Abstract
The sections in this article are
- 1 Thyristor Behavior
- 2 Thyristor Physics and Design
- 3 Future Trends for Thyristors
Bibliography
- 1 J. L. Hudgins A review of modern power semiconductor electronic devices, Microelectron. J., 24: 41–54, Jan., 1993.
- 2
S. M. Sze
Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 1984, pp. 99–108.
10.1002/0470068329 Google Scholar
- 3
J. L. Hudgins
W. M. Portnoy
High di/dt pulse switching of thyristors,
IEEE Trans. Power Electron.,
2:
143–148,
1987.
10.1109/TPEL.1987.4766348 Google Scholar
- 4 N. Mohan T. M. Undeland W. P. Robbins Power Electronics—Converters, Applications, and Design, 2nd ed., New York: Wiley, 1995, pp. 669–695.
- 5 S. Menhart J. L. Hudgins W. M. Portnoy The low temperature behavior of thyristors, IEEE Trans. Electron. Devices, 39: 1011–1013, 1992.
- 6
S. M. Sze
Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 1984, pp. 140–147.
10.1002/0470068329 Google Scholar
- 7
V. A. Sankaran
J. L. Hudgins
W. M. Portnoy
Role of the amplifying gate in the turn-on process of involute structure thyristors,
IEEE Trans. Power Electron.,
5:
125–132,
1990.
10.1109/63.53149 Google Scholar
- 8 J. L. Hudgins et al. Temperature effects on GTO characteristics, IEEE IAS Annu. Mtg. Rec., 1994, pp. 1182–1186.
- 9 N. D. Arora J. R. Hauser D. J. Roulston Electron and hole mobilities in silicion as a function of concentration and temperature, IEEE Trans. Electron. Devices, ED-29: 292–295, 1982.
- 10 G. Baccarani P. Ostoja Electron mobility empirically related to the phosphorus concentration in silicon, Solid State Electron., 18: 579–580, 1975.
- 11 A. Herlet The forward characteristic of silicon power rectifiers at high current densities, Solid State Electron., 11 (8): 717–742, 1968.
- 12 S. K. Ghandi Semiconductor Power Devices—Physics of Operation and Fabrication Technology, New York: Wiley, 1977, pp. 63–84.
- 13 B. J. Baliga Power Semiconductor Devices, Boston: PWS Publishing, 1996, pp. 91–110.
- 14 Y. Shimizu et al. An overvoltage, self-protected thyristor with high breakover power endurance, IEEE Trans. Electron. Devices, 38: 913–916, 1991.
- 15 T. Ogura et al. 6000-V gate turn-off thyristors (GTO’s) with n-buffer and new anode short structure, IEEE Trans. Electron Devices, 38: 1491–1496, 1991.
- 16 T. Yatsuo Y. Satou S. Murakami Electrical characteristics of a pnipn GTO, Proc. EPE-MADEP ’91, 1991, pp. 352–356.
- 17 M. Kekura et al. 8000 V, 1000 A gate turn-off thyristor with low on-state voltage and low switching loss, IEEE PESC Rec., 1989, pp. 330–336.
- 18 Y. Takahashi et al. 6 kV 3000 A high power reverse conducting GTO thyristor, Proc. EPE-MADEP ’91, 1991, pp. 369–373.
- 19 M. Watanabe et al. A 115-mm ϕ 6-kV 2500-A light-triggered thyristor, IEEE Trans. Electron. Devices, 37: 285–289, 1990.
- 20 M. Saito et al. 1200 V, 20 A integrated light triggered and quenched static induction thyristor (LTQ SI thyristor), IEEE PESC Rec., 1989, pp. 322–329.
- 21 B. Beker et al. Parasitic parameter extraction of PEBB module using VTB technology, IEEE IAS Annu. Mtg. Rec., 1997, pp. 467–471.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: