Diodes for Power Electronics
First published: 27 December 1999
Abstract
The sections in this article are
- 1 Device Design and Applications
- 2 Diode Theory
- 3 The Power Diode in High Injection
- 4 Advanced Designs
- 5 Conclusion
- 6 Appendix
Bibliography
- 1 S. H. L. Tu B. J. Baliga Optimization of the MPS rectifier via variation of Schottky region area, Proc. 3rd Int. Symp. Power Semicond. Devices IC’s, Baltimore, 112: 1991, pp. 109–112.
- 2 H. Kabza et al. Cosmic radiation as a cause for power device failure and possible countermeasures, Proc. 6th Int. IEEE Symp. Power Semicond. Devices IC’s, Davos, Switzerland, 1994, pp. 9–12.
- 3 H. Matsuda et al. Analysis of GTO failure mode during DC voltage blocking, Proc. 6th Int. IEEE Symp. Power Semicond. Devices IC’s, Davos, Switzerland, 1994, pp. 221–225.
- 4 H. R. Zeller Cosmic ray induced failures in high power semiconductor devices, Solid-State Electron., 38: 2041–2046, 1995.
- 5 H. Goebel K. Hoffmann Full dynamic power diode model including temperature behavior for use in circuit simulators, Proc. 1992 Int. Symp. Power Semicond. Devices ICs, Tokyo, Japan, 1992, pp. 130–135.
- 6 P. Jonsson et al. The ambipolar Auger coefficient: measured temperature dependence in electron irradiated and highly injected n-type silicon, J. Appl. Phys., 81: 2256–2262, 1997.
- 7 J. Dorkel P. Leturcq Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level, Solid-State Electron., 24: 821–825, 1981.
- 8 J. Burtscher F. Dannhäuser J. Krausse Die Rekombination in Thyristoren und Gleichrichtern aus Silizium: ihr Einfluss auf die Durchlasskennlinie und das Freiwerdezeitverhalten, Solid-State Electron., 18: 35–63, 1975.
- 9 A. Herlet The forward characteristic of silicon power rectifiers at high current densities, Solid-State Electron., 11: 717–742, 1968.
- 10 Th. Wasserrab Beitrag zur nichtlinearen Theorie des Hochstromsbereichs von PSN-Dioden und Thyristoren, Archiv Elektrotechnik, 58: 27–37, 1976.
- 11 A. Herlet K. Raithel Forward characteristics of thyristors in the fired state, Solid-State Electron., 9: 1089–1105, 1966.
- 12 F. Berz A simplified theory of the p–i–n diode, Solid-State Electron., 20: 709–714, 1977.
- 13 H. Schlangenotto D. Silber High current behavior of p–i–n rectifiers and thyristors with different p emitter structures, Eur. Solid State Device Res. Conf., München, 1973.
- 14 R. Kolessar B. E. Danielsson Modeling the forward recovery of the high power diode for circuit simulation, Proc. Eur. Power Electron. Conf., Trondheim, Norway, 1997, pp. 4.094–4.098.
- 15 H. Benda F. Dannhäuser Switching processes in diffused rectifiers—I theory, Solid-State Electron., 11: 1–11, 1968.
- 16 H. Benda E. Spenke Reverse recovery processes in silicon power rectifiers, Proc. IEEE, 55: 1331–1354, 1967.
- 17 B. E. Danielsson Studies of turn-off effects in power semiconductor devices, Solid-State Electron., 28: 375–391, 1985.
- 18 P. A. Persson A circuit simulation model for the high power diode, Proc. Eur. Power Electron. Conf., Florence, Italy, pp. 2-458–2-463, 1991.
- 19 H. A. Mantooth R. G. Perry J. L. Duliere A unified model for circuit simulation, Conf. Rec. IEEE Power Electronics Specialist Conference, Atlanta, GA, 1995, pp. 851–857.
- 20 R. Kolessar private communication. R. Kolessar is a Ph.D. student at the Royal Institute of Technology, Stockholm, Sweden. The information used is part of his doctoral work.
- 21 Ch. Danielsson Implementation of temperature dependence in a model for the power diode, Diploma work, ABB Corporate Research, Sweden, 1992, in Swedish.
- 22 A. Temple F. W. Holroyd Optimizing carrier lifetime profile for improved trade-off between turn-off time and forward drop, IEEE Trans. Electron Devices, ED-30: 782–790, 1983.
- 23 A. Weber N. Galster E. Tsyplakov A new generation of asymmetric and reverse conducting GTOs and their snubber diodes, Proc. Int. Power Conversion Conf., Nürnberg, Germany, 1997, pp. 475–484.
- 24 J. Lutz The freewheeling diode—no longer the weak component, Proc. Int. Power Conversion Conf., Nürnberg, Germany, 1997, pp. 259–265.
- 25 T. Nakagawa et al. 8 kV/3.6 kA light triggered thyristor, Proc. 7th Int. Symp. Power Semicond. Devices IC’s, Yokohama, Japan, 1995, pp. 175–180.
- 26 H. Schlangenotto et al. Improved recovery of fast power diodes with self-adjusting p emitter efficiency, IEEE Electron Device Letters, 10: 322–324, 1989.
- 27 M. Mehrotra B. J. Baliga Comparison of high voltage power rectifier structures, Proc. 5th Int. IEEE Symp. Power Semicond. Devices IC’s, Monterey, USA, 1993, pp. 199–204.
- 28 M. T. Rahimo N. Y. A. Shammas A review on fast power diode development and modern novel structures, Colloq. New Develop. Power Semicond. Devices, London, 1996, IEE.
- 29 T. Laska G. Miller A 2000 V non-punch-through IGBT with dynamical properties like a 1000 V IGBT, Proc. Int. Electron Devices Meet., San Francisco, 1990, pp. 807–810.
- 30 S. Eicher et al. Punchthrough type GTO with buffer layer and homogeneous low efficiency anode structure, Proc. Int. IEEE Symp. Power Semicond. Devices IC’s, Maui, HI, 1996, pp. 261–264.
- 31 F. Conti M. Conti Surface breakdown in silicon planar diodes equipped with field plate, Solid-State Electron., 15: 93–105, 1972.
- 32 Y. C. Kao E. D. Wolley High-voltage planar p-n junctions, Proc. IEEE, 55: 1409–1414, 1967.
- 33 R. Stengl U. Gösele Variation of lateral doping—a new concept to avoid high voltage breakdown of planar junctions, Proc. Int. Electron Devices Meet., Washington, D.C., 1985, pp. 154–157.
- 34 W. Tantraporn V. A. K. Temple Multiple-zone single-mask junction termination extension—a high yield near-ideal breakdown voltage technology, IEEE Trans. Electron Devices, ED-34: 2200–2210, 1987.
- 35 F. Bauer T. Stockmeier Static and dynamic characteristics of high voltage (3.5 kV) IGBT and MCT devices, Proc. Int. IEEE Symp. Power Semicond. Devices IC’s, Tokyo, Japan, 1992, pp. 22–27.
- 36 M. Frischholz et al. OBIC measurements on planar high-voltage p+-n junctions with diamond-like carbon films as passivation layer, Appl. Surf. Sci., 65/66: 784–788, 1993.
- 37 W. Palmour et al. Silicon carbide for power devices, Proc. Int. IEEE Symp. Power Semicond. Devices IC’s, Weimar, Germany, 1997, pp. 25–32.
- 38 K. Bergman Silicon carbide, the power semiconductor material of the future, ABB Rev., 1: 37–42, 1996.
- 39 I. L. Somos et al. Power semiconductors empirical diagrams expressing life as a function of temperature excursion, IEEE Trans. Magn., 29: 517–522, 1993.
Reading List
- B. J. Baliga Power Semiconductor Devices, Boston: PWS, 1996.
- A. S. Grove Physics and Technology of Semiconductor Devices, New York: Wiley, 1967.
- A. G. Milnes Deep Impurities in Semiconductors, New York: Wiley, 1973.
- S. M. Sze Physics of Semiconductor Devices, 2nd ed., New York: Wiley, 1981.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: