Toxicology and Nonclinical Safety Assessment in Pharmaceutical Discovery and Development
Vincent L. Reynolds
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorMatthew M. Abernathy
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorRonee B. Baracani
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorLaRonda Morford
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorMeredith A. Steeves
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorWei Wang
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorVincent L. Reynolds
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorMatthew M. Abernathy
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorRonee B. Baracani
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorLaRonda Morford
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorMeredith A. Steeves
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorWei Wang
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
Search for more papers by this authorAbstract
Nonclinical safety assessment is an essential component of drug discovery and development. Early in the drug discovery/development continuum, there are no regulatory guidelines and sponsors typically harness a range of in silico, in vitro, and short-term in vivo toxicology screens and pilot studies to develop comparative toxicity profiles for compounds under consideration. Results from these early evaluations can be used to terminate the development of compounds with undesirable toxicity liabilities as well as to prioritize other compounds for further evaluation. As drug candidate molecules approach entry into clinical trials, regulatory expectations regarding nonclinical safety assessment become more explicit. Scientists in the pharmaceutical industry have worked with their regulatory counterparts to establish an organizational structure – the International Conference on Harmonisation (ICH) – to develop internationally accepted guidelines that specify requirements for nonclinical safety assessment activities in a phase-specific manner. The ICH guidelines cover the need for repeat-dose toxicology studies of increasing duration in rodents and nonrodents, safety pharmacology studies, genetic toxicity tests, immunotoxicity and immunogenicity evaluations, phototoxicity assessments, developmental and reproductive toxicity studies, and carcinogenicity assessments. In planning, conducting, and reporting these studies, the toxicologist must ensure that a fully integrated assessment of potential safety liabilities associated with the test drug is communicated to the development team so that potential safety concerns can be properly addressed.
References
- 1 US Food and Drug Administration (1996). Guidance for Industry. Single Dose Acute Toxicity Testing for Pharmaceuticals. Washington, DC.
- 2 US Food and Drug Administration (1999). Immunotoxicity Testing Guidance. Washington, DC.
- 3 US Food and Drug Administration (2001). Guidance for Industry. Statistical Aspects of the Design, Analysis, and Interpretation of Chronic Rodent Carcinogenicity Studies of Pharmaceuticals. Washington, DC.
- 4 US Food and Drug Administration (2002). Guidance for Industry. Carcinogenicity Study Protocol Submissions. Washington, DC.
- 5 US Food and Drug Administration (2002). Guidance for Industry. Establishing Pregnancy Exposure Registries. Washington, DC.
- 6 US Food and Drug Administration (2002). Guidance for Industry. Immunotoxicology Evaluation of Investigational New Drugs. Washington, DC.
- 7 US Food and Drug Administration (2005). Guidance for Industry. Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Washington, DC.
- 8 US Food and Drug Administration (2005). Guidance for Industry. Nonclinical Studies for the Safety Evaluation of Pharmaceutical Excipients. Washington, DC.
- 9 US Food and Drug Administration (2006). Guidance for Industry, Investigators, and Reviewers. Exploratory Ind Studies. Washington, DC.
- 10 US Food and Drug Administration (2006). Guidance for Industry. Nonclinical Safety Evaluation of Pediatric Drug Products. Washington, DC.
- 11 US Food and Drug Administration (2006). Guidance for Industry. Nonclinical Safety Evaluation of Drug or Biologic Combinations. Washington, DC.
- 12 US Food and Drug Administration (2008). Guidance for Industry. Diabetes Mellitus: Developing Drugs and Therapeutic Biologics for Treatment and Prevention. Draft Guidance. Washington, DC.
- 13 US Food and Drug Administration (2011). Guidance for Industry. Nonclinical Evaluation of Late Radiation Toxicity of Therapeutic Radiopharmaceuticals. Washington, DC.
- 14 US Food and Drug Administration (2012). Guidance for Industry and Investigators. Safety Reporting Requirements for Inds and ba/be Studies. Washington, DC.
- 15 US Food and Drug Administration (2013). Guidance for Industry. Codevelopment of Two or More New Investigational Drugs for Use in Combination. Washington, DC.
- 16 US Food and Drug Administration (2014). Guidance for Industry. Immunogenicity Assessment for Therapeutic Protein Products. Washington, DC.
- 17 US Food and Drug Administration (2015). Nonclinical Evaluation of Endocrine-Related Drug Toxicity. Guidance for Industry. Washington, DC.
- 18 US Food and Drug Administration (2015). Nonclinical Safety Evaluation of Reformulated Drug Products and Products Intended for Administration by an Alternate Route. Guidance for Industry and Review Staff. Washington, DC.
- 19 US Food and Drug Administration (2016). Pediatric Study Plans: Content of and Process for Submitting Initial Pediatric Study Plans and Amended Initial Pediatric Study Plans. Guidance for Industry. Draft Guidance. Washington, DC.
- 20 US Food and Drug Administration (2017). Assessment of Abuse Potential of Drugs. Guidance for Industry. Washington, DC.
- 21 US Food and Drug Administration (2020). Safety Testing of Drug Metabolites. Guidance for Industry (Revision 2). Washington, DC.
- 22 International Conference on Harmonisation S1A Guideline (1995). Guideline on the Need for Carcinogenicity Studies of Pharmaceuticals.
- 23 International Conference on Harmonisation S1B Guideline (1997). Testing of Carcinogenicity for Pharmaceuticals.
- 24 International Conference on Harmonisation S1C(R2) Guideline (2008). Dose Selection of Carcinogenicity Studies of Pharmaceeuticals.
- 25 International Conference on Harmonisation S2(R1) Guideline (2011). Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended for Human Use.
- 26 International Conference on Harmonisation S3A Guideline (1994). Guidance on Toxicokinetics: The Assessment of Systemic Exposure in Toxicity Studies.
- 27 International Conference on Harmonisation S3B Guideline (1994). Repeated Dose Tissue Distribution Studies. Use ICoHoTRfRoPfH.
- 28 Ich s4 Guideline (1998). Duration of Chronic Toxicity Testing in Animals (Rodent and Nonrodent).
- 29 International Conference on Harmonisation S5(R3) Guideline (2017). Detection of Toxicity to Reproduction for Human Pharmaceuticals.
- 30 International Conference on Harmonisation S6(R1) Guideline (2011). Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals.
- 31 International Conference on Harmonisation S7A Guideline (2000). Safety Pharmacology Studies for Human Pharmaceuticals.
- 32 International Conference on Harmonisation S7B Guideline (2005). Non-Clinical Evaluation of the Potential for Delayed Ventricular Repolarization (qt Interval Prolongation) by Human Pharmaceuticals.
- 33 International Conference on Harmonisation S8 Guideline (2005). Immunotoxicity Studies for Human Pharmaceuticals.
- 34 International Conference on Harmonisation S9 Guideline (2009). Nonclinical Evaluation for Anticancer Pharmaceuticals.
- 35 International Conference on Harmonisation S10 Guideline (2013). Photosafety Evaluation of Pharmaceuticals.
- 36 International Conference on Harmonisation S11 Guideline (2018). Nonclinical Safety Testing in Support of Development of Paediatric Medicines.
- 37 International Conference on Harmonisation M3(R2) Guideline (2009). Guidance on Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals.
- 38 International Conference on Harmonisation M7(R1) Guideline (2017). Assessment and Control of DNA Reactive (mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk.
- 39Hartung, T. (2009). Toxicology for the twenty-first century. Nature 460 (7252): 208–212.
- 40Marshall, L.J. and Rowan, A.N. (2018). Advances in alternative non-animal testing methods represent a way to find new treatments for patients. Eur. J. Intern. Med. 48: e31–e32.
- 41Bailey, J., Thew, M., and Balls, M. (2013). An analysis of the use of dogs in predicting human toxicology and drug safety. Altern. Lab. Anim. 41 (5): 335–350.
- 42Isbrucker, R., Levis, R., Casey, W., McFarland, R., Schmitt, M., Arceniega, J., Descamps, J., Finn, R., Hendricksen, C., Horiuchi, Y., Keller, J., Kojima, H., Sesardic, D., Stickings, P., Johnson, N.W., and Allen, D. (2011). Alternative methods and strategies to reduce, refine, and replace animal use for human vaccine post-licensing safety testing: State of the science and future directions. Procedia Vaccinol. 5: 47–59.
10.1016/j.provac.2011.10.004 Google Scholar
- 43Scholz, S., Sela, E., Blaha, L., Braunbeck, T., Galay-Burgos, M., Garcia-Franco, M., Guinea, J., Kluver, N., Schirmer, K., Tanneberger, K., Tobor-Kaplon, M. et al. (2013). A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regul. Toxicol. Pharmacol. 67 (3): 506–530.
- 44Prieto, P., Burton, J., Graepel, R., Price, A., Whelan, M., and Worth, A. (2014). EURL ECVAM Strategy to Replace, Reduce and Refine the Use of Animals in the Assessment of Acute Mammalian Systemic Toxicity. European Commission Joint Research Centre.
- 45Sewell, F., Edwards, J., Prior, H., and Robinson, S. (2016). Opportunities to apply the 3Rs in safety assessment programs. ILAR J. 57 (2): 234–245.
- 46Sistare, F.D., Mattes, W.B., and LeCluyse, E.L. (2016). The promise of new technologies to reduce, refine, or replace animal use while reducing risks of drug induced liver injury in pharmaceutical development. ILAR J. 57 (2): 186–211.
- 47Sparrow, S.S., Robinson, S., Bolam, S., Bruce, C., Danks, A., Everett, D., Fulcher, S., Hill, R.E., Palmer, H., Scott, E.W., and Chapman, K.L. (2011). Opportunities to minimise animal use in pharmaceutical regulatory general toxicology: a cross-company review. Regul. Toxicol. Pharmacol. 61 (2): 222–229.
- 48Bourcier, T., McGovern, T., Stavitskaya, L., Kruhlak, N., and Jacobson-Kram, D. (2015). Improving prediction of carcinogenicity to reduce, refine, and replace the use of experimental animals. J. Am. Assoc. Lab. Anim. Sci. 54 (2): 163–169.
- 49Morgan, S.J., Elangbam, C.S., Berens, S., Janovitz, E., Vitsky, A., Zabka, T., and Conour, L. (2013). Use of animal models of human disease for nonclinical safety assessment of novel pharmaceuticals. Toxicol. Pathol. 41 (3): 508–518.
- 50Olson, H., Betton, G., Robinson, D., Thomas, K., Monro, A., Kolaja, G., Lilly, P., Sanders, J., Sipes, G., Bracken, W., Dorato, M. et al. (2000). Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 32 (1): 56–67.
- 51Mangipudy, R., Burkhardt, J., and Kadambi, V.J. (2014). Use of animals for toxicology testing is necessary to ensure patient safety in pharmaceutical development. Regul. Toxicol. Pharmacol. 70 (2): 439–441.
- 52Monticello, T.M., Jones, T.W., Dambach, D.M., Potter, D.M., Bolt, M.W., Liu, M., Keller, D.A., Hart, T.K., and Kadambi, V.J. (2017). Current nonclinical testing paradigm enables safe entry to first-in-human clinical trials: the IQ consortium nonclinical to clinical translational database. Toxicol. Appl. Pharmacol. 334: 100–109.
- 53Buckley, L.A. and Dorato, M.A. (2009). High dose selection in general toxicity studies for drug development: a pharmaceutical industry perspective. Regul. Toxicol. Pharmacol. 54 (3): 301–307.
- 54Diehl, K.H., Hull, R., Morton, D., Pfister, R., Rabemampianina, Y., Smith, D., Vidal, J.M., van de Vorstenbosch, C. (2001). A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 21 (1): 15–23.
- 55Dorato, M.A. and Engelhardt, J.A. (2005). The no-observed-adverse-effect-level in drug safety evaluations: Use, issues, and definition(s). Regul. Toxicol. Pharmacol. 42 (3): 265–274.
- 56Foster, R.H.K. (1939). Standardization of safety margin. J. Pharmacol. Exp. Ther. 65 (1): 1–17.
- 57Muller, P.Y. and Milton, M.N. (2012). The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug Discov. 11 (10): 751–761.
- 58Tamargo, J., Le Heuzey, J.Y., and Mabo, P. (2015). Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. Eur. J. Clin. Pharmacol. 71 (5): 549–567.
- 59Orsi, A., Rees, D., Andreini, I., Venturella, S., Cinelli, S., and Oberto, G. (2011). Overview of the marmoset as a model in nonclinical development of pharmaceutical products. Regul. Toxicol. Pharmacol. 59 (1): 19–27.
- 60Helke, K.L. and Swindle, M.M. (2013). Animal models of toxicology testing: the role of pigs. Expert Opin. Drug Metab. Toxicol. 9 (2): 127–139.
- 61Colleton, C., Brewster, D., Chester, A., Clarke, D.O., Heining, P., Olaharski, A., and Graziano, M. (2016). The use of minipigs for preclinical safety assessment by the pharmaceutical industry: results of an IQ DruSafe minipig survey. Toxicol. Pathol. 44 (3): 458–466.
- 62Morton, D.M. (1998). Importance of species selection in drug toxicity testing. Toxicol. Lett. 102–103: 545–550.
- 63Hall, B., Limaye, A., and Kulkarni, A.B. (2009). Overview: generation of gene knockout mice. Curr. Protoc. Cell Biol. Chapter 19: Unit 19 12 19 12 11-17.
10.1002/0471143030.cb1912s44 Google Scholar
- 64Li, T., Zhu, L., Xiao, B., Gong, Z., Liao, Q., and Guo, J. (2019). Crispr-cpf1-mediated genome editing and gene regulation in human cells. Biotechnol. Adv. 37 (1): 21–27.
- 65Roberts, R.B., Arteaga, C.L., and Threadgill, D.W. (2004). Modeling the cancer patient with genetically engineered mice: prediction of toxicity from molecule-targeted therapies. Cancer Cell 5 (2): 115–120.
- 66Andrejak, M. and Tribouilloy, C. (2013). Drug-induced valvular heart disease: an update. Arch. Cardiovasc. Dis. 106 (5): 333–339.
- 67Conibear, A.E. and Kelly, E. (2019). A biased view of mu-opioid receptors? Mol. Pharmacol. 96 (5): 542–549.
- 68Krejsa, C.M., Horvath, D., Rogalski, S.L., Penzotti, J.E., Mao, B., Barbosa, F., and Migeon, J.C. (2003). Predicting ADME properties and side effects: the bioprint approach. Curr. Opin. Drug Discov. Devel. 6 (4): 470–480.
- 69Bowes, J., Brown, A.J., Hamon, J., Jarolimek, W., Sridhar, A., Waldron, G., and Whitebread, S. (2012). Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11 (12): 909–922.
- 70Deaton, A.M., Fan, F., Zhang, W., Nguyen, P.A., Ward, L.D., and Nioi, P. (2019). Rationalizing secondary pharmacology screening using human genetic and pharmacological evidence. Toxicol. Sci. 167 (2): 593–603.
- 71Cohen, P. (2000). The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem. Sci. 25 (12): 596–601.
- 72Manning, G., Whyte, D.B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298 (5600): 1912–1934.
- 73Senderowicz, A.M. (2003). Novel direct and indirect cyclin-dependent kinase modulators for the prevention and treatment of human neoplasms. Cancer Chemother. Pharmacol. 52 (Suppl 1): S61–S73.
- 74Levitzki, A. (2013). Tyrosine kinase inhibitors: views of selectivity, sensitivity, and clinical performance. Annu. Rev. Pharmacol. Toxicol. 53: 161–185.
- 75Stoklosa, T., Deregowska, A., Drzewinska-Chanko, J., Barankiewicz, J., Marcin, M.M., Katarzyna, P., and Wnuk, M. (2014). Effects of first and next-generation tyrosine kinase inhibitors on telomere-mediated chromosomal instability in chronic myeloid leukemia cells. Blood 124: 5510.
- 76Kotake, T. and Toi, M. (2018). Abemaciclib for the treatment of breast cancer. Expert Opin. Pharmacother. 19 (5): 517–524.
- 77Bhullar, K.S., Lagaron, N.O., McGowan, E.M., Parmar, I., Jha, A., Hubbard, B.P., and Rupasinghe, H.P.V. (2018). Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 17 (1): 48.
- 78Ferguson, F.M. and Gray, N.S. (2018). Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. 17 (5): 353–377.
- 79Rivellese, F., Lobasso, A., Barbieri, L., Liccardo, B., de Paulis, A., and Rossi, F.W. (2019). Novel therapeutic approaches in rheumatoid arthritis: role of janus kinases inhibitors. Curr. Med. Chem. 26 (16): 2823–2843.
- 80Smyth, L.A. and Collins, I. (2009). Measuring and interpreting the selectivity of protein kinase inhibitors. J. Chem. Biol. 2 (3): 131–151.
- 81Zhang, J., Yang, P.L., and Gray, N.S. (2009). Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer 9 (1): 28–39.
- 82Gupta, R. and Maitland, M.L. (2011). Sunitinib, hypertension, and heart failure: a model for kinase inhibitor-mediated cardiotoxicity. Curr. Hypertens. Rep. 13 (6): 430–435.
- 83Gharwan, H. and Groninger, H. (2016). Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat. Rev. Clin. Oncol. 13 (4): 209–227.
- 84Redfern, W.S., Carlsson, L., Davis, A.S., Lynch, W.G., MacKenzie, I., Palethorpe, S., Siegl, P.K., Strang, I., Sullivan, A.T., Wallis, R., Camm, A.J. et al. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58 (1): 32–45.
- 85Gross, C.J. and Kramer, J.A. (2003). The role of investigative molecular toxicology in early stage drug development. Expert Opin. Drug Saf. 2 (2): 147–159.
- 86Kramer, J.A., Sagartz, J.E., and Morris, D.L. (2007). The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat. Rev. Drug Discov. 6 (8): 636–649.
- 87Bass, A.S., Cartwright, M.E., Mahon, C., Morrison, R., Snyder, R., McNamara, P., Bradley, P., Zhou, Y.Y., and Hunter, J. (2009). Exploratory drug safety: a discovery strategy to reduce attrition in development. J. Pharmacol. Toxicol. Methods 60 (1): 69–78.
- 88Hornberg, J.J., Laursen, M., Brenden, N., Persson, M., Thougaard, A.V., Toft, D.B., and Mow, T. (2014). Exploratory toxicology as an integrated part of drug discovery. Part I: why and how. Drug Discov. Today 19 (8): 1131–1136.
- 89Hornberg, J.J., Laursen, M., Brenden, N., Persson, M., Thougaard, A.V., Toft, D.B., and Mow, T. (2014). Exploratory toxicology as an integrated part of drug discovery. Part II: screening strategies. Drug Discov. Today 19 (8): 1137–1144.
- 90Dambach, D.M., Misner, D., Brock, M., Fullerton, A., Proctor, W., Maher, J., Lee, D., Ford, K., and Diaz, D. (2016). Safety lead optimization and candidate identification: Integrating new technologies into decision-making. Chem. Res. Toxicol. 29 (4): 452–472.
- 91Blomme, E.A. and Will, Y. (2016). Toxicology strategies for drug discovery: present and future. Chem. Res. Toxicol. 29 (4): 473–504.
- 92Patlewicz, G. and Fitzpatrick, J.M. (2016). Current and future perspectives on the development, evaluation, and application of in silico approaches for predicting toxicity. Chem. Res. Toxicol. 29 (4): 438–451.
- 93Baker, T.K., Engle, S.K., Halstead, B.W., Paisley, B.M., Searfoss, G.H., and Willy, J.A. (2017). Discover toxicology: an early safety assessment approach. In: Translating Molecules into Medicines. Cross-Functional Integration at the Drug Discovery-Development Interface (ed. S.N. Bhattachar, J.S. Morrison, D.R. Mudra and D.M. Bender), 119–162. New York, NY: Springer.
10.1007/978-3-319-50042-3_5 Google Scholar
- 94Wilson, G. (1990). Cell culture techniques for the study of drug transport. Eur. J. Drug Metab. Pharmacokinet. 15 (2): 159–163.
- 95Simmons, J.G., Hoyt, E.C., Westwick, J.K., Brenner, D.A., Pucilowska, J.B., and Lund, P.K. (1995). Insulin-like growth factor-I and epidermal growth factor interact to regulate growth and gene expression in IEC-6 intestinal epithelial cells. Mol. Endocrinol. 9 (9): 1157–1165.
- 96Sato, T. and Clevers, H. (2013). Primary mouse small intestinal epithelial cell cultures. Methods Mol. Biol. 945: 319–328.
- 97Grabinger, T., Luks, L., Kostadinova, F., Zimberlin, C., Medema, J.P., Leist, M., and Brunner, T. (2014). Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death Dis. 5: e1228.
- 98Sinnecker, D., Laugwitz, K.L., and Moretti, A. (2014). Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacol. Ther. 143 (2): 246–252.
- 99Abujarour, R. and Valamehr, B. (2015). Generation of skeletal muscle cells from pluripotent stem cells: advances and challenges. Front. Cell Dev. Biol. 3: 29.
- 100Parchment, R.E., Gordon, M., Grieshaber, C.K., Sessa, C., Volpe, D., and Ghielmini, M. (1998). Predicting hematological toxicity (myelosuppression) of cytotoxic drug therapy from in vitro tests. Ann. Oncol. 9 (4): 357–364.
- 101Pessina, A., Albella, B., Bayo, M., Bueren, J., Brantom, P., Casati, S., Croera, C., Gagliardi, G., Foti, P., Parchment, R., Parent-Massin, D. et al. (2003). Application of the CFU-GM assay to predict acute drug-induced neutropenia: an international blind trial to validate a prediction model for the maximum tolerated dose (MTD) of myelosuppressive xenobiotics. Toxicol. Sci. 75 (2): 355–367.
- 102Zhao, H., Oczos, J., Janowski, P., Trembecka, D., Dobrucki, J., Darzynkiewicz, Z., and Wlodkowic, D. (2010). Rationale for the real-time and dynamic cell death assays using propidium iodide. Cytometry A 77 (4): 399–405.
- 103Yin, T., Lallena, M.J., Kreklau, E.L., Fales, K.R., Carballares, S., Torrres, R., Wishart, G.N., Ajamie, R.T., Cronier, D.M., Iversen, P.W., Meier, T.I. et al. (2014). A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol. Cancer Ther. 13 (6): 1442–1456.
- 104Guo, L., Abrams, R.M., Babiarz, J.E., Cohen, J.D., Kameoka, S., Sanders, M.J., Chiao, E., and Kolaja, K.L. (2011). Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol. Sci. 123 (1): 281–289.
- 105Cerignoli, F., Charlot, D., Whittaker, R., Ingermanson, R., Gehalot, P., Savchenko, A., Gallacher, D.J., Towart, R., Price, J.H., McDonough, P.M., and Mercola, M. (2012). High throughput measurement of Ca(2)(+) dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J. Pharmacol. Toxicol. Methods 66 (3): 246–256.
- 106Sirenko, O., Crittenden, C., Callamaras, N., Hesley, J., Chen, Y.W., Funes, C., Rusyn, I., Anson, B., and Cromwell, E.F. (2013). Multiparameter in vitro assessment of compound effects on cardiomyocyte physiology using IPSC cells. J. Biomol. Screen 18 (1): 39–53.
- 107Jennings, P. (2015). The future of in vitro toxicology. Toxicol. In Vitro 29 (6): 1217–1221.
- 108Krause, M.N., Sancho-Martinez, I., and Izpisua Belmonte, J.C. (2016). Understanding the molecular mechanisms of reprogramming. Biochem. Biophys. Res. Commun. 473 (3): 693–697.
- 109Kawser Hossain, M., Abdal Dayem, A., Han, J., Kumar Saha, S., Yang, G.M., Choi, H.Y., and Cho, S.G. (2016). Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int. J. Mol. Sci. 17 (2): 256.
- 110Ben-Reuven, L. and Reiner, O. (2016). Modeling the autistic cell: IPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Dev. Growth Differ. 58 (5): 481–491.
- 111Spitalieri, P., Talarico, V.R., Murdocca, M., Novelli, G., and Sangiuolo, F. (2016). Human induced pluripotent stem cells for monogenic disease modelling and therapy. World J. Stem Cells 8 (4): 118–135.
- 112Dye, D. and Watkins, J. (1980). Suspected anaphylactic reaction to cremophor EL. Br. Med. J. 280 (6228): 1353.
- 113Lorenz, W., Schmal, A., Schult, H., Lang, S., Ohmann, C., Weber, D., Kapp, B., Luben, L., and Doenicke, A. (1982). Histamine release and hypotensive reactions in dogs by solubilizing agents and fatty acids: analysis of various components in cremophor EL and development of a compound with reduced toxicity. Agents Actions 12 (1-2): 64–80.
- 114Moneret-Vautrin, D.A., Laxenaire, M.C., and Viry-Babel, F. (1983). Anaphylaxis caused by anti-cremophor EL IgG STS antibodies in a case of reaction to althesin. Br. J. Anaesth. 55 (5): 469–471.
- 115Howrie, D.L., Ptachcinski, R.J., Griffith, B.P., Hardesty, R.J., Rosenthal, J.T., Burckart, G.J., and Venkataramanan, R. (1985). Anaphylactoid reactions associated with parenteral cyclosporine use: possible role of cremophor EL. Drug Intell. Clin. Pharm. 19 (6): 425–427.
- 116Ennis, M., Lorenz, W., Kapp, B., Luben, L., and Schmal, A. (1985). Comparison of the histamine-releasing activity of cremophor EL and some of its derivatives in two experimental models: The in vivo anaesthetized dog and in vitro rat peritoneal mast cells. Agents Actions 16 (3–4): 265–268.
- 117Ennis, M., Lorenz, W., and Gerland, W. (1986). Modulation of histamine release from rat peritoneal mast cells by non-cytotoxic concentrations of the detergents cremophor EL (oxethylated castor oil) and triton x100. A possible explanation for unexpected adverse drug reactions? Agents Actions 18 (1-2): 235–238.
- 118Dorr, R.T. (1994). Pharmacology and toxicology of cremophor EL diluent. Ann. Pharmacother. 28 (5 Suppl): S11–S14.
- 119Mounier, P., Laroche, D., Divanon, F., Mosquet, B., Vergnaud, M.C., Esse-Comlan, A., Piquet, M.A., and Bricard, H. (1995). Anaphylactoid reactions to an injectable solution of a cremophor-containing solution of multivitamins. Therapie 50 (6): 571–573.
- 120Theis, J.G., Liau-Chu, M., Chan, H.S., Doyle, J., Greenberg, M.L., and Koren, G. (1995). Anaphylactoid reactions in children receiving high-dose intravenous cyclosporine for reversal of tumor resistance: the causative role of improper dissolution of cremophor EL. J. Clin. Oncol. 13 (10): 2508–2516.
- 121Liau-Chu, M., Theis, J.G., and Koren, G. (1997). Mechanism of anaphylactoid reactions: improper preparation of high-dose intravenous cyclosporine leads to bolus infusion of cremophor EL and cyclosporine. Ann. Pharmacother. 31 (11): 1287–1291.
- 122Kim, Y.N., Kim, J.Y., Kim, J.W., Kim, J.H., Kim, H.I., Yune, S., Choi, D.C., and Lee, B.J. (2016). The hidden culprit: a case of repeated anaphylaxis to cremophor. Allergy Asthma Immunol. Res. 8 (2): 174–177.
- 123Gaudy, J.H., Sicard, J.F., Lhoste, F., and Boitier, J.F. (1987). The effects of cremophor EL in the anaesthetized dog. Can. J. Anaesth. 34 (2): 122–129.
- 124Chapman, K.L., Pullen, N., Andrews, L., and Ragan, I. (2010). The future of non-human primate use in mAb development. Drug Discov. Today 15 (5–6): 235–242.
- 125Buckley, L.A., Chapman, K., Burns-Naas, L.A., Todd, M.D., Martin, P.L., and Lansita, J.A. (2011). Considerations regarding nonhuman primate use in safety assessment of biopharmaceuticals. Int. J. Toxicol. 30 (5): 583–590.
- 126Bussiere, J.L. (2008). Species selection considerations for preclinical toxicology studies for biotherapeutics. Expert Opin. Drug. Metab. Toxicol. 4 (7): 871–877.
- 127Dainty, T.C., Richmond, E.S., Davies, I., and Blackwell, M.P. (2012). Dried blood spot bioanalysis: an evaluation of techniques and opportunities for reduction and refinement in mouse and juvenile rat toxicokinetic studies. Int. J. Toxicol. 31 (1): 4–13.
- 128Wickremsinhe, E.R. and Perkins, E.J. (2015). Using dried blood spot sampling to improve data quality and reduce animal use in mouse pharmacokinetic studies. J. Am. Assoc. Lab. Anim. Sci. 54 (2): 139–144.
- 129Kato, R. and Yamazoe, Y. (1992). Sex-specific cytochrome p450 as a cause of sex- and species-related differences in drug toxicity. Toxicol. Lett. 64–65: 661–667.
- 130Bonventre, J.V. (2010). Pathophysiology of AKI: injury and normal and abnormal repair. Contrib. Nephrol. 165: 9–17.
- 131Bonventre, J.V. and Yang, L. (2010). Kidney injury molecule-1. Curr. Opin. Crit. Care 16 (6): 556–561.
- 132Hoffmann, D., Adler, M., Vaidya, V.S., Rached, E., Mulrane, L., Gallagher, W.M., Callanan, J.J., Gautier, J.C., Matheis, K., Staedtler, F., Dieterle, F. et al. (2010). Performance of novel kidney biomarkers in preclinical toxicity studies. Toxicol. Sci. 116 (1): 8–22.
- 133Campion, S., Aubrecht, J., Boekelheide, K., Brewster, D.W., Vaidya, V.S., Anderson, L., Burt, D., Dere, E., Hwang, K., Pacheco, S., Saikumar, J. et al. (2013). The current status of biomarkers for predicting toxicity. Expert Opin. Drug Metab. Toxicol. 9 (11): 1391–1408.
- 134Roberts, R.A., Kavanagh, S.L., Mellor, H.R., Pollard, C.E., Robinson, S., and Platz, S.J. (2014). Reducing attrition in drug development: smart loading preclinical safety assessment. Drug Discov. Today 19 (3): 341–347.
- 135Andrews, M.H. and Reynolds, V.L. (2017). Lead optimization, preclinical toxicology. In: Translating Molecules into Medicines. Cross-Functional Integration at the Drug Discovery-Development Interface (ed. S.N. Bhattachar, J.S. Morrison, D.R. Mudra and D.M. Bender), 267–294. New York, NY: Springer.
10.1007/978-3-319-50042-3_8 Google Scholar
- 136Meesters, R.J. and Hooff, G.P. (2013). State-of-the-art dried blood spot analysis: an overview of recent advances and future trends. Bioanalysis 5 (17): 2187–2208.
- 137Chapman, K., Burnett, J., Corvaro, M., Mitchell, D., Robinson, S., Sangster, T., Sparrow, S., Spooner, N., and Wilson, A. (2014). Reducing pre-clinical blood volumes for toxicokinetics: toxicologists, pathologists and bioanalysts unite. Bioanalysis 6 (22): 2965–2968.
- 138Wickremsinhe, E. (2015). Dried blood spot analysis for rat and dog studies: validation, hematocrit, toxicokinetics and incurred sample reanalysis. Bioanalysis 7 (7): 869–883.
- 139Spooner, N., Anderson, K.D., Siple, J., Wickremsinhe, E.R., Xu, Y., and Lee, M. (2019). Microsampling: considerations for its use in pharmaceutical drug discovery and development. Bioanalysis 11 (10): 1015–1038.
- 140Bregman, C.L., Adler, R.R., Morton, D.G., Regan, K.S., and Yano, B.L. (2003). Society of toxicologic P: recommended tissue list for histopathologic examination in repeat-dose toxicity and carcinogenicity studies: a proposal of the society of toxicologic pathology (STP). Toxicol. Pathol. 31 (2): 252–253.
- 141Dobo, K.L., Greene, N., Fred, C., Glowienke, S., Harvey, J.S., Hasselgren, C., Jolly, R., Kenyon, M.O., Munzner, J.B., Muster, W., Neft, R. et al. (2012). In silico methods combined with expert knowledge rule out mutagenic potential of pharmaceutical impurities: an industry survey. Regul. Toxicol. Pharmacol. 62 (3): 449–455.
- 142Sutter, A., Amberg, A., Boyer, S., Brigo, A., Contrera, J.F., Custer, L.L., Dobo, K.L., Gervais, V., Glowienke, S., van Gompel, J., Greene, N. et al. (2013). Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul. Toxicol. Pharmacol. 67 (1): 39–52.
- 143Amberg, A., Anger, L.T., Bercu, J., Bower, D., Cross, K.P., Custer, L., Harvey, J.S., Hasselgren, C., Honma, M., Johnson, C., Jolly, R. et al. (2019). Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: is aromatic N-oxide a structural alert for predicting DNA-reactive mutagenicity? Mutagenesis 34 (1): 67–82.
- 144Hasselgren, C., Ahlberg, E., Akahori, Y., Amberg, A., Anger, L.T., Atienzar, F., Auerbach, S., Beilke, L., Bellion, P., Benigni, R., Bercu, J. et al. (2019). Genetic toxicology in silico protocol. Regul. Toxicol. Pharmacol. 107: 104403.
- 145Landry, C., Kim, M.T., Kruhlak, N.L., Cross, K.P., Saiakhov, R., Chakravarti, S., and Stavitskaya, L. (2019). Transitioning to composite bacterial mutagenicity models in ICH M7 (Q)SAR analyses. Regul. Toxicol. Pharmacol. 109: 104488.
- 146Hermeling, S., Crommelin, D.J., Schellekens, H., and Jiskoot, W. (2004). Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res. 21 (6): 897–903.
- 147Worobec, A. and Rosenberg, A. (2004). A risk-based approach to immunogenicity concerns of therapeutic protein products, Part 1: considering consequences of the immune response to a protein. BioPharm Int. 17 (11): 22–26.
- 148Rosenberg, A. and Worobec, A. (2005). Risk-based approach to immunogenicity concerns of therapeutic proteins. Part 3: effects of manufacturing changes in immunogenicity and the utility of animal immunogenicity studies. BioPharm Int. 18 (1): 32–36.
- 149Koren, E., Smith, H.W., Shores, E., Shankar, G., Finco-Kent, D., Rup, B., Barrett, Y.C., Devanarayan, V., Gorovits, B., Gupta, S., Parish, T. et al. (2008). Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J. Immunol. Methods 333 (1–2): 1–9.
- 150Murphy, K. (2011). The humoral immune response. In: Janeway's Immunobiology, 367–408. New York, NY: Garland Science Publishing.
- 151Hoyer, L.W. (1993). Factor VIII inhibitors: a continuing problem. J. Lab. Clin. Med. 121 (3): 385–387.
- 152Rosenberg, A.S. (2003). Immunogenicity of biological therapeutics: a hierarchy of concerns. Dev. Biol. (Basel) 112: 15–21.
- 153Suntharalingam, G., Perry, M.R., Ward, S., Brett, S.J., Castello-Cortes, A., Brunner, M.D., and Panoskaltsis, N. (2006). Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355 (10): 1018–1028.
- 154Sauna, Z.E., Lagasse, D., Pedras-Vasconcelos, J., Golding, B., and Rosenberg, A.S. (2018). Evaluating and mitigating the immunogenicity of therapeutic proteins. Trends Biotechnol. 36 (10): 1068–1084.
- 155De Groot, A.S., Knopp, P.M., and Martin, W. (2005). De-immunization of therapeutic proteins by T-cell epitope modification. Dev. Biol. (Basel) 122: 171–194.
- 156Deehan, M., Garces, S., Kramer, D., Baker, M.P., Rat, D., Roettger, Y., and Kromminga, A. (2015). Managing unwanted immunogenicity of biologicals. Autoimmun. Rev. 14 (7): 569–574.
- 157Tourdot, S. and Hickling, T.P. (2019). Nonclinical immunogenicity risk assessment of therapeutic proteins. Bioanalysis 11 (17): 1631–1643.
- 158Clarke, J., Hurst, C., Martin, P., Vahle, J., Ponce, R., Mounho, B., Heidel, S., Andrews, L., Reynolds, T., and Cavagnaro, J. (2008). Duration of chronic toxicity studies for biotechnology-derived pharmaceuticals: Is 6 months still appropriate? Regul. Toxicol. Pharmacol. 50 (1): 2–22.
- 159Muller, P.Y., Milton, M., Lloyd, P., Sims, J., and Brennan, F.R. (2009). The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Curr. Opin. Biotechnol. 20 (6): 722–729.
- 160Suh, H.Y., Peck, C.C., Yu, K.S., and Lee, H. (2016). Determination of the starting dose in the first-in-human clinical trials with monoclonal antibodies: a systematic review of papers published between 1990 and 2013. Drug Des. Devel. Ther. 10: 4005–4016.
- 161Hansen, A.R., Cook, N., Ricci, M.S., Razak, A., Le Tourneau, C., McKeever, K., Roskos, L., Dixit, R., Siu, L.L., and Hinrichs, M.J. (2015). Choice of starting dose for biopharmaceuticals in first-in-human phase I cancer clinical trials. Oncologist 20 (6): 653–659.
- 162Saber, H., Gudi, R., Manning, M., Wearne, E., and Leighton, J.K. (2016). An FDA oncology analysis of immune activating products and first-in-human dose selection. Regul. Toxicol. Pharmacol. 81: 448–456.
- 163Onakpoya, I.J., Heneghan, C.J., and Aronson, J.K. (2015). Delays in the post-marketing withdrawal of drugs to which deaths have been attributed: a systematic investigation and analysis. BMC Med. 13: 26.
- 164Onakpoya, I.J., Heneghan, C.J., and Aronson, J.K. (2016). Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis. Crit. Rev. Toxicol. 46 (6): 477–489.
- 165Onakpoya, I.J., Heneghan, C.J., and Aronson, J.K. (2016). Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: a systematic review of the world literature. BMC Med. 14: 10.
- 166Lindgren, S., Bass, A.S., Briscoe, R., Bruse, K., Friedrichs, G.S., Kallman, M.J., Markgraf, C., Patmore, L., and Pugsley, M.K. (2008). Benchmarking safety pharmacology regulatory packages and best practice. J. Pharmacol. Toxicol. Methods 58 (2): 99–109.
- 167Guengerich, F.P. (2011). Mechanisms of drug toxicity and relevance to pharmaceutical development. Drug Metab. Pharmacokinet. 26 (1): 3–14.
- 168Shah, R.R. and Hondeghem, L.M. (2005). Refining detection of drug-induced proarrhythmia: QT interval and triad. Heart Rhythm 2 (7): 758–772.
- 169Lindquist, M. and Edwards, I.R. (1997). Risks of non-sedating antihistamines. Lancet 349 (9061): 1322.
- 170Gottlieb, S. (1999). Antihistamine drug withdrawn by manufacturer. BMJ 319 (7201): 7.
- 171Roy, M., Dumaine, R., and Brown, A.M. (1996). hERG, a primary human ventricular target of the nonsedating antihistamine terfenadine. Circulation 94 (4): 817–823.
- 172Yap, Y.G. and Camm, A.J. (2003). Drug induced QT prolongation and torsades de pointes. Heart 89 (11): 1363–1372.
- 173Aubert, M., Osterwalder, R., Wagner, B., Parrilla, I., Cavero, I., Doessegger, L., and Ertel, E.A. (2006). Evaluation of the rabbit Purkinje fibre assay as an in vitro tool for assessing the risk of drug-induced torsades de pointes in humans. Drug Saf. 29 (3): 237–254.
- 174de Leiris, J., Harding, D.P., and Pestre, S. (1984). The isolated perfused rat heart: a model for studying myocardial hypoxia or ischaemia. Basic Res. Cardiol. 79 (3): 313–321.
- 175Curtis, M.J. (1998). Characterisation, utilisation and clinical relevance of isolated perfused heart models of ischaemia-induced ventricular fibrillation. Cardiovasc. Res. 39 (1): 194–215.
- 176Reichelt, M.E., Willems, L., Hack, B.A., Peart, J.N., and Headrick, J.P. (2009). Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp. Physiol. 94 (1): 54–70.
- 177Lateef, R.U., Al-Masri, A.A., and Alyahya, A.M. (2015). Langendorff's isolated perfused rat heart technique: a review. Int. J. Basic Clin. Pharmacol. 4 (6): 1314–1322.
10.18203/2319-2003.ijbcp20151381 Google Scholar
- 178Blinova, K., Dang, Q., Millard, D., Smith, G., Pierson, J., Guo, L., Brock, M., Lu, H.R., Kraushaar, U., Zeng, H., Shi, H. et al. (2018). International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment. Cell Rep. 24 (13): 3582–3592.
- 179Irwin, S. (1968). Comprehensive observational assessment: 1a. A systematic, quantitative procedure for assessing the behavioural and physiologic state of the mouse. Psychopharmacologia (Berlin) 13: 222–257.
- 180Moser, V.C., Tilson, H.A., MacPhail, R.C., Becking, G.C., Cuomo, V., Frantik, E., Kulig, B.M., and Winneke, G. (1997). The IPCS collaborative study on neurobehavioral screening methods: II. Protocol design and testing procedures. Neurotoxicology 18 (4): 929–938.
- 181Roux, S., Sable, E., and Porsolt, R.D. (2005). Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function. Curr. Protoc. Pharmacol. 27: 10.10.1–10.10.23.
- 182Seibenhener, M.L. and Wooten, M.C. (2015). Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. 96: e52434.
- 183Gauvin, D.V., Yoder, J.D., Holdsworth, D.L., Harter, M.L., May, J.R., Cotey, N., Dalton, J.A., and Baird, T.J. (2016). The standardized functional observational battery: Its intrinsic value remains in the instrument of measure: the rat. J. Pharmacol. Toxicol. Methods 82: 90–108.
- 184Mathiasen, J.R. and Moser, V.C. (2018). The Irwin test and functional observational battery (FOB) for assessing the effects of compounds on behavior, physiology, and safety pharmacology in rodents. Curr. Protoc. Pharmacol. 83 (1): e43.
- 185Costa, D.L. and Tepper, J.S. (1988). Approaches to lung function assessment in small mammals. In: Toxicology of the Lung (ed. D.E. Gardner, J.D. Crapo and E.J. Massaro), 147–174. New York, NY: Raven Press.
- 186Mauderly, J.L. (1988). Comparisons of respiratory function responses of laboratory animals and humans. In: Inhalation Toxicology. Ilsi Monographs (ed. U. Mohr), 243–261. New York, NY: Springer-Verlag.
10.1007/978-3-642-61355-5_15 Google Scholar
- 187Authier, S., Legaspi, M., Gauvin, D., Chaurand, F., Fournier, S., and Troncy, E. (2008). Validation of respiratory safety pharmacology models: conscious and anesthetized beagle dogs. J. Pharmacol. Toxicol. Methods 57 (1): 52–60.
- 188Hoymann, H.G. (2012). Lung function measurements in rodents in safety pharmacology studies. Front. Pharmacol. 3: 156.
- 189Valintin, J.-P., Keisu, M., and Hammond, T.G. (2009). Predicting human adverse drug reactions from nonclinical safety studies. In: Clinical Trials Handbook (ed. S.C. Gad), 87–113. Hoboken, NJ: John Wiley & Sons.
- 190Dressman, J.B. (1986). Comparison of canine and human gastrointestinal physiology. Pharm. Res. 3 (3): 123–131.
- 191Andrews, P.L. and Horn, C.C. (2006). Signals for nausea and emesis: implications for models of upper gastrointestinal diseases. Auton. Neurosci. 125 (1–2): 100–115.
- 192Horn, C.C., Kimball, B.A., Wang, H., Kaus, J., Dienel, S., Nagy, A., Gathright, G.R., Yates, B.J., and Andrews, P.L. (2013). Why can't rodents vomit? A comparative behavioral, anatomical, and physiological study. PLoS One 8 (4): e60537.
- 193Vilz, T.O., Overhaus, M., Stoffels, B., Websky, M., Kalff, J.C., and Wehner, S. (2012). Functional assessment of intestinal motility and gut wall inflammation in rodents: analyses in a standardized model of intestinal manipulation. J. Vis. Exp. 67: 4086.
- 194Camilleri, M. and Linden, D.R. (2016). Measurement of gastrointestinal and colonic motor functions in humans and animals. Cell Mol. Gastroenterol. Hepatol. 2 (4): 412–428.
- 195Sifrim, D., Castell, D., Dent, J., and Kahrilas, P.J. (2004). Gastro-oesophageal reflux monitoring: review and consensus report on detection and definitions of acid, non-acid, and gas reflux. Gut 53 (7): 1024–1031.
- 196Kuo, B., McCallum, R.W., Koch, K.L., Sitrin, M.D., Wo, J.M., Chey, W.D., Hasler, W.L., Lackner, J.M., Katz, L.A., Semler, J.R., Wilding, G.E. et al. (2008). Comparison of gastric emptying of a nondigestible capsule to a radio-labelled meal in healthy and gastroparetic subjects. Aliment Pharmacol. Ther. 27 (2): 186–196.
- 197Garrean, C.P., Zhang, Q., Gonsalves, N., and Hirano, I. (2008). Acid reflux detection and symptom-reflux association using 4-day wireless pH recording combining 48-hour periods off and on PPI therapy. Am. J. Gastroenterol. 103 (7): 1631–1637.
- 198Rao, S.S., Camilleri, M., Hasler, W.L., Maurer, A.H., Parkman, H.P., Saad, R., Scott, M.S., Simren, M., Soffer, E., and Szarka, L. (2011). Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies. Neurogastroenterol. Motil. 23 (1): 8–23.
- 199Richter, J.E., Pandolfino, J.E., Vela, M.F., Kahrilas, P.J., Lacy, B.E., Ganz, R., Dengler, W., Oelschlager, B.K., Peters, J., DeVault, K.R., Fass, R. et al. (2013). Utilization of wireless ph monitoring technologies: a summary of the proceedings from the esophageal diagnostic working group. Dis. Esophagus 26 (8): 755–765.
- 200Choudhury, D. and Ahmed, Z. (2006). Drug-associated renal dysfunction and injury. Nat. Clin. Pract. Nephrol. 2 (2): 80–91.
- 201Sieber, M., Hoffmann, D., Adler, M., Vaidya, V.S., Clement, M., Bonventre, J.V., Zidek, N., Rached, E., Amberg, A., Callanan, J.J., Dekant, W. et al. (2009). Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicol. Sci. 109 (2): 336–349.
- 202Olaharski, A.J., Gonzaludo, N., Bitter, H., Goldstein, D., Kirchner, S., Uppal, H., and Kolaja, K. (2009). Identification of a kinase profile that predicts chromosome damage induced by small molecule kinase inhibitors. PLoS Comput. Biol. 5 (7): e1000446.
- 203Kirkland, D., Pfuhler, S., Tweats, D., Aardema, M., Corvi, R., Darroudi, F., Elhajouji, A., Glatt, H., Hastwell, P., Hayashi, M., Kasper, P. et al. (2007). How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat. Res. 628 (1): 31–55.
- 204Tweats, D.J., Blakey, D., Heflich, R.H., Jacobs, A., Jacobsen, S.D., Morita, T., Nohmi, T., O'Donovan, M.R., Sasaki, Y.F., Sofuni, T., Tice, R. et al. (2007). Report of the IWGT working group on strategy/interpretation for regulatory in vivo tests II. Identification of in vivo-only positive compounds in the bone marrow micronucleus test. Mutat. Res. 627 (1): 92–105.
- 205Sarrif, A.M., Arce, G.T., Krahn, D.F., O'Neil, R.M., and Reynolds, V.L. (1994). Evaluation of carbendazim for gene mutations in the Salmonella/Ames plate-incorporation assay: the role of aminophenazine impurities. Mutat. Res. 321 (1-2): 43–56.
- 206Thybaud, V., Kasper, P., Sobol, Z., Elhajouji, A., Fellows, M., Guerard, M., Lynch, A.M., Sutter, A., and Tanir, J.Y. (2016). Genotoxicity assessment of peptide/protein-related biotherapeutics: points to consider before testing. Mutagenesis 31 (4): 375–384.
- 207Dellarco, V.L., Mavournin, K.H., and Tice, R.R. (1985). Aneuploidy and health risk assessment: current status and future directions. Environ. Mutagen. 7 (3): 405–424.
- 208Oshimura, M. and Barrett, J.C. (1986). Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer. Environ. Mutagen. 8 (1): 129–159.
- 209Brunner, M., Albertini, S., and Wurgler, F.E. (1991). Effects of 10 known or suspected spindle poisons in the in vitro porcine brain tubulin assembly assay. Mutagenesis 6 (1): 65–70.
- 210Elhajouji, A., Van Hummelen, P., and Kirsch-Volders, M. (1995). Indications for a threshold of chemically-induced aneuploidy in vitro in human lymphocytes. Environ. Mol. Mutagen. 26 (4): 292–304.
- 211Elhajouji, A., Tibaldi, F., and Kirsch-Volders, M. (1997). Indication for thresholds of chromosome non-disjunction versus chromosome lagging induced by spindle inhibitors in vitro in human lymphocytes. Mutagenesis 12 (3): 133–140.
- 212Parry, J.M., Jenkins, G.J., Haddad, F., Bourner, R., and Parry, E.M. (2000). In vitro and in vivo extrapolations of genotoxin exposures: consideration of factors which influence dose-response thresholds. Mutat. Res. 464 (1): 53–63.
- 213Elhajouji, A., Lukamowicz, M., Cammerer, Z., and Kirsch-Volders, M. (2011). Potential thresholds for genotoxic effects by micronucleus scoring. Mutagenesis 26 (1): 199–204.
- 214Hernandez, L.G., van Benthem, J., and Johnson, G.E. (2013). A mode-of-action approach for the identification of genotoxic carcinogens. PLoS One 8 (5): e64532.
- 215Guerard, M., Baum, M., Bitsch, A., Eisenbrand, G., Elhajouji, A., Epe, B., Habermeyer, M., Kaina, B., Martus, H.J., Pfuhler, S., Schmitz, C. et al. (2015). Assessment of mechanisms driving non-linear dose-response relationships in genotoxicity testing. Mutat Res Rev Mutat Res 763: 181–201.
- 216Rudd, N.L., Williams, S.E., Evans, M., Hennig, U.G., and Hoar, D.I. (1991). Kinetochore analysis of micronuclei allows insights into the actions of colcemid and mitomycin C. Mutat. Res. 261 (1): 57–68.
- 217Sarrif, A.M., Bentley, K.S., Fu, L.J., O'Neil, R.M., Reynolds, V.L., and Stahl, R.G. (1994). Evaluation of benomyl and carbendazim in the in vivo aneuploidy/micronucleus assay in BDF1 mouse bone marrow. Mutat. Res. 310 (1): 143–149.
- 218Parry, J.M. and Parry, E.M. (2006). The use of the in vitro micronucleus assay to detect and assess the aneugenic activity of chemicals. Mutat. Res. 607 (1): 5–8.
- 219Decordier, I. and Kirsch-Volders, M. (2006). The in vitro micronucleus test: from past to future. Mutat. Res. 607 (1): 2–4.
- 220Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2 (5): 1084–1104.
- 221Bryce, S.M., Bernacki, D.T., Bemis, J.C., and Dertinger, S.D. (2016). Genotoxic mode of action predictions from a multiplexed flow cytometric assay and a machine learning approach. Environ. Mol. Mutagen. 57 (3): 171–189.
- 222Bryce, S.M., Bernacki, D.T., Bemis, J.C., Spellman, R.A., Engel, M.E., Schuler, M., Lorge, E., Heikkinen, P.T., Hemmann, U., Thybaud, V., Wilde, S. et al. (2017). Interlaboratory evaluation of a multiplexed high information content in vitro genotoxicity assay. Environ. Mol. Mutagen. 58 (3): 146–161.
- 223Bryce, S.M., Bernacki, D.T., Smith-Roe, S.L., Witt, K.L., Bemis, J.C., and Dertinger, S.D. (2018). Investigating the generalizability of the multiflow ®DNA damage assay and several companion machine learning models with a set of 103 diverse test chemicals. Toxicol. Sci. 162 (1): 146–166.
- 224Bernacki, D.T., Bryce, S.M., Bemis, J.C., and Dertinger, S.D. (2019). Aneugen molecular mechanism assay: proof-of-concept with 27 reference chemicals. Toxicol. Sci. 170 (2): 382–393.
- 225Bauer, D., Averett, L.A., De Smedt, A., Kleinman, M.H., Muster, W., Pettersen, B.A., and Robles, C. (2014). Standardized UV-vis spectra as the foundation for a threshold-based, integrated photosafety evaluation. Regul. Toxicol. Pharmacol. 68 (1): 70–75.
- 226Onoue, S., Igarashi, N., Yamada, S., and Tsuda, Y. (2008). High-throughput reactive oxygen species (ros) assay: an enabling technology for screening the phototoxic potential of pharmaceutical substances. J. Pharm. Biomed. Anal. 46 (1): 187–193.
- 227Lynch, A.M. and Wilcox, P. (2011). Review of the performance of the 3T3 NRU in vitro phototoxicity assay in the pharmaceutical industry. Exp. Toxicol. Pathol. 63 (3): 209–214.
- 228Ceridono, M., Tellner, P., Bauer, D., Barroso, J., Alepee, N., Corvi, R., De Smedt, A., Fellows, M.D., Gibbs, N.K., Heisler, E., Jacobs, A. et al. (2012). The 3T3 neutral red uptake phototoxicity test: practical experience and implications for phototoxicity testing – the report of an ECVAM-EFPIA workshop. Regul. Toxicol. Pharmacol. 63 (3): 480–488.
- 229Hunig, T. (2012). The storm has cleared: lessons from the DC28 superagonist TGN1412 trial. Nat. Rev. Immunol. 12 (5): 317–318.
- 230Stebbings, R., Eastwood, D., Poole, S., and Thorpe, R. (2013). After TGN1412: recent developments in cytokine release assays. J. Immunotoxicol. 10 (1): 75–82.
- 231Leach, M.W., Halpern, W.G., Johnson, C.W., Rojko, J.L., MacLachlan, T.K., Chan, C.M., Galbreath, E.J., Ndifor, A.M., Blanset, D.L., Polack, E., and Cavagnaro, J.A. (2010). Use of tissue cross-reactivity studies in the development of antibody-based biopharmaceuticals: history, experience, methodology, and future directions. Toxicol. Pathol. 38 (7): 1138–1166.
- 232Bussiere, J.L., Leach, M.W., Price, K.D., Mounho, B.J., and Lightfoot-Dunn, R. (2011). Survey results on the use of the tissue cross-reactivity immunohistochemistry assay. Regul. Toxicol. Pharmacol. 59 (3): 493–502.
- 233 EPA/600/FR-91/001 (ed.) (1991). Guidelines for Developmental Toxicity Risk Assessment. 56. Office of Research and Development RAF, Federal Register, 637998–663826.
- 234Barker, D.J. (1995). Fetal origins of coronary heart disease. BMJ 311 (6998): 171–174.
- 235 Development OfECa (2008). Guidance Document on Mammalian Reproductive Toxicity Testing and Assessment. Paris: Development OfECa.
- 236Wilson, J.G. (1973). Environment and Birth Defects. New York, NY: Academic Press.
- 237Kim, J.H. and Scialli, A.R. (2011). Thalidomide: the tragedy of birth defects and the effective treatment of disease. Toxicol. Sci. 122 (1): 1–6.
- 238 U.S. Environmental Protection Agency (1986). Guidelines for Health Assessment of Suspect Developmental Toxins. 51. Federal Register, Agency USEP, 34028.
- 239Garg, R.C., Bracken, W.M., and Hoberman, A.M. (2011). Reproductive and developmental safety evaluation of new pharmaceutical compounds. In: Reproductive and Developmental Toxicology (ed. R.C. Gupta), 89–109. Cambridge, MA: Academic Press/Elsevier.
10.1016/B978-0-12-382032-7.10008-6 Google Scholar
- 240DeSesso, J.M. (1996). Comparative embryology. In: Handbook of Developmental Toxicology (ed. R.D. Hood), 111–174. New York, NY: CRC Press.
- 241Garg, R.C., Bracken, W.M., and Hoberman, A.M. (2011). Reproductive and developmental safety evaluation of new pharmaceutical compounds. In: Reproductive and Developmental Toxicology (ed. R.C. Gupta), 89–109. New York, NY: Academic Press.
10.1016/B978-0-12-382032-7.10008-6 Google Scholar
- 242Bailey, G.P., Wise, L.D., Buschmann, J., Hurtt, M., and Fisher, J.E. (2009). Pre- and postnatal developmental toxicity study design for pharmaceuticals. Birth Defects Res. B Dev. Reprod. Toxicol. 86 (6): 437–445.
- 243Chellman, G.J., Bussiere, J.L., Makori, N., Martin, P.L., Ooshima, Y., and Weinbauer, G.F. (2009). Developmental and reproductive toxicology studies in nonhuman primates. Birth Defects Res. B Dev. Reprod. Toxicol. 86 (6): 446–462.
- 244Fleeman, T.L., Cappon, G.D., Chapin, R.E., and Hurtt, M.E. (2005). The effects of feed restriction during organogenesis on embryo-fetal development in the rat. Birth Defects Res. B Dev. Reprod. Toxicol. 74 (5): 442–449.
- 245Rocha, B.A. (2013). Principles of assessment of abuse liability: US legal framework and regulatory environment. Behav. Pharmacol. 24 (5-6): 403–409.
- 246 Committee for Medicinal Products for Human Use (CHMP) (2006). Guideline on the Non-Clinical Investigation of the Dependence Potential of Medicinal Products. European Medicines Agency.
- 247 Japan Ministry of Health L, and Welfare (1994). Drug registration requirements in japan.
- 248Moser, P., Wolinsky, T., Castagne, V., and Duxon, M. (2011). Current approaches and issues in non-clinical evaluation of abuse and dependence. J. Pharmacol. Toxicol. Methods 63 (2): 160–167.
- 249Swedberg, M.D. (2013). A proactive nonclinical drug abuse and dependence liability assessment strategy: a sponsor perspective. Behav. Pharmacol. 24 (5–6): 396–402.
- 250Young, R. (2009). Drug discrimination. In: Methods of Behavioral Analysis in Neuroscience (ed. J.J. Buccafusco). Boca Raton, FL: CRC Press/Taylor & Francis.
- 251O'Connor, E.C., Chapman, K., Butler, P., and Mead, A.N. (2011). The predictive validity of the rat self-administration model for abuse liability. Neurosci. Biobehav. Rev. 35 (3): 912–938.
- 252Gauvin, D.V., Zimmermann, Z.J., and Baird, T.J. (2018). The gold-standard in preclinical abuse liability testing: it's all relative. J. Pharmacol. Toxicol. Methods 94 (Pt 2): 36–53.
- 253 Products CfHM (ed.) (2008). Guideline on the Need for Nonclinical Testing in Juvenile Animals on Pharmaceuticals for Paediatric Indications. Agency EM.
- 254 Japan Ministry of Health L, and Welfare (2012). Guideline on Non-Clinical Safety Studies in Juvenile Animals for Pediataric Drug Development. Japan Ministry of Health L, and Welfare.
- 255Cappon, G.D., Bailey, G.P., Buschmann, J., Feuston, M.H., Fisher, J.E., Hew, K.W., Hoberman, A.M., Ooshima, Y., Stump, D.G., and Hurtt, M.E. (2009). Juvenile animal toxicity study designs to support pediatric drug development. Birth Defects Res. B Dev. Reprod. Toxicol. 86 (6): 463–469.
- 256Barrow, P.C., Barbellion, S., and Stadler, J. (2011). Preclinical evaluation of juvenile toxicity. Methods Mol. Biol. 691: 17–35.
- 257Kim, N.N., Parker, R.M., Weinbauer, G.F., Remick, A.K., and Steinbach, T. (2017). Points to consider in designing and conducting juvenile toxicology studies. Int. J. Toxicol. 36 (4): 325–339.
- 258Hurtt, M.E. and Engel, S. (2015). An update of juvenile animal studies in the European Union: what do the numbers say? Reprod. Toxicol. 56: 105–108.
- 259Parker, R.M. (2014). Juvenile toxicology. In: Handbook of Toxicology (ed. M. Derelanko and C. Auletta), 399–452. Boca Raton, FL: CRC Press.
- 260Choonara, I. (2000). Clinical trials of medicines in children. BMJ 321 (7269): 1093–1094.
- 261 European Medicines Agency (2017). Paediatric investigation plans. https://www.ema.europa.eu/en/human-regulatory/research-development/paediatric-medicines/paediatric-investigation-plans. Date Accessed: 17-NOV-2020
- 262Tassinari, M.S., Benson, K., Elayan, I., Espandiari, P., and Davis-Bruno, K. (2011). Juvenile animal studies and pediatric drug development retrospective review: use in regulatory decisions and labeling. Birth Defects Res. B Dev. Reprod. Toxicol. 92 (4): 261–265.
- 263Fisher, J.E. Jr., Ravindran, A., and Elayan, I. (2019). CDER experience with juvenile animal studies for CNS drugs. Int. J. Toxicol. 38 (2): 88–95.
- 264Cohen, S.M., Klaunig, J., Meek, M.E., Hill, R.N., Pastoor, T., Lehman-McKeeman, L., Bucher, J., Longfellow, D.G., Seed, J., Dellarco, V., Fenner-Crisp, P. et al. (2004). Evaluating the human relevance of chemically induced animal tumors. Toxicol. Sci. 78 (2): 181–186.
- 265Jacobs, A. and Jacobson-Kram, D. (2004). Human carcinogenic risk evaluation, part III: assessing cancer hazard and risk in human drug development. Toxicol. Sci. 81 (2): 260–262.
- 266Maronpot, R.R., Flake, G., and Huff, J. (2004). Relevance of animal carcinogenesis findings to human cancer predictions and prevention. Toxicol. Pathol. 32 (Suppl 1): 40–48.
- 267Jacobs, A. (2005). Prediction of 2-year carcinogenicity study results for pharmaceutical products: how are we doing? Toxicol. Sci. 88 (1): 18–23.
- 268Vahle, J.L. (2010). Carcinogenicity assessments: the debate continues. Toxicol. Pathol. 38 (3): 486.
- 269Cohen, S.M. (2010). Evaluation of possible carcinogenic risk to humans based on liver tumors in rodent assays: the two-year bioassay is no longer necessary. Toxicol Pathol 38 (3): 487–501.
- 270Long, G.G. (2010). Commentary on “evaluation of possible carcinogenic risk to humans based on liver tumors in rodent assays: the two-year bioassay is no longer necessary”. Toxicol. Pathol. 38 (3): 502–505.
- 271Lorentzen, R.J. (2010). Carcinogenesis, bioassays, and the regulatory modus operandi. Toxicol Pathol 38 (3): 506–507.
- 272Storer, R.D., Sistare, F.D., Reddy, M.V., and DeGeorge, J.J. (2010). An industry perspective on the utility of short-term carcinogenicity testing in transgenic mice in pharmaceutical development. Toxicol. Pathol. 38 (1): 51–61.
- 273Sistare, F.D., Morton, D., Alden, C., Christensen, J., Keller, D., Jonghe, S.D., Storer, R.D., Reddy, M.V., Kraynak, A., Trela, B., Bienvenu, J.G. et al. (2011). An analysis of pharmaceutical experience with decades of rat carcinogenicity testing: support for a proposal to modify current regulatory guidelines. Toxicol. Pathol. 39 (4): 716–744.
- 274Corvi, R., Madia, F., Guyton, K.Z., Kasper, P., Rudel, R., Colacci, A., Kleinjans, J., and Jennings, P. (2017). Moving forward in carcinogenicity assessment: report of an EURL ECVAM/ESTIV workshop. Toxicol. In Vitro 45 (Pt 3): 278–286.
- 275Cohen, S.M. (2017). The relevance of experimental carcinogenicity studies to human safety. Curr. Opin. Toxicol. 3: 6–11.
10.1016/j.cotox.2017.04.002 Google Scholar
- 276Fielden, M.R., Ward, L.D., Minocherhomji, S., Nioi, P., Lebrec, H., and Jacobson-Kram, D. (2018). Modernizing human cancer risk assessment of therapeutics. Trends Pharmacol. Sci. 39 (3): 232–247.
- 277Aoki, T. (2007). Current status of carcinogenicity assessment of peroxisome proliferator-activated receptor agonists by the US FDA and a mode-of-action approach to the carcinogenic potential. J. Toxicol. Pathol. 20: 197–202.
- 278Long, G.G., Morton, D., Peters, T., Short, B., and Skydsgaard, M. (2010). Alternative mouse models for carcinogenicity assessment: industry use and issues with pathology interpretation. Toxicol. Pathol. 38 (1): 43–50.
- 279French, J.E., Leblanc, B., Long, G.G., Morton, D., Storer, R., Leighton, J., Swenberg, J., and Tsuda, H. (2010). Panel discussion: alternative mouse models for carcinogenicity assessment. Toxicol. Pathol. 38 (1): 72–75.
- 280Long, G.G. and Symanowski, J.T. (1998). Appropriate parameters to be tested in rodent oncogenicity studies. Toxicol. Pathol. 26 (3): 319–320.
- 281Young, J.K., Hall, R.L., O'Brien, P., Strauss, V., and Vahle, J.L. (2011). Best practices for clinical pathology testing in carcinogenicity studies. Toxicol. Pathol. 39 (2): 429–434.
- 282Alison, R.H., Capen, C.C., and Prentice, D.E. (1994). Neoplastic lesions of questionable significance to humans. Toxicol. Pathol. 22 (2): 179–186.
- 283Neuhaus, O.W., Flory, W., Biswas, N., and Hollerman, C.E. (1981). Urinary excretion of alpha 2 mu-globulin and albumin by adult male rats following treatment with nephrotoxic agents. Nephron 28 (3): 133–140.
- 284Alden, C.L. (1986). A review of unique male rat hydrocarbon nephropathy. Toxicol. Pathol. 14 (1): 109–111.
- 285Swenberg, J.A., Short, B., Borghoff, S., Strasser, J., and Charbonneau, M. (1989). The comparative pathobiology of alpha 2u-globulin nephropathy. Toxicol. Appl. Pharmacol. 97 (1): 35–46.
- 286Alden, C.L. and Frith, C.H. (1991). Urinary system. In: Handbook of Toxicologic Pathology (ed. W.M. Haschek and C.G. Rousseeaux), 315–387. San Diego, CA: Academic Press.
10.1016/B978-0-12-330220-5.50020-6 Google Scholar
- 287Baetcke, K.P., Hard, G.C., Rodgers, I.S., McGaughy, R.E., and Tahan, L.M. (1991). Alpha2u-Globulin: Association with Chemically Induced Renal Toxicity and Neoplasia in the Male Rat. (ed. US Environmental Protection Agency). Washington, DC: US Environmental Protection Agency.
- 288Clayson, D.B., Fishbein, L., and Cohen, S.M. (1995). Effects of stones and other physical factors on the induction of rodent bladder cancer. Food Chem. Toxicol. 33 (9): 771–784.
- 289Cohen, S.M., Johansson, S.L., Arnold, L.L., and Lawson, T.A. (2002). Urinary tract calculi and thresholds in carcinogenesis. Food. Chem. Toxicol. 40 (6): 793–799.
- 290Dominick, M.A., White, M.R., Sanderson, T.P., Van Vleet, T., Cohen, S.M., Arnold, L.E., Cano, M., Tannehill-Gregg, S., Moehlenkamp, J.D., Waites, C.R., and Schilling, B.E. (2006). Urothelial carcinogenesis in the urinary bladder of male rats treated with muraglitazar, a PPAR alpha/gamma agonist: evidence for urolithiasis as the inciting event in the mode of action. Toxicol. Pathol. 34 (7): 903–920.
- 291Long, G.G., Reynolds, V.L., Lopez-Martinez, A., Ryan, T.E., White, S.L., and Eldridge, S.R. (2008). Urothelial carcinogenesis in the urinary bladder of rats treated with naveglitazar, a gamma-dominant PPAR alpha/gamma agonist: lack of evidence for urolithiasis as an inciting event. Toxicol. Pathol. 36 (2): 218–231.
- 292Jack, D., Poynter, D., and Spurling, N.W. (1983). Beta-adrenoceptor stimulants and mesovarian leiomyomas in the rat. Toxicology 27 (3–4): 315–320.
- 293Gopinath, C. and Gibson, W.A. (1987). Mesovarian leiomyomas in the rat. Environ. Health Perspect. 73: 107–113.
- 294Havu, N. (1986). Enterochromaffin-like cell carcinoids of gastric mucosa in rats after life-long inhibition of gastric secretion. Digestion 35 (Suppl 1): 42–55.
- 295Betton, G.R., Dormer, C.S., Wells, T., Pert, P., Price, C.A., and Buckley, P. (1988). Gastric ECL-cell hyperplasia and carcinoids in rodents following chronic administration of H2-antagonists SK&F 93479 and oxmetidine and omeprazole. Toxicol. Pathol. 16 (2): 288–298.
- 296Faccini, J.M., Butler, W.R., Friedmann, J.C., Hess, R., Reznik, G.K., Ito, N., Hayashi, Y., and Williams, G.M. (1992). IFSTP guidelines for the design and interpretation of the chronic rodent carcinogenicity bioassay. Exp. Toxicol. Pathol. 44 (8): 443–456.
- 297 Development OoRa (ed.) (1998). Assessment of Thyroid Follicular Cell Tumors. Washington, DC: Agency USEP.
- 298Hill, R.N., Crisp, T.M., Hurley, P.M., Rosenthal, S.L., and Singh, D.V. (1998). Risk assessment of thyroid follicular cell tumors. Environ. Health Perspect. 106 (8): 447–457.
- 299Neumann, F. (1991). Early indicators for carcinogenesis in sex-hormone-sensitive organs. Mutat. Res. 248 (2): 341–356.
- 300Russo, J. (2015). Significance of rat mammary tumors for human risk assessment. Toxicol. Pathol. 43 (2): 145–170.
- 301Klaunig, J.E., Dekant, W., Plotzke, K., and Scialli, A.R. (2016). Biological relevance of decamethylcyclopentasiloxane (D5) induced rat uterine endometrial adenocarcinoma tumorigenesis: mode of action and relevance to humans. Regul. Toxicol. Pharmacol. 74: S44–S56.
- 302Rasoulpour, R.J., Terry, C., LeBaron, M.J., Stebbins, K., Ellis-Hutchings, R.G., and Billington, R. (2014). Mode-of-action and human relevance framework analysis for rat Leydig cell tumors associated with sulfoxaflor. Crit. Rev. Toxicol. 44 (Suppl 2): 25–44.
- 303Steinbach, T.J., Maronpot, R.R., and Hardisty, J.F. (2015). Human relevance of rodent Leydig cell tumors. In: Hamilton and Hardy's Industrial Toxicology. Wiley.
10.1002/9781118834015.ch109 Google Scholar
- 304Capen, C.C. (2004). Mechanisms of hormone-mediated carcinogenesis of the ovary. Toxicol. Pathol. 32 (Suppl 2): 1–5.
- 305Vahle, J.L., Finch, G.L., Heidel, S.M., Hovland, D.N. Jr., Ivens, I., Parker, S., Ponce, R.A., Sachs, C., Steigerwalt, R., Short, B., and Todd, M.D. (2010). Carcinogenicity assessments of biotechnology-derived pharmaceuticals: a review of approved molecules and best practice recommendations. Toxicol. Pathol. 38 (4): 522–553.