1997.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: