Electromagnetic Ferrite Tile Absorber
Christopher L. Holloway
U.S. Department of Commerce, Boulder Laboratories, Boulder, CO
Search for more papers by this authorJames R. Baker–Jarvis
U.S. Department of Commerce, Boulder Laboratories, Boulder, CO
Search for more papers by this authorRobert T. Johnk
U.S. Department of Commerce, Boulder Laboratories, Boulder, CO
Search for more papers by this authorRichard G. Geyer
U.S. Department of Commerce, Boulder Laboratories, Boulder, CO
Search for more papers by this authorChristopher L. Holloway
U.S. Department of Commerce, Boulder Laboratories, Boulder, CO
Search for more papers by this authorJames R. Baker–Jarvis
U.S. Department of Commerce, Boulder Laboratories, Boulder, CO
Search for more papers by this authorRobert T. Johnk
U.S. Department of Commerce, Boulder Laboratories, Boulder, CO
Search for more papers by this authorRichard G. Geyer
U.S. Department of Commerce, Boulder Laboratories, Boulder, CO
Search for more papers by this authorAbstract
The sections in this article are
- 1 Modeling Ferrite Tiles
- 2 Measurements of Material Properties
- 3 Reflectivity Measurements
- 4 Conclusion
Bibliography
- 1 A. J. Simmons W. H. Emerson An anechoic chamber making use of a new broadband material. Convention Record of the IRE 1953 National Convention: Part 2-Antennas and Communications, pp. 31–41.
- 2 W. H. Emerson Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. Antennas Propagat., 21: 484–490, 1973.
- 3 C. L. Holloway et al. Comparison of electromagnetic absorber used in anechoic and semi-anechoic chambers for emissions and immunity testing of digital devices. IEEE Trans. Electromag. Compat., 39: 33–47, 1997.
- 4 R. F. German Comparison of semi-anechoic chambers and open-field site attenuation measurements. Proc. 1982 IEEE International Symposium on Electromagnetic Compatibility, Santa Clara, CA, September 8–10, 1982, pp. 260–265.
- 5 E. F. Kuester C. L. Holloway Improved low-frequency performance of pyramid-cone absorbers for application in semi-anechoic chambers, Proc. 1989 IEEE National Symposium on Electromagnetic Compatibility, Denver, CO, May 23–25, 1989, pp. 394–399.
- 6 E. F. Kuester C. L. Holloway A low-frequency model for wedge or pyramid absorber arrays-I: theory, IEEE Trans. Electromagn. Compat., 36: 300–306, 1994.
- 7 C. L. Holloway E. F. Kuester A low-frequency model for wedge or pyramid absorber arrays-II: computed and measured results, IEEE Trans. Electromagn. Compat., 36: 307–313, 1994.
- 8 N. Ari D. Hansen H. Garbe Analysis and measurements of electromagnetic scattering by pyramidal absorbers, 8th Int. Zurich Symp. Technical Exhibition Electromagnetic Compatibility, Zurich, March 7–9, 1989, pp. 301–304.
- 9 D. Hansen N. Ari H. Garbe An investigation into the scattering and radiation characteristic of RF-absorbers, Proc. 1988 IEEE International Symposium on Electromagnetic Compatibility, Seattle, WA, August 2–4, 1988), pp. 99–105.
- 10 S. Takeya K. Shimada New measurement method of RF absorber characteristics by large square coaxial line. Proc. 1988 IEEE International Symposium on Electromagnetic Compatibility, Dallas, TX, August 9–13, 1993, pp. 397–402.
- 11 P. Pues Electromagnetic wave absorber measurement in a large coax, 9th Int. Zurich Symp. Technical Exhibition Electromagnetic Compatibility, Zurich, March 1991, pp. 541–546.
- 12 Y. Naito et al. Characteristics of the ferrite absorbing wall, Trans. I.E.C.E., Japan, 52-B (1): 26, 1969 (available in English in Electronics and Communication in Japan, p. 76, 1969).
- 13 Y. Natio E. Fujiwara Thickness of electromagnetic wave absorber utilizing ferrite, Trans. I.E.C.E., Japan, 53-B (9): 537, 1970 (available in English in Electronics and Communication in Japan, p. 94, 1970).
- 14 Y. Natio On the permeability dispersion of a spinel ferrite, Electronics and Communication in Japan, 56-C (2): 118–123, 1973.
- 15 T. Ellam An update on the design and synthesis of compact absorber for EMC chamber applications, Proc. 1994 IEEE International Symposium on Electromagnetic Compatibility, Chicago, August 22–26, 1994, pp. 408–412.
- 16
K. Ishino et al. Realization of compact semi- and fully anechoic chambers using a new developed composite absorber,
Proc. 1994 IEEE International Symposium on Electromagnetic Compatibility, Chicago, August 22–26, 1994, pp. 413–418.
L. M. Brekhovskikh
Waves in Layered Media, New York: Academic Press, 1960, ch. 1.
10.1016/B978-0-12-395777-1.50004-6 Google Scholar
- 17 E. F. Kuester C. L. Holloway Comparison of approximations for effective parameters of artificial dielectrics, IEEE Trans. Microwave Theory Techn., 38 (11): 1752–1755, 1990.
- 18 M. Takahashi A new structure of electromagnetic wave absorber, Toyo Corporation, Technical Report, October 1991.
- 19 R. G. Geyer et al. Spectral characterization of ferrites for use as magnetic reference materials, Conf. Precision Electromag. Meas. Dig., 1992, pp. 107–108.
- 20 J. L. Snoek Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica XIV, 4: 207–217, 1948.
- 21 J. Baker–Jarvis et al. Transmission/reflection and short-circuit line methods for measuring permittivity and permeability, Natl. Inst. Stand. Technol., Tech. Note 1355, May, 1992.
- 22 A. R. V. Hippel Dielectric Materials and Applications, Cambridge, MA: M.I.T. Press, 1954.
- 23 R. B. Goldfarb H. E. Bussey Method for measuring complex permeability at radio frequencies, Rev. Sci. Instrum., 58 (4): 624–627, 1987.
- 24 R. G. Geyer J. Baker–Jarvis Spectral characterization of ferrites for use as magnetic reference materials. CPEM’92 Digest, Conference on Precision Electromagnetic Measurements, 1992, pp. 107–108.
- 25 C. A. Hoer A. L. Rasmussen Equations for the radiofrequency magnetic permeameter, NBS Journal of Research, 67C: 69–76, 1963.
- 26 R. C. LeCraw E. G. Spencer Tensor permeabilities of ferrites below magnetic saturation, IRE Conv. Rec. New York, pt. 5, 1956, pp. 66–74.
- 27 J. J. Green T. Kohane Testing of ferrite materials for microwave applications, Semicond. Prod. Solid State Technol., 7: 46–54, 1964.
- 28
H. E. Bussey
L. A. Steinert
Exact solution for a gyromagnetic sample and measurements on a ferrite,
IRE Trans. Microwave Theory Tech.,
6:
72–76,
1958.
10.1109/TMTT.1958.1125186 Google Scholar
- 29 W. Muller–Gronau I. Wolff A microwave method for the determination of the real parts of the magnetic and dielectric material parameters of premagnetized microwave ferrites. IEEE Trans. Microwave Theory Tech., 32: 377–382, 1983.
- 30 M. Latrach P. LeRoux F. Jecko Accurate method for experimental determination of real part of initial permeability of demagnetized ferrite samples. In Proc. 10eme Colloque Optique Hertzienne et Dielectriques, Rennes, September 6–8, 1989, pp. 339–342.
- 31 N. Ogasawara et al. Highly sensitive procedures for measuring permeabilities (μ±) for circularly polarized fields in microwave ferrites. IEEE Trans. Magnetics, 12: 256–269, 1976.
- 32 J. Krupka Resonant modes in shielded cylindrical ferrite and single crystal resonators. IEEE Trans. Microwave Theory Tech., 37: 691–697, 1989.
- 33 R. G. Geyer J. Krupka Microwave behavior of ferrites: theory and experiment. Conf. Digest on Precision Electromagnetic Measurements, June 17–20, 1996, pp. 206–207.
- 34 R. G. Geyer J. Krupka Complex permeability measurements of microwave ferrites. In Microwave Processing of Materials V, Materials Research Society Symposium Proceedings, 430: 257–262, 1996.
- 35
J. Krupka
R. G. Geyer Complex permeability of demagnetized microwave ferrites near and above gyromagnetic resonance
IEEE Trans. Magnetics,
32 (3):
1924–1933,
1996.
10.1109/20.492888 Google Scholar
- 36 J. J. Green F. Sandy Microwave characterization of partially magnetized ferrites. IEEE Trans. Microwave Theory Tech., 22: 641–645, 1974.
- 37 M. L. Kales Modes in waveguides containing ferrites, J. Appl. Phys., 24: 604–608, 1953.
- 38 H. Suhl L. R. Walker Topics in guided wave propagation through gyromagnetic media. Pt. I-The completely filled cylindrical guide, Bell Syst. Tech. J., 33: 579–659, 1954.
- 39 E. Snitzer Cylindrical dielectric waveguide modes. J. Opt. Soc. Amer., 51: 491–498, 1961.
- 40 R. A. Waldron Electromagnetic wave propagation in cylindrical waveguides containing gyromagnetic media, J. Brit. IRE, 18: 597–612, 677–690, and 733–746, 1958.
- 41 R. A. Waldron Theory of the mode spectra of cylindrical waveguides containing gyromagnetic media. J. Brit. IRE, 19: pp. 347–356, 1959.
- 42 R. A. Waldron Features of cylindrical waveguides containing gyromagnetic media. J. Brit IRE, 695–706, 1960.
- 43 R. A. Waldron Loss properties of ferrite-loaded cylindrical waveguides containing gyromagnetic media. J. Brit. IRE, 321–334, 1963.
- 44 R. A. Waldron Properties of ferrite-loaded cylindrical waveguides in the neighborhood of cutoff. Proc. IEEE, 109B (suppl. no. 21): 90–94, 1962.
- 45 R. A. Waldron Properties of inhomogeneous cylindrical waveguides in the neighborhood of cutoff, J. Brit. IRE, 25: 547–555, 1963.
- 46 J. E. Tompkins Energy distribution in partially ferrite-filled waveguides, J. Appl. Phys., 29: 399–400, 1958.
- 47 R. A. Waldron Ferrites, New York: Van Nostrand, 1961.
- 48 P. J. B. Clarricoats Microwave Ferrites, London: Chapman and Hall, 1961.
- 49 A. J. Baden–Fuller Ferrites at Microwave Frequencies, London: Peter Peregrinus, 1987, Chap. 3.
- 50 H. D. Godtmann W. Hass Magnetodynamic modes in axially magnetized rods between two parallel conducting sheets. IEEE Trans. Microwave Theory Tech., 15: 478–480, 1967.
- 51 A. M. Duputz A. C. Priou Computer analysis of microwave propagation in a ferrite circular waveguide-optimization of phase-shifter longitudinal field section, IEEE Trans. Microwave Theory Tech., 22: 601–613, 1974.
- 52 E. F. Knott J. F. Shaeffer M. T. Tuley Radar Cross Section: Its Prediction, Measurement and Reduction, Dedham, MA: Artech House, Inc., 1985, Chap. 10.
- 53 R. E. Hiatt E. F. Knott T. B. A. Senior A study of VHF absorber and anechoic rooms, College of Engineering, Department of Electrical and Computer Engineering, Radiation Laboratory, University of Michigan, Ann Arbor, Michigan, Tech. Report No. 5391-1-F, February, 1963.
- 54 S. Tofani A. Ondrejka M. Kanda Time-domain method for characterizing the reflectivity of absorbing materials from 30 to 1000 MHz, IEEE Trans. Electromagn. Compat., 33: 234–240, 1991.
- 55 S. Tofani et al. Bistatic scattering of absorbing materials from 30 to 1000 MHz, IEEE Trans. Electromagn. Compat., 34: 304–307, 1992.
- 56 R. Johnk et al. Time-domain measurements of the electromagnetic backscatter of pyramidal absorbers and metallic plates, IEEE Trans. Electromagn. Compat., 35: 429–433, 1993.
- 57 R. T. Johnk A. R. Ondrejka Electrical material properties from a freespace time-domain RF absorber reflectivity measurement system, Proc. 1997 IEEE International Symposium on Electromagnetic Compatability, August 11–22, 1997, Austin, TX.
- 58 IEEE standard PAR-1128, Recommended practice for RF absorber evaluation, to be published.
- 59 R. A. Lawton A. R. Ondrejka Antennas and the associated time-domain range for the measurement of impulsive fields, Nat. Bur. Stand. (U.S.) Tech. Note 1008, 1978.
- 60 H. W. Helberg V. Kose Die breitbandige absorption electromagnetischer wellen durch dunne ferritschichten, Zeitschrift für Angewandte Physik, 19, 509–514, 1965.
- 61 F. Mayer J. P. Chaumat Dielectromagnetic materials for absorber-lined chambers (ALC). Proc. 9th International Zurich Symposium on Electromagnetic Compatibility (Zurich, March 12–14, 1991, pp. 569–572.
- 62 H. Komori Y. Konishi Wideband electromagnetic wave absorber with thin magnetic layers, IEEE Trans. Broadcasting, 40: 219–222, 1994.
- 63 Z. Cohn J. Daly C. Parker Advanced ferrite materials for anechoic chambers. Ceramics Trans., 47: 269–284, 1995.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: