Integrated Acousto-Optic Device Modules and Applications
Abstract
This article is devoted to integrated acousto-optic devices and applications with emphasis on the basic planar guided-wave acousto-optic (AO) Bragg diffraction geometry, Bragg cell modulators, the basic collinear AO mode converters, and the resulting integrated optic modules for radio frequency (RF) signal processing and optical wavelength filtering. In Section 2, the interaction geometry, physical mechanism, analytical treatment, the key device parameters of a basic planar AO Bragg cell modulator, and viable substrate materials are presented. The techniques for realization of efficient and wideband planar AO Bragg modulator and deflector, using multiple tilted surface acoustic waves (SAWs) and phased-array SAWs, and applications to multiport optical switching are also presented. Subsequently, the architecture for a monolithic integrated AO RF spectrum analyzer and that for hybrid counterparts in planar and spherical waveguide LiNbO3 substrates, and the fabrication technologies involved are presented in Section 3. Prospects for further advances toward monolithic integration for the integrated optic RF spectrum analyzers are also briefly mentioned. The other major application of integrated acousto-optics for tunable optical filtering using collinear mode conversion is treated in Section 4.
Bibliography
- 1 See, for example, (a) P. K. Tien. Light Waves in Thin Films and Integrated Optics. Appl. Opt. 1971, 10, pp 2395–2413. (b) H. F. Taylor and A. Yariv. Guided-Wave Optics. Proc. IEEE 1974, 62, pp 1044–1060. (c) T. Tamir, Ed. Integrated Optics. Springer: Berlin, 1979.
- 2See, for example, (a) R. M. White. Surface Elastic Waves. Proc. IEEE 1970, 58, pp 1238–1276. (b) A. A. Oliner, Ed. Surface Acoustic Waves. Springer: Berlin, 1979.
- 3 C. S. Tsai, Ed. Guided-Wave Acoustooptic Bragg Diffraction, Devices, and Applications. Springer: Berlin, 1990.
- 4See, for example, (a) D. A. Smith, et al. Integrated Optic Acoustically Tunable Filters for WDM Networks. IEEE J. Sel. Areas Commun. 1990, 8, pp 1151–1159. (b) Y. Yamamoto, C. S. Tsai, K. Esteghamat, and H. Nishimoto. Suppression of Sidelobe Levels for Guided-Wave Acoustooptic Tunable Filters Using Weighted Coupling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1993, 40, pp 813–818. (c) A. Kar-Roy and C. S. Tsai. Integrated Acoustooptical Tunable Filters Using Weighted Coupling. IEEE J. Quantum Electron. 1994, 30, pp 1574–1586. (d) M. K. Smit, T. Koonen, H. Herrmann, and W. Sohler. Wavelength-Selective Devices. In Fiber Optic Communication Devices; N.; Grote H. Venghaus, Eds.; Springer: Berlin, 2001.
- 5See, for example, (a) L. Kuhn, et al. Deflection of an Optical Guided Wave by Surface Acoustic Wave. Appl. Phys. Lett. 1970, 17, pp 265–268. (b) Y. Ohmachi. Acousto-Optical Light Diffraction in Thin Films. J. Appl. Phys. 1973, 44, pp 3928–3922. (c) R. V. Schmidt and I. P. Kaminow. Acoustooptic Bragg Deflection in LiNbO3 Ti-Diffused Waveguides. IEEE J. Quantum Electron. 1975, QE-11, pp 57–59. (d) C. S. Tsai, L. T. Nguyen, S. K. Yao, and M. A. Alhaider. High-Performance Guided-Light-Beam Device Using Two Tilted Surface Acoustic Waves. Appl. Phys. Lett. 1975, 26, pp 140–142. (e) E. G. Lean, J. M. White, and C. D. W. Wilkinson. Thin-Film Acousto-Optic Devices. Proc. IEEE 1976, 64, pp 779–788. (f) T. G. Giallorenzi. Acousto-Optic Deflection in Thin-Film Waveguides. J. Appl. Phys. 1973, 44, pp 242–253. (g) V. V. Proklov. Acousto-Optic Interactions in Planar Waveguide, Part I, in Proc. International Symposium on Surface Waves in Solids and Layered Structures; Vol. 1, Novosibirsk, 1986; pp I48–I63. (h) D. V. Petrov. Acousto-Optic Interactions in a Planar Optical Waveguide, Part II, in Proc. International Symposium on Surface Waves in Solids and Layered Structures; Vol. 1, Novosibirsk, 1986; pp I64–I75.
- 6 A. Yariv. Coupled-Mode Theory for Guide-Wave Optics. IEEE. J. Quantum Electron. 1973, QE-9, pp 919–933.
- 7 R. W. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder, and H. J. Shaw. Design of Surface Wave Delay Lines with Integrated Transducers. IEEE Trans. Microwave Theory Tech. 1969, MTT-17, pp 856–873.
- 8 W. R. Smith, H. M. Gerard, and W. R. Jones. Analysis and Design of Dispersive Interdigital Surface-Wave Transducers. IEEE Trans. Microwave Theory Tech. 1972, MTT-20, pp 458–471.
- 9 (a) C. S. Tsai, D. Young, W. Chen, L. Adkins, C. C. Lee, and H. Glass. Noncollinear Coplanar Magneto-Optic Interaction of Guided Optical Wave and Magnetostatic Surface Waves in Yttrium Iron Garnet–Gadolinium Gallium Garnet Waveguides. Appl. Phys. Lett. 1985, 47, pp 651–654. (b) C. S. Tsai and D. Young. Wideband Scanning of Guided-Light Beam and RF Spectral Analysis Using Magnetostatic Forward Volume Waves in YIG–GGG Waveguide. Appl. Phys. Lett. 1989, 54, pp 196–198. (c) Y. Pu, C. L. Wang, and C. S. Tsai. Magnetostatic Backward Volume Wave-Based Guided-Wave Magnetooptic Bragg Cells and Application to Wide-Band Light Beam Scanning. IEEE Photon. Technol. Lett. 1991, 5, pp 462–465. (d) C. S. Tsai. Integrated Acoustooptic and Magnetooptic Bragg Cell Modulators for Information Processing. IEEE Proc. 1996, 84, pp 853–869 (Special Issue on Optical Information Processing).
- 10 C. S. Tsai, M. A. Alhaider, L. T. Nguyen, and B. Kim. Wideband Guided-Wave Acoustooptic Bragg Diffraction and Devices Using Multiple Tilted Surface Acoustic Waves. Proc. IEEE 1976, 64, pp 318–328.
- 11 L. T. Nguyen and C. S. Tsai. Efficient Wideband Guided-Wave Acoustooptic Bragg Diffraction Using Phased-Surface Acoustic Wave Array in LiNbO3 Waveguide. Appl. Opt. 1977, 16, pp 1297–1304.
- 12 B. Kim and C. S. Tsai. High-Performance Guided-Wave Acoustooptic Scanning Devices Using Multiple Surface Acoustic Wave. Proc. IEEE 1976, 64, pp 788–793 (Special Issue on Surface Acoustic Waves).
- 13 C. C. Lee, K. Y. Liao, C. L. Chang, and C. S. Tsai. Wideband Guided Wave Acoustooptic Bragg Deflector Using a Tilted Finger-Chirp Transducer. IEEE J. Quantum Electron. 1979, 15, pp 1166–1170.
- 14 K. Y. Liao, C. L. Chang, C. C. Lee, and C. S. Tsai. Progress on Wideband Guided-Wave Acousto-Optic Bragg Deflector Using a Tilted-Finger Chirp Transducer, in Proc. 1979 Ultrasonics Symposium; IEEE Cat. No. 79CH1482-9SU, 1979; pp 24–27.
- 15 (a) R. V. Schmit and I. P. Kaminow. Metal-Diffused Optical Wave Guides in LiNbO3. Appl. Phys. Lett. 1974, 25, pp 459–460. (b) J. L. Jackel, C. E. Rice, and J. J. Veslka. Proton-Exchange for High Index Waveguide in LiNbO3. Appl. Phys. Lett. 1982, 47, p 607. (c) R. Rimeika, and D. Ciplys. Rayleigh and Leaky Surface Acoustic Waves in Proton-Exchanged LiNbO3. ULTRAGARSAS 2005, 2 (55). (d) R. Rimeika, D. Ciplys, and S. Balakauskas. Diffraction of Guided Optical Waves by Surface Acoustic Waves in Proton-Exchanged 128° Rotated Y-Cut LiNbO3. Phys. Status Solidi (a) 2001, 184, pp 217–223.
- 16 T. Suhara, T. Shiono, H. Nishihara, and J. Koyama. An Integrated-Optic Fourier Processor Using an Acoustooptic Deflector and Fresnel Lenses in As2S3 Waveguide. J. Lightwave Technol. 1983, LT-1, p 624.
- 17See, for example, H. Schmidt, M. Weihnacht, and R. Wobst. A Thin-Film-on-Silicon Acoustooptical Modulator with Multimode Behavior, in Proc. IEEE Ultrasonics Symposium; 1995; pp 847–850.
- 18 N. Chubachi, J. Kushibiki, and Y. Kikuchi. Monolithically Integrated Bragg Deflector for an Optical Guided Wave Made of Zinc Oxide Film. Electron. Lett. 1973, 9, pp 193–194.
- 19See, for example, the many references cited in (a) A. Yariv. Introduction to Optical Electronics, 2nd ed. Holt, Rinehart & Winston: New York, 1976. (b) L. A. Coldren and S. W. Corzine. Diode Lasers and Photonic Integrated Circuits. Wiley: New York, 1995.
- 20See, for example, (a) J. L. Merz, R. A. Logan, and A. M. Sergent. GaAs Integrated Optical Circuits by Wet Chemical Etching. IEEE J. Quantum Electron. 1979, QE-5, pp 72–82. (b) A. Yariv. The Beginning of Integrated Optoelectronic Circuits. IEEE Trans. Electron Devices 1984, ED-31, p 1656. (c) O. Wada, T. Sakurai, and T. Nakagami. Recent Progress in Optoelectronic Integrated Circuits. IEEE J. Quantum Electron. 1986, QE-22, p 805.
- 21See, for example, (a) O. Yamazaki, C. S. Tsai, M. Umeda, L. S. Yap, C. J. Lii, K. Wasa, and J. Merz. Guided-Wave Acoustooptic Interactions in GaAs–ZnO Composite Structure, in Proc. IEEE Ultrasonics Symposium; Cat. No. 82CH1823-4, 1982; pp 418–421. (b) C. J. Lii, C. S. Tsai, and C. C. Lee. Wideband Guided-Wave Acoustooptic Bragg Cells in GaAs–GaAlAs Waveguide. IEEE J. Quantum Electron. 1986, QE-22, pp 868–872. (c) Y. Abdelrazak, C. S. Tsai, and T. Q. Vu. An Integrated Optic RF Spectrum Analyzers in ZnO–GaAs–GaAlAs Waveguide. J. Lightwave Technol. 1990, 8, pp 1833–1837. (d) A. M. Matteo, V. M. N. Passaro, and M. N. Armenise. High-Performance Guided-Wave Acoustooptic Bragg Cells in LiNbO3 and GaAs-Based Structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, pp 270–279. (e) R. Rimeika, D. Ciplys, R. Gaska, J. W. Yang, M. S. Shur, and E. Towe. Diffraction of Guided Optical Waves by Surface Acoustic Waves in GaN. Appl. Phys. Lett. 2000, 77, pp 480–482.
- 22See, for example, T. L. Koch and U. Koren. Semiconductor Photonic Integrated Circuits. IEEE J. Quantum Electron. 1991, QE-27, pp 641–653.
- 23See, for example, (a) W. T. Tsang and A. Y. Cho. Molecular Beam Epitaxial Writing of Patterned GaAs Epilayer Structures. Appl. Phys. Lett. 1978, 32, pp 491–493. (b) R. D. Dupus and P. D. Dapkus. Preparation and Properties of Ga1−xAlxAs–GaAs Heterostructure Lasers Grown by Metalorganic Chemical Vapor Deposition. IEEE J. Quantum Electron. 1979, QE-15, p 128.
- 24 C. S. Tsai, B. Sun, and A. K. Roy. Guided-Wave Acoustooptic Bragg Diffraction in Indium Gallium Arsenide Phosphide Waveguides. Appl. Phys. Lett. 1997, 70, pp 3185–3187.
- 25 N. Suzuki and K. Tada. Elastooptic Properties of InP. Jpn. J. Appl. Phys. 1983, 22, pp 441–445.
- 26 (a) C. S. Tsai. Guided-Wave Acoustooptic Bragg Modulators for Wideband Integrated Optic Communications and Signal Processing. IEEE Trans. Circuits Syst. 1979, CAS-26, pp 1072–1089. (b) C. S. Tsai. Integrated Acoustooptic Circuits and Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, pp 529–554. (c) C. S. Tsai. Guided-Wave Acoustooptics. In Encyclopedia of Physical Science and Technology, Vol. 7; Academic Press, 1992; pp 567–591. (d) C. S. Tsai. Integrated Acoustooptic and Magnetooptic Devices for Optical Information Processing. Proc. IEEE 1996; 84, pp 853–859.
- 27 (a) W. S. Chang. Acoustooptical Deflection in Thin Films. IEEE J. Quantum Electron. 1971, QE-14, pp 167–170. (b) F. R. Gfeller and C. W. Pitt. Collinear Acousto-Optic Deflection in Thin Films. Electron. Lett. 1972. 8, pp 549–551. (c) E. M. Korablev, V. V. Proklov, V. A. Sychugov, and A. S. Andreev. Two-Coordinate Integrated-Optics Deflector Using a Ti-Diffused LiNbO3 Waveguide. Sov. Tech. Phys. Lett. 1981, 7, pp 616–617. (d) E. A. Kolosovsky, D. V. Petrov, and I. B. Yakovkin. Spatial Spectrum of Leaky Waves Generated by Scattering of a Guided Wave from an Acoustic Wave. Opt. Commun. 1986, 60 (5), pp 280–286. (e) V. Hinkov, U. Nolte, and W. Sohler. Efficient Acoustooptical Coupling of Guided to Substrate Modes in a Combined Acoustical/Optical Channel Guide. In Integrated and Guided Wave Optics. OSA Digest Series, Vol. 4; Optical Society of America, 1989; pp 138–141. (f) A. M. Matteo, N. Do, and C. S. Tsai. Collinear Acousto-Optical Interaction in Proton-Exchange Lithium Niobate Waveguide, in Conference on Functional Photonic Integrated Circuits; San Jose, CA, SPIE 2695, Jan. 27–Feb. 2, 1996; pp 325–334. (g) C. S. Tsai, Q. Li, and C. L. Chang. Guided-Wave Two-Dimensional Acoustic-Optic Scanner Using Proton-Exchanged Lithium Niobate Waveguide. Fiber Integr. Opt. 1998, 17, pp 157–166. (h) A. M. Matteo, C. S. Tsai, and N. Do. Collinear Guided Wave to Leaky Wave Acoustooptic Interactions in Proton-Exchanged LiNbO3 Waveguides. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2000, 47, pp 16–28.
- 28 (a) C. S. Tsai and P. Le. A 4 × 4 Nonblocking Integrated Acoustooptic Space Switch. Appl. Phys. Lett. 1992, 60, pp 431–433. (b) A. K. Roy and C. S. Tsai. A 8 × 8 Symmetric Nonblocking Integrated Acoustooptic Space Switch Module in LiNbO3. IEEE Photon. Technol. Lett. 1992, 4, pp 731–734.
- 29 (a) G. D. Xu and C. S. Tsai. A Novel Integrated Acoustooptic and Electrooptic Heterodyning Device in LiNbO3 Waveguide. Appl. Phys. Lett. 1991, 58, pp 28–30. (b) G. D. Xu and C. S. Tsai. An Integrated Acoustooptic Interferometric Receiver Module in a LiNbO3 Substrate. Photon. Technol. Lett. 1991, 3 (2), pp 153–155. (c) G. D. Xu and C. S. Tsai. Integrated Acoustooptic Heterodyning Device Modules in LiNbO3 Substrate. Appl. Opt. 1992, 31, pp 5259–5268 (GRIN Special Issue).
- 30 A. Kar-Roy and C. S. Tsai. A New Integrated Acoustooptic Matrix Algebra Processor Architecture. Appl. Phys. Lett. 1991, 60, pp 3093–3095.
- 31 (a) Z. Y. Cheng and C. S. Tsai. Baseband Integrated Acoustooptic Frequency Shifter. Appl. Phys. Lett. 1992, 60, pp 12–14. (b) C. S. Tsai and Z. Y. Chang. A Novel Integrated Acoustooptic Frequency Shifter Using Guided-Wave Acoustooptic Bragg Diffractions in Cascade. Appl. Phys. Lett. 1989, 54, pp 1616–1618. (c) Z. Y. Cheng and C. S. Tsai. A Novel Integrated Acoustooptic Frequency Shifter. J. Lightwave Technol. 1989, 7, pp 1575–1580.
- 32
(a)
C. S. Tsai.
RF Spectrum Analyzer. In
Encyclopedic Handbook of Integrated Optics;
K.; Iga
Y. Kokubun, Eds.;
CRC Press, Taylor & Francis,
2006;
pp 333–358.
(b)
D. B. Anderson,
J. T. Boyd,
M. C. Hamilton, and
R. R. August.
An Integrated-Optical Approach to the Fourier Transform.
IEEE J. Quantum Electron.
1977,
QE-13,
p 268.
(c)
C. S. Tsai.
Guided-Wave Acoustooptic Bragg Modulators for Wideband Integrated Optic Communications and Signal Processing.
IEEE Trans. Circuits Syst.
1979,
CAS-26,
pp 1072–1089.
(d)
M. K. Barnoski,
B. Chen,
T. R. Joseph,
J. Y. M. Lee, and
O. G. Ramer.
Integrated-Optic Spectrum Analyser.
IEEE Trans. Circuits Syst.
1979,
CAS-26,
pp 1113–1124.
(e)
E. Marx,
L. D. Hutcheson, and
A. L. Keller.
Operational Integrated-Optic RF Spectrum Analyser.
Appl. Opt.
1980,
19,
pp 3033–3034.
(f)
R. L. Davis and
F. S. Hickernell. An Integrated Optic Spectrum Analyzer with Thin Film Lenses, in
International Conference on Integrated Optics and Optical Fiber Communications; San Francisco, CA,
1981; Paper No. WE-6.
(g)
V. Neuman,
C. W. Pitt, and
L. M. Walpita.
An Integrated Acousto-Optic Spectrum Analyzer Using Grating Components.
Proc. 1st European Conference on Integrated Optics; London, UK,
1981;
pp 89–92.
(h)
T. Suhara,
H. Nishihara, and
J. Koyam.
A Folded-Type Integrated Optic Spectrum Analyzer Using Butt-Coupled Chirped Grating Lenses.
IEEE J. Quantum Electron.
1982,
QE-18,
pp 1057–1059.
(i)
R. L. Davis and
F. S. Hickernell.
Application of Wideband Bragg Cells for Integrated Optic Spectrum Analyser.
Proc. SPIE
1982,
321,
pp 141–148.
(j)
V. M. Ristic,
S. A. Jones, and
G. R. Dubois.
Evaluation of an Integrated Acousto-Optic Receiver.
Can. Electr. Eng. J.
1983,
8,
pp 59–64.
10.1109/CEEJ.1983.6593779 Google Scholar(k) M. Kanazawa, T. Atsumi, M. Takami, and T. Ito. High Resolution Integrated Optic Spectrum Analyzer, International Conference on Integrated Optics and Optical Fiber Communications; Tokyo, Japan, 1983; Paper No. 30B-3. (l) S. Valette, J. Lizet, P. Mottier, J. P. Jadot, S. Renard, A. Fournier, A. M. Grouillet, P. Gidons, and H. Denis. Integrated Optical Spectrum Analyzer Using Planar Technology on Oxidized Silicon Substrate. Electron. Lett. 1983 19, pp 883–885; IEEE Proc. H 1984, 131, pp 325–331. (m) T. Suhara, T. Shiono, H. Nishihara, and J. Koyama. An Integrated-Optic Fourier Processor Using an Acousto-Optic Deflector and Fresnel Lenses in As2S3 Waveguide. J. Lightwave Technol. 1983, LT-1, pp 624–630. (n) C. Stewart, G. Serivener, and W. J. Stewart. Guided-Wave Acousto-Optic Spectrum Analysis at Frequencies Above 1 GHz, in Technical Digest, International Conference on Integrated Optics and Optical Fiber Communications; 1981; p 122. (o) E. T. Aksenov, N. A. Esepkina, A. A. Lipovskii, and A. V. Pavenko. Prototype Integrated Acousto-Optic Spectrum Analyser. Sov. Tech. Lett. 1980, 6, pp 519–520. (p) T. R. Ranaganath, T. R. Joseph, and J. Y. Lee. Technical Digest, 3rd International Conference on Integrated Optics and Optical Fiber Communications; San Francisco, CA, 1981; Paper WH3. (q) S. Kakio. Acousto-Optic Modulator Driven by Surface Acoustic Waves. Acta Phys. Pol. A 2015, 127, pp 15–19.
- 33 M. DeMicheli, et al. Fabrication and Characterization of Titanium-Indiffused Proton Exchanged (TIPE) Waveguide in Lithium Niobate. Opt. Commun. 1982, 42, p 101.
- 34 D. Y. Zhang and C. S. Tsai. Titanium-Indiffused Proton-Exchanged Waveguide Lenses in LiNbO3 for Optical Information Processing. Appl. Opt. 1986, 25, pp 2264–2271.
- 35 T. Q. Vu, J. A. Norris, and C. S. Tsai. Planer Waveguide Lenses in GaAs Using Ion Milling. Appl. Phys. Lett. 1989, 54, pp 1098–1100.
- 36 T. Q. Vu, C. S. Tsai, and Y. C. Kao. Integration of Curved Hybrid Waveguide Lens and Photodetector Array in a GaAs Waveguide. Appl. Opt. 1992, 31, pp 5246–5254.
- 37 Q. Li, C. S. Tsai, S. Sottini, and C. C. Lee. Light Propagation and Acousto-Optic Interaction in a LiNbO3 Spherical Waveguide. Appl. Phys. Lett. 1985. 46, pp 707–709.
- 38 C. S. Tsai, W. Chen, P. Le, and S. C. Tsai. Acousto-Optic Interactions and Devices in a Spherical Waveguide. J. Opt. A: Pure Appl. Opt. 2001, 3, pp S46–S53.
- 39 H. I. Smith, F. J. Bachner, and N. Efremow. A High-Yield Photolithographic Technique for Surface Wave Devices. J. Electrochem. Soc. 1971, 118, pp 822–825.
- 40 K. Schäfer, I. Baumann, W. Sohler, H. Suche, and S. Westenhöfer. Diode-Pumped and Packaged, Acoustooptically Tunable Ti:Er:LiNbO3 Waveguide Laser of Wide Tuning Range. IEEE J. Quantum Electron. 1997, 33, pp 1636–1641.
- 41 T. Q. Vu, J. A. Norris, and C. S. Tsai. Formation of Negative-Index-Changes Waveguide Lenses in LiNbO3 Using Ion Milling. Opt. Lett. 1988, 13, pp 1141–1143.
- 42 (a) J. M. Verdiell, et al. Aspheric Waveguide Lenses for Photonic Integrated Circuits. Appl. Phys. Lett. 1993; 62, pp 808–810. (b) T. J. Su and C. C. Lee. Planar Fabrication Process of a High Coupling Efficiency Interface Between Optical Waveguides of Large Index Difference. Appl. Opt. 1995; 34, pp 5366–5374.
- 43 Y. Ohmach and J. Noda. LiNbO3 TE–TM Mode Converter Using Collinear Acoustooptic Interaction. IEEE J. Quantum Electron. 1977, QE-13, pp 43–46.
- 44 B. Kim and C. S. Tsai. Thin Film Tunable Optical Filtering Using Anisotropic and Noncollinear Acoustooptic Interaction in LiNbO3 Waveguides. IEEE J. Quantum Electron. 1979, QE-15, pp 642–647.
- 45See, for example, H. Herrmann. Acousto-Optical Devices. In Encyclopedic Handbook of Integrated Optics; K.; Iga Y. Kokubun, Eds.; CRC Press, Taylor & Francis, 2006; pp 1–15.
- 46 A. Yariv and P. Yeh. Optical Waves in Crystals. Wiley: New York, 1984; Chapter 9.
- 47 (a) R. S. Weiss and T. K. Gaylord. Lithium Niobate: Summary of Physical Properties and Crystal Structure. J. Appl. Phys. A 1985, 37, pp 191–203. (b) R. M. De La Rue, Materials for Waveguide Optoelectronics. In Waveguide Optoelectronics. NATO ASI Series, Series E: Applied Sciences, Vol. 226; J.; Marsh R. M. De La Rue, Eds.; Springer, 1992.
- 48 (a) Y. Yamamoto, C. S. Tsai, and K. Esteghamat. Proc. IEEE Ultrasonics Symposium IEEE Cat. No. 90CH2938-9, 1990; pp 605–608. (b) Y. Yamamoto, C. S. Tsai, K. Esteghamat, and H. Nishimoto. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1993, 40, pp 813–818.
- 49 (a) A. Kar-Roy and C. S. Tsai. Integrated Acoustooptical Tunable Filters Using Weighted Coupling. IEEE J. Quantum Electron. 1994, 30, pp 1574–1586. (b) A. Kar-Roy and C. S. Tsai. Low-Sidelobe Weighted-Coupled Integrated Acoustooptic Tunable Filter Using Focused Surface Acoustic Waves. IEEE Photon. Technol. Lett. 1992, 4, pp 1132–1135.
- 50 (a) D. A. Smith and J. J. Johnson. Sidelobe Suppression in an Acousto-Optic Filter with a Raised Cosine Interaction Strength. Appl. Phys. Lett. 1992, 61, pp 1025–1027. (b) H. Hermann and S. Schmid. Integrated Acousto-Optical Mode Converters with Weighted Coupling Using Surface Acoustic Wave Directional Couplers. Electron. Lett. 1992, 28, pp 979–980.
- 51 A. Kar-Roy and C. S. Tsai. Ultralow Sidelobe-Level Integrated Acoustooptic Tunable Filters Using Tapered-Gap Surface Acoustic Wave Directional Couplers. J. Lightwave Technol. 1994, 12, pp 977–982.
- 52 W. R. Trutna, Jr., D. W. Dolfi, and C. A. Flory. Anomalous Sidelobes and Birefringence Apodization in Acousto-Optic Tunable Filters. Opt. Lett. 1993, 18, pp 28–30.
- 53 L. Bersiner, U. Hempelmann, and E. Strake. Numerical Analysis of Passive Integrated Optical Polarization Splitters: Comparison of Finite-Element Method and Beam Propagation Method Results. J. Opt. Soc. Am. B 1991, 8, pp 422–433.
- 54 F. Tian, Ch. Harizi, H. Herrmann, V. Reimann, R. Ricken, U. Rust, W. Sohler, F. Wehrmann, and S. Westenhöfer. Polarization-Independent Integrated Optical, Acoustically Tunable Double-Stage Wavelength Filter in LiNbO3. J. Lightwave Technol. 1994, 12, pp 1192–1197.
- 55 N. Go and Y. Miyazaki. Noise Tolerance in Wavelength-Selective Switching of Optical Differential Quadrature-Phase-Shift-Keying Pulse Train by Collinear Acoustooptic Devices. Appl. Opt. 2014, 53, pp 3379–3387.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: