Anti-Infective Case Histories
Roland E. Dolle
Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
Search for more papers by this authorRoland E. Dolle
Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
Search for more papers by this authorAbstract
In keeping with the theme of this Edition of Burger's Medicinal Chemistry and Drug Discovery as a drug hunter's guide, six case histories of anti-infective drug discovery are presented. These were independently written by the project leaders or inventive authors and include (i) structure-based design of mannoside FimH bacterial lectin antagonists, (ii) phenotypic screen antimalarial clinical candidate (+)-SJ733, (iii) discovery and repurposing of Auranofin as a broad-spectrum anti-parasitic agent, (iv) discovery and development of antimalarial UCT943, a back-up candidate to MMV048, (v) medicinal chemistry of broad-spectrum aureobasidin-derived antifungals, and (vi) lessons learned advancing lantibiotics into preclinical and clinical development.
References
- 1Wagner, J., Dahlem, A.M., Hudson, L.D., Terry, S.F., Altman, R.B., Gilliland, C.T., DeFeo, C., and Austin, C.P. (2018). Nat. Rev. Drug Discov. 17 (2): 150–152. doi: 10.1038/nrd.2017.217.
- 2Murcko, M.A. (2018). J. Med. Chem. 61 (17): 7419–7424. doi: 10.1021/acs.jmedchem.7b01445.
- 3Eisenstein, B.I., Oleson, F.B. Jr., and Baltz, R.H. (2009). Clin. Infect. Dis. 50 (Suppl. 1): S10–S15. doi: 10.1086/647938.
- 4McAlpine, J.B. (2017). J. Antibiotics 70 (5): 492–494. doi: 10.1038/ja.2016.157.
- 5Link, J.O. (2018). Med. Chem. Rev. 53: 541–568. doi: 10.29200/acsmedchemrev-v53.ch27.
- 6Sofia, M.J. (2015). J. Med. Chem. Rev. 50: 397–418. doi: 10.29200/acsmedchemrev-v50.ch15.
- 7El, M. and Burgey, C.S. (2019). Med. Chem. Rev. 54: 240–251. doi: 10.29200/acsmedchemrev-v54.ch11.
10.29200/acsmedchemrev‐v54.ch11 Google Scholar
- 8Hwang, C., Lai, M.-T., and Hazuda, D. (2020). ACS Infect. Dis. 6 (1): 64–73. doi: 10.1021/acsinfecdis.9b00178.
- 9Zhong, Y.-L., Tucker, T.J., and Yin, J. (2012). Discovery and process development of MK-4965, a potent nonnucleoside reverse transcriptase inhibitor. In: Case Studies in Modern Drug Discovery and Development (ed. X. Huang and R.G. Aslanin), 257–295. Wiley. doi: 10.1002/9781118219683.ch9.
10.1002/9781118219683.ch9 Google Scholar
- 10Mao, W., Zhang, Y., and Zhang, A. (2012). Discovery of antimalarial drug artemisinin and beyond. In: Case Studies in Modern Drug Discovery and Development (ed. X. Huang and R.G. Aslanin), 227–256. Wiley. doi: 10.1002/9781118219683.ch10.
10.1002/9781118219683.ch10 Google Scholar
- 11Belema, M., Schnittman, S.M., and Meanwell, N.A. (2016). Med. Chem. Rev. 51: 373–397. doi: 10.29200/acsmedchemrev-v51.ch22.
- 12Liu, Y., Matsumoto, M., Ishida, H., Ohguro, K., Yoshitake, M., Gupta, R., Geiter, L., and Hafkin, J. (2018). Tuberculosis 111: 20–30. doi: 10.1016/j.tube.2018.04.008.
- 13Chen, K.X. and Njoroge, G.F. (2012). Discovery of boceprevir and narlaprevir: the first and second generation of HCV NS3 protease inhibitors. In: Case Studies in Modern Drug Discovery and Development (ed. X. Huang and R.G. Aslanin), 296–335. Wiley. doi: 10.1002/9781118219683.ch12.
10.1002/9781118219683.ch12 Google Scholar
- 14Venkatraman, S., Prongay, A., and Njoroge, G.F. (2013). Discovery of boceprevir and narlaprevir: a case study for role of structure-based drug design. In: Analogue-Based Drug Discovery III (ed. J. Fischer, R.C. Ganellin and D.P. Rotella), 343–363. Wiley-VHC Verlag & Co. doi: 10.1002/9783527651085.ch14.
10.1002/9783527651085.ch14 Google Scholar
- 15Patel, R.V., Riyaz, S., and Park, S.W. (2014). The case history of bedaquiline is relayed second-hand. Curr. Top. Med. Chem. 14 (16): 1866–1874. doi: 10.2174/1568026614666140929114822.
- 16Allen, N.E. (2010). Anti-Infect Agents Med. Chem. 9 (1): 23–47. doi: 10.2174/187152110790886745.
- 17Door, P., Stammen, B., and van der Ryst, E. (2012). Discovery and development of Maraviroc, a CCR5 antagonist for the treatment of HIV infection. In: Case Studies in Modern Drug Discovery and Development (ed. X. Huang and R.G. Aslanin), 196–226. Wiley. doi: 10.1002/9781118219683.ch9.
10.1002/9781118219683.ch9 Google Scholar
- 18Slusher, B.S., Conn, P.J., Frye, S., Glicksman, M., and Arkin, M. (2013). Nat. Rev. Drug Discov. 12 (11): 811–812. doi: 10.1038/nrd4155.
References
- 19Terlizzi, M.E., Gribaudo, G., and Maffei, M.E. (2017). Uropathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 8: 1566. doi: 10.3389/fmicb.2017.01566. Epub 2017/09/02. PubMed PMID: 28861072; PMCID: PMC5559502.
- 20Trautner, B.W. (2013). New perspectives on urinary tract infection in men. JAMA Intern. Med. 173 (1): 68–70. doi: 10.1001/jamainternmed.2013.1783. Epub 2012/12/06 PubMed PMID: 23212451.
- 21Simmering, J.E., Tang, F., Cavanaugh, J.E., Polgreen, L.A., and Polgreen, P.M. (2017). The increase in hospitalizations for urinary tract infections and the associated costs in the United States, 1998–2011. Open Forum. Infect. Dis. 4 (1): ofw281. doi: 10.1093/ofid/ofw281. Epub 2017/05/10. PubMed PMID: 28480273; PMCID: PMC5414046.
- 22Flores-Mireles, A.L., Walker, J.N., Caparon, M., and Hultgren, S.J. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13 (5): 269–284. doi: 10.1038/nrmicro3432. Epub 2015/04/09. PubMed PMID: 25853778; PMCID: 4457377.
- 23Rowe, T.A. and Juthani-Mehta, M. (2014). Diagnosis and management of urinary tract infection in older adults. Infect. Dis. Clin. N. Am. 28 (1): 75. doi: 10.1016/j.idc.2013.10.004. PubMed PMID: ISI:000331917500007.
- 24Rowe, T.A. and Juthani-Mehta, M. (2013). Urinary tract infection in older adults. Aging Health 9 (5): doi: 10.2217/ahe.13.38. Epub 2014/01/07. PubMed PMID: 24391677; PMCID: 3878051.
- 25Albaramki, J., Abdelghani, T., Dalaeen, A., Khdair Ahmad, F., Alassaf, A., Odeh, R., and Akl, K. (2019). Urinary tract infection caused by ESBL- producing bacteria: risk factors and antibiotic resistance. Pediatr. Int. doi: 10.1111/ped.13911. Epub 2019/06/18. PubMed PMID: 31206219.
- 26Waller, T.A., Pantin, S.A.L., Yenior, A.L., and Pujalte, G.G.A. (2018). Urinary tract infection antibiotic resistance in the United States. Prim. Care. 45 (3): 455–466. doi: 10.1016/j.pop.2018.05.005. Epub 2018/08/18. PubMed PMID: 30115334.
- 27Paul, R. (2018). State of the globe: rising antimicrobial resistance of pathogens in urinary tract infection. J. Glob. Infect. Dis. 10 (3): 117–118. doi: 10.4103/jgid.jgid_104_17. Epub 2018/09/01. PubMed PMID: 30166807; PMCID: PMC6100332.
- 28San, N., Aung, M.S., Thu, P.P., Myint, Y.Y., Aung, M.T., San, T., Mar, T.T., Lwin, M.M., Maw, W.W., Hlaing, M.S., and Kobayashi, N. (2019). First detection of the mcr-1 colistin resistance gene in Escherichia coli from a patient with urinary tract infection in Myanmar. New Microb. New Infect. 30: 100550. doi: 10.1016/j.nmni.2019.100550. Epub 2019/05/22. PubMed PMID: 31110773; PMCID: PMC6510964.
- 29Yu, L., O'Brien, V.P., Livny, J., Dorsey, D., Bandyopadhyay, N., Colonna, M., Caparon, M.G., Roberson, E.D., Hultgren, S.J., and Hannan, T.J. (2019). Mucosal infection rewires TNFa signaling dynamics to skew susceptibility to recurrence. Elife 8. doi: 10.7554/eLife.46677. Epub 2019/08/21. PubMed PMID: 31429405; PMCID: PMC6701943.
- 30Waksman, G. and Hultgren, S.J. (2009). Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat. Rev. Microbiol. 7 (11): 765–774. doi: 10.1038/nrmicro2220. Epub 2009/10/13. PubMed PMID: 19820722; PMCID: PMC3790644.
- 31Hultgren, S.J., Schwan, W.R., Schaeffer, A.J., and Duncan, J.L. (1986). Regulation of production of type 1 pili among urinary tract isolates of Escherichia coli. Infect Immun. 54 (3): 613–620. Epub 1986/12/01. PubMed PMID: 2877947; PMCID: 260213.
- 32Salit, I.E. and Gotschlich, E.C. (1977). Hemagglutination by purified Type 1 Escherichia coli pili. J. Exp. Med. 146: 1169–1181.
- 33Lillington, J., Geibel, S., and Waksman, G. (2014). Biogenesis and adhesion of type 1 and P pili. Biochim. Biophys. Acta 1840 (9): 2783–2793. doi: 10.1016/j.bbagen.2014.04.021. Epub 2014/05/07. PubMed PMID: 24797039.
- 34Jones, C.H., Pinkner, J.S., Roth, R., Heuser, J., Nicholes, A.V., Abraham, S.N., and Hultgren, S.J. (1995). FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl. Acad. Sci. U.S.A. 92 (6): 2081–2085. Epub 1995/03/14. PubMed PMID: 7892228; PMCID: PMC42427.
- 35Krogfelt, K.A., Bergmans, H., and Klemm, P. (1990). Direct evidence that the FimH protein is the mannose-specific adhesin of Escherichia coli type 1 fimbriae. Infect Immun. 58 (6): 1995–1998. Epub 1990/06/01. PubMed PMID: 1971261; PMCID: 258756.
- 36Thankavel, K., Madison, B., Ikeda, T., Malaviya, R., Shah, A.H., Arumugam, P.M., and Abraham, S.N. (1997). Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Invest. 100 (5): 1123–1136. doi: 10.1172/JCI119623. Epub 1997/09/01. PubMed PMID: 9276729; PMCID: PMC508287.
- 37Klemm, P., Schembri, M., and Hasty, D.L. (1996). The FimH protein of type 1 fimbriae. An adaptable adhesin. Adv. Exp. Med. Biol. 408: 193–195. doi: 10.1007/978-1-4613-0415-9_23. Epub 1996/01/01. PubMed PMID: 8895793.
- 38Guiton, P.S., Cusumano, C.K., Kline, K.A., Dodson, K.W., Han, Z., Janetka, J.W., Henderson, J.P., Caparon, M.G., and Hultgren, S.J. (2012). Combinatorial small-molecule therapy prevents uropathogenic Escherichia coli catheter-associated urinary tract infections in mice. Antimicrob. Agents Chemother. 56 (9): 4738–4745. doi: 10.1128/AAC.00447-12. Epub 2012/06/27. PubMed PMID: 22733070; PMCID: PMC3421856.
- 39Mian, M.F., Lauzon, N.M., Andrews, D.W., Lichty, B.D., and Ashkar, A.A. (2010). FimH can directly activate human and murine natural killer cells via TLR4. Mol. Ther. 18 (7): 1379–1388. doi: 10.1038/mt.2010.75. Epub 2010/05/06. PubMed PMID: 20442710; PMCID: PMC2911256.
- 40Mossman, K.L., Mian, M.F., Lauzon, N.M., Gyles, C.L., Lichty, B., Mackenzie, R., Gill, N., and Ashkar, A.A. (2008). Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J. Immunol. 181 (10): 6702–6706. doi: 10.4049/jimmunol.181.10.6702. Epub 2008/11/05. PubMed PMID: 18981086.
- 41Wright, K.J., Seed, P.C., and Hultgren, S.J. (2007). Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol. 9 (9): 2230–2241. doi: 10.1111/j.1462-5822.2007.00952.x PubMed PMID: 17490405.
- 42Rosen, D.A., Hooton, T.M., Stamm, W.E., Humphrey, P.A., and Hultgren, S.J. (2007). Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 4 (12): e329. doi: 10.1371/journal.pmed.0040329 07-PLME-RA-0798 [pii]. Epub 2007/12/21. PubMed PMID: 18092884; PMCID: 2140087.
- 43Anderson, G.G., Martin, S.M., and Hultgren, S.J. (2004). Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect. 6 (12): 1094–1101. doi: 10.1016/j.micinf.2004.05.023. Epub 2004/09/24. S1286-4579(04)00212-6 [pii]. PubMed PMID: 15380779.
- 44Anderson, G.G., Dodson, K.W., Hooton, T.M., and Hultgren, S.J. (2004). Intracellular bacterial communities of uropathogenic Escherichia coli in urinary tract pathogenesis. Trends Microbiol. 12 (9): 424–430. doi: 10.1016/j.tim.2004.07.005. Epub 2004/09/01. S0966-842X(04)00162-3 [pii]. PubMed PMID: 15337164.
- 45Anderson, G.G., Palermo, J.J., Schilling, J.D., Roth, R., Heuser, J., and Hultgren, S.J. (2003). Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301 (5629): 105–107.
- 46Kuehn, M.J., Heuser, J., Normark, S., and Hultgren, S.J. (1992). P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature 356 (6366): 252–255. doi: 10.1038/356252a0. Epub 1992/03/19. PubMed PMID: 1348107.
- 47Hultgren, S.J., Lindberg, F., Magnusson, G., Kihlberg, J., Tennent, J.M., and Normark, S. (1989). The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl. Acad. Sci. U.S.A. 86 (12): 4357–4361. doi: 10.1073/pnas.86.12.4357. Epub 1989/06/01. PubMed PMID: 2567514; PMCID: PMC287268.
- 48Lund, B., Lindberg, F., Marklund, B.I., and Normark, S. (1987). The PapG protein is the alpha-d-galactopyranosyl-(1-4)-beta-d-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 84 (16): 5898–5902. doi: 10.1073/pnas.84.16.5898. Epub 1987/08/01. PubMed PMID: 2886993; PMCID: PMC298970.
- 49Mydock-McGrane, L.K., Hannan, T.J., and Janetka, J.W. (2017). Rational design strategies for FimH antagonists: new drugs on the horizon for urinary tract infection and Crohn's disease. Exp. Opin Drug Discov. 12 (7): 711–731. doi: 10.1080/17460441.2017.1331216. Epub 2017/05/17. PubMed PMID: 28506090; PMCID: PMC5647874.
- 50Spaulding, C.N. and Hultgren, S.J. (2016). Adhesive pili in UTI pathogenesis and drug development. Pathogens 5 (1): doi: 10.3390/pathogens5010030. Epub 2016/03/22. PubMed PMID: 26999218; PMCID: PMC4810151.
- 51Hartmann, M. and Lindhorst, T.K. (2011). The bacterial lectin FimH, a target for drug discovery - carbohydrate inhibitors of type 1 fimbriae-mediated bacterial adhesion. Eur. J. Org. Chem. (20–21, 3609): 3583. doi: 10.1002/ejoc.201100407 PubMed PMID: ISI:000293440900002.
- 52Mydock-McGrane, L.K., Cusumano, Z.T., and Janetka, J.W. (2016). Mannose-derived FimH antagonists: a promising anti-virulence therapeutic strategy for urinary tract infections and Crohn's disease. Exp. Opin. Ther. Pat. 26 (2): 175–197. doi: 10.1517/13543776.2016.1131266. Epub 2015/12/15. PubMed PMID: 26651364.
- 53Aronson, M., Medalia, O., Schori, L., Mirelman, D., Sharon, N., and Ofek, I. (1979). Prevention of colonization of the urinary tract of mice with Escherichia coli by blocking of bacterial adherence with methyl alpha-d-mannopyranoside. J. Infect. Dis. 139 (3): 329–332. PubMed PMID: 376757.
- 54Firon, N., Ashkenazi, S., Mirelman, D., Ofek, I., and Sharon, N. (1987). Aromatic alpha-glycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun. 55 (2): 472–476. Epub 1987/02/01. PubMed PMID: 3542836; PMCID: 260353.
- 55Choudhury, D., Thompson, A., Stojanoff, V., Langermann, S., Pinkner, J., Hultgren, S.J., and Knight, S.D. (1999). X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285 (5430): 1061–1066. Epub 1999/08/14. PubMed PMID: 10446051.
- 56Bouckaert, J., Berglund, J., Schembri, M., De Genst, E., Cools, L., Wuhrer, M., Hung, C.S., Pinkner, J., Slattegard, R., Zavialov, A., Choudhury, D., Langermann, S., Hultgren, S.J., Wyns, L., Klemm, P., Oscarson, S., Knight, S.D., and De Greve, H. (2005). Receptor binding studies disclose a novel class of high-affinity inhibitors of the Escherichia coli FimH adhesin. Mol. Microbiol. 55 (2): 441–455. doi: 10.1111/j.1365-2958.2004.04415.x. Epub 2005/01/22. PubMed PMID: 15659162.
- 57Hung, C.-S., Bouckaert, J., Hung, D., Pinkner, J., Widberg, C., De Fusco, A., Auguste, C.G., Strouse, B., Langerman, S., Waksman, G., and Hultgren, S.J. (2002). Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 44 (4): 903–915.
- 58Wellens, A., Garofalo, C., Nguyen, H., Van Gerven, N., Slattegard, R., Hernalsteens, J.P., Wyns, L., Oscarson, S., De Greve, H., Hultgren, S., and Bouckaert, J. (2008). Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. Plos One 3 (4): e2040. doi: 10.1371/journal.pone.0002040. Epub 2008/05/01. PubMed PMID: 18446213; PMCID: PMC2323111.
- 59Sivignon, A., Yan, X., Alvarez Dorta, D., Bonnet, R., Bouckaert, J., Fleury, E., Bernard, J., Gouin, S.G., Darfeuille-Michaud, A., and Barnich, N. (2015). Development of heptylmannoside-based glycoconjugate antiadhesive compounds against adherent-invasive Escherichia coli bacteria associated with Crohn's disease. Mbio 6 (6): doi: 10.1128/mBio.01298-15. Epub 2015/11/19. PubMed PMID: 26578673; PMCID: 4659459.
- 60Vanwetswinkel, S., Volkov, A.N., Sterckx, Y.G., Garcia-Pino, A., Buts, L., Vranken, W.F., Bouckaert, J., Roy, R., Wyns, L., and van Nuland, N.A. (2014). Study of the structural and dynamic effects in the FimH adhesin upon alpha-d-heptyl mannose binding. J. Med. Chem. 57 (4): 1416–1427. doi: 10.1021/jm401666c. Epub 2014/01/31. PubMed PMID: 24476493.
- 61Han, Z., Pinkner, J.S., Ford, B., Obermann, R., Nolan, W., Wildman, S.A., Hobbs, D., Ellenberger, T., Cusumano, C.K., Hultgren, S.J., and Janetka, J.W. (2010). Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J. Med. Chem. 53 (12): 4779–4792. doi: 10.1021/jm100438s. Epub 2010/05/29. PubMed PMID: 20507142; PMCID: PMC2894565.
- 62Han, Z., Pinkner, J.S., Ford, B., Chorell, E., Crowley, J.M., Cusumano, C.K., Campbell, S., Henderson, J.P., Hultgren, S.J., and Janetka, J.W. (2012). Lead optimization studies on FimH antagonists: discovery of potent and orally bioavailable ortho-substituted biphenyl mannosides. J. Med. Chem. 55 (8): –3945, 3959. doi: 10.1021/jm300165m. Epub 2012/03/28. PubMed PMID: 22449031; PMCID: PMC3375398.
- 63Klein, T., Abgottspon, D., Wittwer, M., Rabbani, S., Herold, J., Jiang, X., Kleeb, S., Luthi, C., Scharenberg, M., Bezencon, J., Gubler, E., Pang, L., Smiesko, M., Cutting, B., Schwardt, O., and Ernst, B. (2010). FimH antagonists for the oral treatment of urinary tract infections: from design and synthesis to in vitro and in vivo evaluation. J. Med. Chem. 53 (24): 8627–8641. doi: 10.1021/jm101011y. Epub 2010/11/26. PubMed PMID: 21105658.
- 64Jarvis, C., Han, Z., Kalas, V., Klein, R., Pinkner, J.S., Ford, B., Binkley, J., Cusumano, C.K., Cusumano, Z., Mydock-McGrane, L., Hultgren, S.J., and Janetka, J.W. (2016). Antivirulence isoquinolone mannosides: optimization of the biaryl aglycone for FimH lectin binding affinity and efficacy in the treatment of chronic UTI. Chemmedchem 11 (4): 367–373. doi: 10.1002/cmdc.201600006. Epub 2016/01/27. PubMed PMID: 26812660; PMCID: PMC4818977.
- 65Fiege, B., Rabbani, S., Preston, R.C., Jakob, R.P., Zihlmann, P., Schwardt, O., Jiang, X., Maier, T., and Ernst, B. (2015). The tyrosine gate of the bacterial lectin FimH: a conformational analysis by NMR spectroscopy and X-ray crystallography. Chembiochem. doi: 10.1002/cbic.201402714. Epub 2015/05/06. PubMed PMID: 25940742.
- 66Sperling, O., Fuchs, A., and Lindhorst, T.K. (2006). Evaluation of the carbohydrate recognition domain of the bacterial adhesin FimH: design, synthesis and binding properties of mannoside ligands. Org. Biomol. Chem. 4 (21): 3913–3922. doi: 10.1039/b610745a. Epub 2006/10/19. PubMed PMID: 17047870.
- 67Kleeb, S., Pang, L., Mayer, K., Eris, D., Sigl, A., Preston, R.C., Zihlmann, P., Sharpe, T., Jakob, R.P., Abgottspon, D., Hutter, A.S., Scharenberg, M., Jiang, X., Navarra, G., Rabbani, S., Smiesko, M., Ludin, N., Bezencon, J., Schwardt, O., Maier, T., and Ernst, B. (2015). FimH antagonists: bioisosteres to improve the in vitro and in vivo PK/PD profile. J. Med. Chem. 58 (5): 2221–2239. doi: 10.1021/jm501524q. Epub 2015/02/11. PubMed PMID: 25666045.
- 68Cusumano, C.K., Pinkner, J.S., Han, Z., Greene, S.E., Ford, B.A., Crowley, J.R., Henderson, J.P., Janetka, J.W., and Hultgren, S.J. (2011). Treatment and prevention of urinary tract infection with orally active FimH inhibitors. Sci. Transl. Med. 3 (109): 109ra15. doi: 10.1126/scitranslmed.3003021. Epub 2011/11/18. PubMed PMID: 22089451; PMCID: PMC3694776.
- 69Mydock-McGrane, L., Cusumano, Z., Han, Z., Binkley, J., Kostakioti, M., Hannan, T., Pinkner, J.S., Klein, R., Kalas, V., Crowley, J., Rath, N.P., Hultgren, S.J., and Janetka, J.W. (2016). Antivirulence C-mannosides as antibiotic-sparing, oral therapeutics for urinary tract infections. J. Med. Chem. 59 (20): 9390–9408. doi: 10.1021/acs.jmedchem.6b00948. Epub 2016/10/01. PubMed PMID: 27689912; PMCID: PMC5087331.
- 70Schonemann, W., Cramer, J., Muhlethaler, T., Fiege, B., Silbermann, M., Rabbani, S., Datwyler, P., Zihlmann, P., Jakob, R.P., Sager, C.P., Smiesko, M., Schwardt, O., Maier, T., and Ernst, B. (2019). Improvement of aglycone pi-stacking yields nanomolar to sub-nanomolar FimH antagonists. Chemmedchem 14 (7): 749–757. doi: 10.1002/cmdc.201900051. Epub 2019/02/03. PubMed PMID: 30710416.
- 71Sivignon, A., Bouckaert, J., Bernard, J., Gouin, S.G., and Barnich, N. (2017). The potential of FimH as a novel therapeutic target for the treatment of Crohn's disease. Exp. Opin. Ther. Targets 21 (9): 837–847. doi: 10.1080/14728222.2017.1363184. Epub 2017/08/02. PubMed PMID: 28762293.
- 72Dorta, D.A., Sivignon, A., Chalopin, T., Dumych, T., Roos, G., Bilyy, R., Deniaud, D., Krammer, E.M., De Ruyck, J., Lensink, M., Bouckaert, J., Barnich, N., and Gouin, S.G. (2016). The anti-adhesive strategy in Crohn's disease: orally active mannosides to decolonize pathogenic Escherichia coli from the gut. Chembiochem: Eur. J. Chem. Biol. doi: 10.1002/cbic.201600018. Epub 2016/03/08. PubMed PMID: 26946458.
10.1002/cbic.201600018 Google Scholar
- 73Chalopin, T., Alvarez Dorta, D., Sivignon, A., Caudan, M., Dumych, T.I., Bilyy, R.O., Deniaud, D., Barnich, N., Bouckaert, J., and Gouin, S.G. (2016). Second generation of thiazolylmannosides, FimH antagonists for E. coli-induced Crohn's disease. Org. Biomol. Chem. 14 (16): 3913–3925. doi: 10.1039/c6ob00424e PubMed PMID: 27043998.
- 74Brument, S., Sivignon, A., Dumych, T.I., Moreau, N., Roos, G., Guerardel, Y., Chalopin, T., Deniaud, D., Bilyy, R.O., Darfeuille-Michaud, A., Bouckaert, J., and Gouin, S.G. (2013). Thiazolylaminomannosides as potent antiadhesives of type 1 piliated Escherichia coli isolated from Crohn's disease patients. J. Med. Chem. 56 (13): 5395–5406. doi: 10.1021/jm400723n. Epub 2013/06/26. PubMed PMID: 23795713.
- 75Patel, J., Paillarse, J.M., Francon, P., Laveissiere, A., Bonny, C., and Ostos, M. (2018). Eb8018, a novel Fimh blocker is well tolerated in a randomized, double-blind, placebo-controlled phase i study in healthy volunteers. Gastroenterology 154 (6): S387-S. PubMed PMID: WOS:000450011101389.
10.1016/S0016-5085(18)31591-9 Google Scholar
- 76Legros, N., Ptascheck, S., Pohlentz, G., Karch, H., Dobrindt, U., and Muthing, J. (2019). PapG subtype-specific binding characteristics of Escherichia coli towards globo-series glycosphingolipids of human kidney and bladder uroepithelial cells. Glycobiology doi: 10.1093/glycob/cwz059. Epub 2019/07/31. PubMed PMID: 31361021.
- 77Bjornham, O., Nilsson, H., Andersson, M., and Schedin, S. (2009). Physical properties of the specific PapG-galabiose binding in E. coli P pili-mediated adhesion. Eur. Biophys. J. 38 (2): 245–254. doi: 10.1007/s00249-008-0376-y. Epub 2008/10/17. PubMed PMID: 18923826.
- 78Tseng, C.C., Huang, J.J., Wang, M.C., Wu, A.B., Ko, W.C., Chen, W.C., and Wu, J.J. (2007). PapG II adhesin in the establishment and persistence of Escherichia coli infection in mouse kidneys. Kidney Int. 71 (8): 764–770. doi: 10.1038/sj.ki.5002111. Epub 2007/02/10. PubMed PMID: 17290293.
- 79Ohlsson, J., Jass, J., Uhlin, B.E., Kihlberg, J., and Nilsson, U.J. (2002). Discovery of potent inhibitors of PapG adhesins from uropathogenic Escherichia coli through synthesis and evaluation of galabiose derivatives. Chembiochem 3 (8): 772–779. doi: 10.1002/1439-7633(20020802)3:8<772::AID-CBIC772>3.0.CO;2-8. Epub 2002/08/31. PubMed PMID: 12203976.
10.1002/1439-7633(20020802)3:8<772::AID-CBIC772>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 80Conover, M.S., Ruer, S., Taganna, J., Kalas, V., De Greve, H., Pinkner, J.S., Dodson, K.W., Remaut, H., and Hultgren, S.J. (2016). Inflammation-induced adhesin-receptor interaction provides a fitness advantage to uropathogenic E. coli during chronic infection. Cell Host Microbe 20 (4): 482–492. doi: 10.1016/j.chom.2016.08.013. Epub 2016/09/27. PubMed PMID: 27667696; PMCID: PMC5294914.
- 81Wagner, S., Sommer, R., Hinsberger, S., Lu, C., Hartmann, R.W., Empting, M., and Titz, A. (2016). Novel strategies for the treatment of Pseudomonas aeruginosa infections. J. Med. Chem. 59 (13): 5929–5969. doi: 10.1021/acs.jmedchem.5b01698. Epub 2016/01/26. PubMed PMID: 26804741.
- 82Kalas, V., Hibbing, M.E., Maddirala, A.R., Chugani, R., Pinkner, J.S., Mydock-McGrane, L.K., Conover, M.S., Janetka, J.W., and Hultgren, S.J. (2018). Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection. Proc. Natl. Acad. Sci. U.S.A. 115 (12): E2819–E2828. doi: 10.1073/pnas.1720140115. Epub 2018/03/07. PubMed PMID: 29507247; PMCID: PMC5866590.
- 83Maddirala, A.R., Klein, R., Pinkner, J.S., Kalas, V., Hultgren, S.J., and Janetka, J.W. (2019). Biphenyl Gal and GalNAc FmlH lectin antagonists of uropathogenic E. coli (UPEC): optimization through iterative rational drug design. J. Med. Chem. 62 (2): 467–479. doi: 10.1021/acs.jmedchem.8b01561. Epub 2018/12/13. PubMed PMID: 30540910; PMCID: PMC6467771.
- 84Hauck, D., Joachim, I., Frommeyer, B., Varrot, A., Philipp, B., Moller, H.M., Imberty, A., Exner, T.E., and Titz, A. (2013). Discovery of two classes of potent glycomimetic inhibitors of Pseudomonas aeruginosa LecB with distinct binding modes. ACS Chem. Biol. 8 (8): 1775–1784. doi: 10.1021/cb400371r. Epub 2013/05/31. PubMed PMID: 23719508.
- 85Sommer, R., Wagner, S., Rox, K., Varrot, A., Hauck, D., Wamhoff, E.C., Schreiber, J., Ryckmans, T., Brunner, T., Rademacher, C., Hartmann, R.W., Bronstrup, M., Imberty, A., and Titz, A. (2018). Glycomimetic, orally bioavailable lecb inhibitors block biofilm formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 140 (7): 2537–2545. doi: 10.1021/jacs.7b11133. Epub 2017/12/23. PubMed PMID: 29272578.
- 86Sattin, S. and Bernardi, A. (2016). Glycoconjugates and glycomimetics as microbial anti-adhesives. Trends Biotechnol. doi: 10.1016/j.tibtech.2016.01.004. Epub 2016/02/16. PubMed PMID: 26875976.
- 87Cecioni, S., Imberty, A., and Vidal, S. (2015). Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 115 (1): 525–561. doi: 10.1021/cr500303t. Epub 2014/12/17. PubMed PMID: 25495138.
- 88Hudson, K.L., Bartlett, G.J., Diehl, R.C., Agirre, J., Gallagher, T., Kiessling, L.L., and Woolfson, D.N. (2015). Carbohydrate–aromatic interactions in proteins. J. Am. Chem. Soc. 137 (48): 15152–15160. doi: 10.1021/jacs.5b08424. Epub 2015/11/13. PubMed PMID: 26561965; PMCID: PMC4676033.
- 89Nomura, S., Sakamaki, S., Hongu, M., Kawanishi, E., Koga, Y., Sakamoto, T., Yamamoto, Y., Ueta, K., Kimata, H., Nakayama, K., and Tsuda-Tsukimoto, M. (2010). Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose cotransporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J. Med. Chem. 53 (17): 6355–6360. doi: 10.1021/jm100332n. Epub 2010/08/10. PubMed PMID: 20690635.
References
- 90Phillips, M.A., Burrows, J.N., Manyando, C., van Huijsduijnen, R.H., Van Voorhis, W.C., and Wells, T.N.C. (2017). Malaria. Nat. Rev. Dis. Primers 3: 17050. doi: 10.1038/nrdp.2017.50.
- 91 WHO (2018). World Malaria Report 2018. Geneva: World Health Organization Licence: CC BY-NC-SA 3.0 IGO.
- 92Wells, T.N., Hooft van Huijsduijnen, R., and Van Voorhis, W.C. (2015). Malaria medicines: a glass half full? Nat. Rev. Drug Discov. 14 (6): doi: 424-442.10.1038/nrd4573.
- 93Burrows, J.N., Duparc, S., Gutteridge, W.E., Hooft van Huijsduijnen, R., Kaszubska, W., Macintyre, F., Mazzuri, S., Mohrle, J.J., and Wells, T.N.C. (2017). New developments in anti-malarial target candidate and product profiles. Malar. J. 16 (1): 26. doi: 10.1186/s12936-016-1675-x.
- 94Guiguemde, W.A., Shelat, A.A., Bouck, D., Duffy, S., Crowther, G.J., Davis, P.H., Smithson, D.C., Connelly, M., Clark, J., Zhu, F., Jimenez-Diaz, M.B., Martinez, M.S., Wilson, E.B., Tripathi, A.K., Gut, J., Sharlow, E.R., Bathurst, I., El Mazouni, F., Fowble, J.W., Forquer, I., McGinley, P.L., Castro, S., Angulo-Barturen, I., Ferrer, S., Rosenthal, P.J., Derisi, J.L., Sullivan, D.J., Lazo, J.S., Roos, D.S., Riscoe, M.K., Phillips, M.A., Rathod, P.K., Van Voorhis, W.C., Avery, V.M., and Guy, R.K. (2010). Chemical genetics of Plasmodium falciparum. Nature 465 (7296): 311–315. doi: 10.1038/nature09099.
- 95Jimenez-Diaz, M.B., Ebert, D., Salinas, Y., Pradhan, A., Lehane, A.M., Myrand-Lapierre, M.E., O'Loughlin, K.G., Shackleford, D.M., Justino de Almeida, M., Carrillo, A.K., Clark, J.A., Dennis, A.S., Diep, J., Deng, X., Duffy, S., Endsley, A.N., Fedewa, G., Guiguemde, W.A., Gomez, M.G., Holbrook, G., Horst, J., Kim, C.C., Liu, J., Lee, M.C., Matheny, A., Martinez, M.S., Miller, G., Rodriguez-Alejandre, A., Sanz, L., Sigal, M., Spillman, N.J., Stein, P.D., Wang, Z., Zhu, F., Waterson, D., Knapp, S., Shelat, A., Avery, V.M., Fidock, D.A., Gamo, F.J., Charman, S.A., Mirsalis, J.C., Ma, H., Ferrer, S., Kirk, K., Angulo-Barturen, I., Kyle, D.E., DeRisi, J.L., Floyd, D.M., and Guy, R.K. (2014). SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl. Acad. Sci. U.S.A. 111 (50): E5455–E5462. doi: 10.1073/pnas.1414221111.
- 96Floyd, D.M., Stein, P., Wang, Z., Liu, J., Castro, S., Clark, J.A., Connelly, M., Zhu, F., Holbrook, G., Matheny, A., Sigal, M.S., Min, J., Dhinakaran, R., Krishnan, S., Bashyum, S., Knapp, S., and Guy, R.K. (2016). Hit-to-lead studies for the antimalarial tetrahydroisoquinolone carboxanilides. J. Med. Chem. 59 (17): 7950–7962. doi: 10.1021/acs.jmedchem.6b00752.
- 97Chen, Y., Zhu, F., Hammill, J., et al. (2019). Preclinical development of SJ733 for Malaria, in press.
- 98Spillman, N.J. and Kirk, K. (2015). The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. Int. J. Parasitol. Drugs Drug Resist. 5 (3): 149–162. doi: 10.1016/j.ijpddr.2015.07.001.
- 99Gaur, A.H., McCarthy, J.S., Panetta, J.C., Dallas, R., Woodford, J., Tang, L., Smith, A.M., Stewart, T.B., Branum, K.C., Freeman, B.B. III, Patel, N.D., John, E., Chalon, S., Ost, S., Heine, R.N., Richardson, J.L., Christensen, R., Flynn, P.M., Gessel, Y.V., Mitasev, B., Möhrle, J.J., Gusovsky, F., Bebrevska, L., and Guy, R.K. Safety, tolerability, pharmacokinetics, and antimalarial efficacy of a novel Plasmodium falciparum ATP4 inhibitor (SJ733): a first-in-human and induced blood stage malaria phase 1a/ 1b study. Lancet Infect. Dis. 20: 964–975. doi: 10.1016/S1473-3099(19)30611-5.
References
- 100Petri, W.A. Jr. and Singh, U. (1999). Diagnosis and management of amebiasis. Clin. Infect. Dis. 29: 1117–1125.
- 101Stanley, S.L. Jr. (2003). Amoebiasis. Lancet 361: 1025–1034.
- 102Hotez, P.J., Alvarado, M., Basanez, M.G., Bolliger, I., Bourne, R., Boussinesq, M., Brooker, S.J., Brown, A.S., Buckle, G., Budke, C.M. et al. (2014). The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 8: e2865.
- 103Siddiqui, R., Ali, I.K.M., Cope, J.R., and Khan, N.A. (2016). Biology and pathogenesis of Naegleria fowleri. Acta Trop. 164: 375–394.
- 104Yoder, J.S., Eddy, B.A., Visvesvara, G.S., Capewell, L., and Beach, M.J. (2010). The epidemiology of primary amoebic meningoencephalitis in the USA, 1962–2008. Epidemiol. Infect. 138: 968–975.
- 105Capewell, L.G., Harris, A.M., Yoder, J.S., Cope, J.R., Eddy, B.A., Roy, S.L., Visvesvara, G.S., Fox, L.M., and Beach, M.J. (2015). Diagnosis, clinical course, and treatment of primary amoebic meningoencephalitis in the United States, 1937–2013. J. Pediatric Infect. Dis. Soc. 4: e68–e75.
- 106Marciano-Cabral, F. and Cabral, G.A. (2007). The immune response to Naegleria fowleri amebae and pathogenesis of infection. FEMS Immunol. Med. Microbiol. 51: 243–259.
- 107Kanani, S.R. and Knight, R. (1972). Experiences with the use of metronidazole in the treatment of non dysenteric intestinal amoebiasis. Trans. R. Soc. Trop. Med. Hyg. 66: 244–249.
- 108Pehrson, P.O. and Bengtsson, E. (1984). A long-term follow up study of amoebiasis treated with metronidazole. Scand. J. Infect. Dis. 16: 195–198.
- 109Thacker, S.B., Simpson, S., Gordon, T.J., Wolfe, M., and Kimball, A.M. (1979). Parasitic disease control in a residential facility for the mentally retarded. Am. J. Public Health 69: 1279–1281.
- 110Sweetman, S.C. (2002). Martindale: The Complete Drug Reference, 33rd edn. London: Pharmaceutical Press.
- 111Powell, S.J., MacLeod, I., Wilmot, A.J., and Elsdon-Dew, R. (1966). Metronidazole in amoebic dysentery and amoebic liver abscess. Lancet 2: 1329–1331.
- 112Powell, S.J., Wilmot, A.J., and Elsdon-Dew, R. (1967). Further trials of metronidazole in amoebic dysentery and amoebic liver abscess. Ann. Trop. Med. Parasitol. 61: 511–514.
- 113Powell, S.J., Wilmot, A.J., and Elsdon-Dew, R. (1969). Single and low dosage regimens of metronidazole in amoebic dysentery and amoebic liver abscess. Ann. Trop. Med. Parasitol. 63: 139–142.
- 114Haque, R., Huston, C.D., Hughes, M., Houpt, E., and Petri, W.A. Jr. (2003). Amebiasis. N. Engl. J. Med. 348: 1565–1573.
- 115Knight, R. (1980). The chemotherapy of amoebiasis. J. Antimicrob. Chemother. 6: 577–593.
- 116Koutsaimanis, K.G., Timms, P.W., and Ree, G.H. (1979). Failure of metronidazole in a patient with hepatic amebic abscess. Am. J. Trop. Med. Hyg. 28: 768–769.
- 117Dooley, C.P. and O'Morain, C.A. (1988). Recurrence of hepatic amebiasis after successful treatment with metronidazole. J. Clin. Gastroenterol. 10: 339–342.
- 118Samarawickrema, N.A., Brown, D.M., Upcroft, J.A., Thammapalerd, N., and Upcroft, P. (1997). Involvement of superoxide dismutase and pyruvate:ferredoxin oxidoreductase in mechanisms of metronidazole resistance in Entamoeba histolytica. J. Antimicrob. Chemother. 40: 833–840.
- 119Wassmann, C., Hellberg, A., Tannich, E., and Bruchhaus, I. (1999). Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J. Biol. Chem. 274: 26051–26056.
- 120Penuliar, G.M., Nakada-Tsukui, K., and Nozaki, T. (2015). Phenotypic and transcriptional profiling in Entamoeba histolytica reveal costs to fitness and adaptive responses associated with metronidazole resistance. Front. Microbiol. 6: 354.
- 121Gallis, H.A., Drew, R.H., and Pickard, W.W. (1990). Amphotericin B: 30 years of clinical experience. Rev. Infect. Dis. 12: 308–329.
- 122Laniado-Laborin, R. and Cabrales-Vargas, M.N. (2009). Amphotericin B: side effects and toxicity. Rev. Iberoam. Micol. 26: 223–227.
- 123Visvesvara, G.S. (2010). Amebic meningoencephalitides and keratitis: challenges in diagnosis and treatment. Curr. Opin. Infect. Dis. 23: 590–594.
- 124Seifert, K., Duchene, M., Wernsdorfer, W.H., Kollaritsch, H., Scheiner, O., Wiedermann, G., Hottkowitz, T., and Eibl, H. (2001). Effects of miltefosine and other alkylphosphocholines on human intestinal parasite Entamoeba histolytica. Antimicrob. Agents Chemother. 45: 1505–1510.
- 125Downey, A.S., Graczyk, T.K., and Sullivan, D.J. (2009). In vitro activity of pyrvinium pamoate against Entamoeba histolytica and Giardia intestinalis using radiolabelled thymidine incorporation and an SYBR Green I-based fluorescence assay. J. Antimicrob. Chemother. 64: 751–754.
- 126Ghosh, S., Chan, J.M., Lea, C.R., Meints, G.A., Lewis, J.C., Tovian, Z.S., Flessner, R.M., Loftus, T.C., Bruchhaus, I., Kendrick, H. et al. (2004). Effects of bisphosphonates on the growth of Entamoeba histolytica and Plasmodium species in vitro and in vivo. J. Med. Chem. 47: 175–187.
- 127Singh, S., Athar, F., and Azam, A. (2005). Synthesis, spectral studies and in vitro assessment for antiamoebic activity of new cyclooctadiene ruthenium(II) complexes with 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones. Bioorg. Med. Chem. Lett. 15: 5424–5428.
- 128Debnath, A., Parsonage, D., Andrade, R.M., He, C., Cobo, E.R., Hirata, K., Chen, S., Garcia-Rivera, G., Orozco, E., Martinez, M.B. et al. (2012). A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat. Med. 18: 956–960.
- 129Debnath, A., Tunac, J.B., Galindo-Gomez, S., Silva-Olivares, A., Shibayama, M., and McKerrow, J.H. (2012). Corifungin, a new drug lead against Naegleria, identified from a high-throughput screen. Antimicrob. Agents Chemother. 56: 5450–5457.
- 130Debnath, A., Calvet, C.M., Jennings, G., Zhou, W., Aksenov, A., Luth, M.R., Abagyan, R., Nes, W.D., McKerrow, J.H., and Podust, L.M. (2017). CYP51 is an essential drug target for the treatment of primary amebic meningoencephalitis (PAM). PLoS Negl. Trop. Dis.
10.1371/journal.pntd.0006104 Google Scholar
- 131Roder, C. and Thomson, M.J. (2015). Auranofin: repurposing an old drug for a golden new age. Drugs R D 15: 13–20.
- 132Buckner, F.S., Waters, N.C., and Avery, V.M. (2012). Recent highlights in anti-protozoan drug development and resistance research. Int. J. Parasitol. Drugs Drug Resist. 2: 230–235.
- 133Debnath, A., Ndao, M., and Reed, S.L. (2013). Reprofiled drug targets ancient protozoans: drug discovery for parasitic diarrheal diseases. Gut Microbes 4: 66–71.
- 134Mi-Ichi, F., Miyake, Y., Tam, V.K., and Yoshida, H. (2018). A flow cytometry method for dissecting the cell differentiation process of Entamoeba encystation. Front. Cell. Infect. Microbiol. 8: 250.
- 135Tejman-Yarden, N., Miyamoto, Y., Leitsch, D., Santini, J., Debnath, A., Gut, J., McKerrow, J.H., Reed, S.L., and Eckmann, L. (2013). A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrob. Agents Chemother. 57: 2029–2035.
- 136Hopper, M., Yun, J.F., Zhou, B., Le, C., Kehoe, K., Le, R., Hill, R., Jongeward, G., Debnath, A., Zhang, L. et al. (2016). Auranofin inactivates Trichomonas vaginalis thioredoxin reductase and is effective against trichomonads in vitro and in vivo. Int. J. Antimicrob. Agents 48: 690–694.
- 137Ilari, A., Baiocco, P., Messori, L., Fiorillo, A., Boffi, A., Gramiccia, M., Di Muccio, T., and Colotti, G. (2012). A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 42: 803–811.
- 138Sharlow, E.R., Leimgruber, S., Murray, S., Lira, A., Sciotti, R.J., Hickman, M., Hudson, T., Leed, S., Caridha, D., Barrios, A.M. et al. (2014). Auranofin is an apoptosis-simulating agent with in vitro and in vivo anti-leishmanial activity. ACS Chem. Biol. 9: 663–672.
- 139Andrade, R.M., Chaparro, J.D., Capparelli, E., and Reed, S.L. (2014). Auranofin is highly efficacious against Toxoplasma gondii in vitro and in an in vivo experimental model of acute toxoplasmosis. PLoS Negl. Trop. Dis. 8: e2973.
- 140da Silva, M.T., Silva-Jardim, I., Portapilla, G.B., de Lima, G.M., Costa, F.C., Anibal Fde, F., and Thiemann, O.H. (2016). In vivo and in vitro auranofin activity against Trypanosoma cruzi: possible new uses for an old drug. Exp. Parasitol. 166: 189–193.
- 141AbdelKhalek, A., Abutaleb, N.S., Elmagarmid, K.A., and Seleem, M.N. (2018). Repurposing auranofin as an intestinal decolonizing agent for vancomycin-resistant enterococci. Sci. Rep. 8: 8353.
- 142AbdelKhalek, A., Abutaleb, N.S., Mohammad, H., and Seleem, M.N. (2019). Antibacterial and antivirulence activities of auranofin against Clostridium difficile. Int. J. Antimicrob. Agents 53: 54–62.
- 143Thangamani, S., Mohammad, H., Abushahba, M.F., Sobreira, T.J., Hedrick, V.E., Paul, L.N., and Seleem, M.N. (2016). Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci. Rep. 6: 22571.
- 144Thangamani, S., Mohammad, H., Abushahba, M.F., Sobreira, T.J., and Seleem, M.N. (2016). Repurposing auranofin for the treatment of cutaneous staphylococcal infections. Int. J. Antimicrob. Agents 47: 195–201.
- 145Angelucci, F., Sayed, A.A., Williams, D.L., Boumis, G., Brunori, M., Dimastrogiovanni, D., Miele, A.E., Pauly, F., and Bellelli, A. (2009). Inhibition of Schistosoma mansoni thioredoxin-glutathione reductase by auranofin: structural and kinetic aspects. J. Biol. Chem. 284: 28977–28985.
- 146Bulman, C.A., Bidlow, C.M., Lustigman, S., Cho-Ngwa, F., Williams, D., Rascon, A.A. Jr., Tricoche, N., Samje, M., Bell, A., Suzuki, B. et al. (2015). Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis. PLoS Negl. Trop. Dis. 9: e0003534.
- 147Martinez-Gonzalez, J.J., Guevara-Flores, A., Alvarez, G., Rendon-Gomez, J.L., and Del Arenal, I.P. (2010). In vitro killing action of auranofin on Taenia crassiceps metacestode (cysticerci) and inactivation of thioredoxin-glutathione reductase (TGR). Parasitol. Res. 107: 227–231.
- 148Giannini, E.H., Brewer, E.J. Jr., Kuzmina, N., Shaikov, A., and Wallin, B. (1990). Auranofin in the treatment of juvenile rheumatoid arthritis. Results of the USA-USSR double-blind, placebo-controlled trial. The USA Pediatric Rheumatology Collaborative Study Group. The USSR Cooperative Children's Study Group. Arthritis Rheum. 33: 466–476.
- 149Kean, W.F., Hart, L., and Buchanan, W.W. (1997). Auranofin. Br. J. Rheumatol. 36: 560–572.
- 150Blocka, K. (1983). Auranofin versus injectable gold. Comparison of pharmacokinetic properties. Am. J. Med. 75: 114–122.
- 151Cohen, D.L., Orzel, J., and Taylor, A. (1981). Infants of mothers receiving gold therapy. Arthritis Rheum. 24: 104–105.
- 152Richards, A.J. (1977). Transfer of gold from mother to fetus. Lancet 1: 99.
- 153Capparelli, E.V., Bricker-Ford, R., Rogers, M.J., McKerrow, J.H., and Reed, S.L. (2017). Phase I clinical trial results of auranofin, a novel antiparasitic agent. Antimicrob. Agents Chemother. 61.
- 154Groll, A.H., Piscitelli, S.C., and Walsh, T.J. (1998). Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv. Pharmacol. 44: 343–500.
- 155Goswick, S.M. and Brenner, G.M. (2003). Activities of azithromycin and amphotericin B against Naegleria fowleri in vitro and in a mouse model of primary amebic meningoencephalitis. Antimicrob. Agents Chemother. 47: 524–528.
- 156Dorlo, T.P., Balasegaram, M., Beijnen, J.H., and de Vries, P.J. (2012). Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J. Antimicrob. Chemother. 67: 2576–2597.
- 157Mondal, D., Haque, R., Sack, R.B., Kirkpatrick, B.D., and Petri, W.A. Jr. (2009). Attribution of malnutrition to cause-specific diarrheal illness: evidence from a prospective study of preschool children in Mirpur, Dhaka, Bangladesh. Am. J. Trop. Med. Hyg. 80: 824–826.
References
- 158 WHO (2018). World Malaria Report 2018. WHO.
- 159 World Health Organisation (2019). https://www.who.int/news-room/fact-sheets/detail/malaria (accessed 15 March 2019).
- 160Bolchoz, L.J., Budinsky, R.A., McMillan, D.C., and Jollow, D.J. (2001). J. Pharmacol. Exp. Ther. 297 (2): 509–515.
- 161Price, R.N. and Nosten, F. (2014). The Lancet 383 (9922): 1020–1021. doi: 10.1016/S0140-6736(13)62672-0.
- 162Folarin, O.A., Bustamante, C., Gbotosho, G.O., Sowunmi, A., Zalis, M.G., Oduola, A.M.J., and Happi, C.T. (2011). Acta Trop. 120 (3): 224–230. doi: 10.1016/j.actatropica.2011.08.013.
- 163Younis, Y., Douelle, F., Feng, T.-S., Cabrera, D.G., Le Manach, C., Nchinda, A.T., Duffy, S., White, K.L., Shackleford, D.M., Morizzi, J., Mannila, J., Katneni, K., Bhamidipati, R., Zabiulla, K.M., Joseph, J.T., Bashyam, S., Waterson, D., Witty, M.J., Hardick, D., Wittlin, S., Avery, V., Charman, S.A., and Chibale, K. (2012). J. Med. Chem. 55 (7): 3479–3487. doi: 10.1021/jm3001373.
- 164Paquet, T., Le Manach, C., Cabrera, D.G., Younis, Y., Henrich, P.P., Abraham, T.S., Lee, M.C.S., Basak, R., Ghidelli-Disse, S., Lafuente-Monasterio, M.J., Bantscheff, M., Ruecker, A., Blagborough, A.M., Zakutansky, S.E., Zeeman, A.-M., White, K.L., Shackleford, D.M., Mannila, J., Morizzi, J., Scheurer, C., Angulo-Barturen, I., Martínez, M.S., Ferrer, S., Sanz, L.M., Gamo, F.J., Reader, J., Botha, M., Dechering, K.J., Sauerwein, R.W., Tungtaeng, A., Vanachayangkul, P., Lim, C.S., Burrows, J., Witty, M.J., Marsh, K.C., Bodenreider, C., Rochford, R., Solapure, S.M., Jiménez-Díaz, M.B., Wittlin, S., Charman, S.A., Donini, C., Campo, B., Birkholtz, L.-M., Hanson, K.K., Drewes, G., Kocken, C.H.M., Delves, M.J., Leroy, D., Fidock, D.A., Waterson, D., Street, L.J., and Chibale, K. (2017). Sci. Transl. Med. 9 (387): eaad9735. doi: 10.1126/scitranslmed.aad9735.
- 165González Cabrera, D.G., Horatscheck, A., Wilson, C.R., Basarab, G., Eyermann, J.C., and Chibale, K. (2018). J. Med. Chem. 61 (18): 8061–8077. doi: 10.1021/acs.jmedchem.8b00329.
- 166Younis, Y., Douelle, F., González Cabrera, D., Le Manach, C., Nchinda, A.T., Paquet, T., Street, L.J., White, K.L., Zabiulla, K.M., Joseph, J.T., Bashyam, S., Waterson, D., Witty, M.J., Wittlin, S., Charman, S.A., and Chibale, K. (2013). J. Med. Chem. 56 (21): 8860–8871. doi: 10.1021/jm401278d.
- 167Le Manach, C., Nchinda, A.T., Paquet, T., Cabrera, D.G., Younis, Y., Han, Z., Bashyam, S., Zabiulla, M., Taylor, D., Lawrence, N., White, K.L., Charman, S.A., Waterson, D., Witty, M.J., Wittlin, S., Botha, M.E., Nondaba, S.H., Reader, J., Birkholtz, L.-M., Jiménez-Díaz, M.B., Martínez, M.S., Ferrer, S., Angulo-Barturen, I., Meister, S., Antonova-Koch, Y., Winzeler, E.A., Street, L.J., and Chibale, K. (2016). J. Med. Chem. 59 (21): 9890–9905. doi: 10.1021/acs.jmedchem.6b01265.
- 168Brunschwig, C., Lawrence, N., Taylor, D., Abay, E., Njoroge, M., Basarab, G.S., Le Manach, C., Paquet, T., Cabrera, D.G., Nchinda, A.T., de Kock, C., Wiesner, L., Denti, P., Waterson, D., Blasco, B., Leroy, D., Witty, M.J., Donini, C., Duffy, J., Wittlin, S., White, K.L., Charman, S.A., Jiménez-Díaz, M.B., Angulo-Barturen, I., Herreros, E., Gamo, F.J., Rochford, R., Mancama, D., Coetzer, T.L., van der Watt, M.E., Reader, J., Birkholtz, L.-M., Marsh, K.C., Solapure, S.M., Burke, J.E., McPhail, J.A., Vanaerschot, M., Fidock, D.A., Fish, P.V., Siegl, P., Smith, D.A., Wirjanata, G., Noviyanti, R., Price, R.N., Marfurt, J., Silue, K.D., Street, L.J., and Chibale, K. (2018). Antimicrob. Agents Chemother. 62 (9): e00012-18. doi: 10.1128/AAC.00012-18.
- 169Okombo, J. and Chibale, K. (2017). Acc. Chem. Res. 50 (7): 1606–1616. doi: 10.1021/acs.accounts.6b00631.
References
- 170Perfect, J.R. (2017). Nat. Rev. Drug Discov. 16: 603–616.
- 171Takesako, K., Kuroda, H., Inoue, T., Haruna, F., Yoshikawa, Y., and Kato, I. (1993). J. Antibiot. 46: 1414–1420.
- 172Schneiter, R. (1999). BioEssays 21: 1004–1010.
10.1002/(SICI)1521-1878(199912)22:1<1004::AID-BIES4>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 173Aeed, P.A., Young, C.L., Nagiec, M.M., and Elhammer, Å.P. (2008). Antimicrob. Agents Chemother. 53: 496–504.
- 174Nagiec, M.M., Nagiec, M.M., Baltisberger, J.A., Wells, G.B., Lester, R.L., and Dickson, R.C. (1997). J. Biol. Chem. 272: 9809–9817.
- 175Mandala, S.M., Thornton, R.A., Rosenbach, M., Milligan, J., Garcia-Calvo, M., Bull, H.G., and Kurtz, M.B. (1997). J. Biol. Chem 272: 32709–32714.
- 176Mandala, S.M., Thornton, R.A., Milligan, J., Rosenbach, M., Garcia-Calvo, M., Bull, H.G., Harris, G., Abruzzo, G.K., Flattery, A.M., Gill, C.J., Bartizal, K., Dreikorn, S., and Kurtz, M.B. (1998). J. Biol. Chem. 273: 14942–14949.
- 177Zhong, W., Murphy, D.J., and Georgopapadakou, N.H. (1999). FEBS Lett. 463: 241–244.
- 178Kurome, T. and Takesako, K. (2000). Curr. Opin. Anti-Infect. Invest. Drugs 2: 375–386.
- 179Heidler, S.A. and Radding, J.A. (1995). Antimicrob. Agents Chemother. 39: 2765–2769.
- 180Hashida-Okado, T.A., Ogawa, M., Endo, R., Yasumoto, K., Takesako, K., and Kato, I. (1996). Mol. Gen. Genet. 25: 236–244.
- 181Lattif, A.A., Mukherjee, P.K., Chandra, J., Roth, M.R., Welti, R., Rouabhia, M., and Ghannoum, M.A. (2011). Microbiology 157: 3232–3242.
- 182Tan, H.W. and Tay, S.T. (2013). Mycoses 56: 150–156.
- 183Ogawa, A., Hashida-Okado, T., Endo, M., Yoshioka, H., Tsuruo, T., Takesako, K., and Kato, I. (1998). Antimicrob. Agents Chemother. 42: 755–761.
- 184Zhong, W., Jeffries, M.W., and Georgopapadakou, N.H. (2000). Antimicrob. Agents Chemother. 44: 651–653.
- 185Wuts, P.G.M., Simons, L.J., Metzger, B.P., Sterling, R.C., Slightom, J.L., and Elhammer, A.P. (2015). ACS Med. Chem. Lett. 6: 645–649.
- 186Meyer, F.-M., Liras, S., Guzman-perez, A., Perreault, C., Bian, J., and James, K. (2010). Org. Lett. 11: 3870–3873.
- 187Suzuki, A. (1998). In: Metal-catalyzed Cross-coupling Reactions (ed. F. Diederich and P.J. Stang), 49–97. Wiley-VCH.
10.1002/9783527612222 Google Scholar
- 188Carlsen, P.H.J., Katsuki, T., Martin, V.S., and Sharpless, K.B.A. (1981). J. Org. Chem. 46: 3936–3938.
References
- 189Chatterjee, C., Paul, M., Xie, L., and van der Donk, W.A. (2005). Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105 (2): 633–684.
- 190Hsu, S.T., Breukink, E., Tischenko, E., Lutters, M.A., de Kruijff, B., Kaptein, R. et al. (2004). The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 11 (10): 963–967.
- 191Munch, D., Muller, A., Schneider, T., Kohl, B., Wenzel, M., Bandow, J.E. et al. (2014). The lantibiotic NAI-107 binds to bactoprenol-bound cell wall precursors and impairs membrane functions. J. Biol. Chem. 289 (17): 12063–12076.
- 192Foulston, L.C. and Bibb, M.J. (2010). Microbisporicin gene cluster reveals unusual features of lantibiotic biosynthesis in actinomycetes. Proc. Natl. Acad. Sci. U.S.A. 107 (30): 13461–13466.
- 193Pokhrel, R., Pavadai, E., Gerstman, B.S., and Chapagain, P.P. (2019). Membrane pore formation and ion selectivity of the Ebola virus delta peptide. Phys. Chem. Chem. Phys.: PCCP 21 (10): 5578–5585.
- 194Jo, S., Kim, T., Iyer, V.G., and Im, W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29 (11): 1859–1865.
- 195Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E. et al. (2005). Scalable molecular dynamics with NAMD. J. Comput. Chem. 26 (16): 1781–1802.
- 196Rogers, L.A. and Whittier, E.O. (1928). Limiting factors in the lactic fermentation. J. Bacteriol. 16 (4): 211–229.
- 197Field, D., Cotter, P.D., Ross, R.P., and Hill, C. (2015). Bioengineering of the model lantibiotic nisin. Bioengineered 6 (4): 187–192.
- 198Hasper, H.E., de Kruijff, B., and Breukink, E. (2004). Assembly and stability of nisin-lipid II pores. Biochemistry 43 (36): 11567–11575.
- 199Wiedemann, I., Breukink, E., van Kraaij, C., Kuipers, O.P., Bierbaum, G., de Kruijff, B. et al. (2001). Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J. Biol. Chem. 276 (3): 1772–1779.
- 200Gut, I.M., Blanke, S.R., and van der Donk, W.A. (2011). Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin. ACS Chem. Biol. 6 (7): 744–752.
- 201Hasper, H.E., Kramer, N.E., Smith, J.L., Hillman, J.D., Zachariah, C., Kuipers, O.P. et al. (2006). An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science (New York, NY) 313 (5793): 1636–1637.
- 202Brotz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G. et al. (1998). Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol. Microbiol. 30 (2): 317–327.
- 203Hughes, D. (2003). Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Nat. Rev. Genet. 4 (6): 432–441.
- 204Ghobrial, O.G., Derendorf, H., and Hillman, J.D. (2009). Pharmacodynamic activity of the lantibiotic MU1140. Int. J. Antimicrob. Agents 33 (1): 70–74.
- 205Draper, L.A., Cotter, P.D., Hill, C., and Ross, R.P. (2015). Lantibiotic resistance. Microbiol. Mol. Biol. Rev.: MMBR 79 (2): 171–191.
- 206Ling, L.L., Schneider, T., Peoples, A.J., Spoering, A.L., Engels, I., Conlon, B.P. et al. (2015). A new antibiotic kills pathogens without detectable resistance. Nature 517 (7535): 455–459.
- 207Gotz, F., Perconti, S., Popella, P., Werner, R., and Schlag, M. (2014). Epidermin and gallidermin: Staphylococcal lantibiotics. Int. J. Med. Microbiol.: IJMM 304 (1): 63–71.
- 208Ongey, E.L., Yassi, H., Pflugmacher, S., and Neubauer, P. (2017). Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol. Lett. 39 (4): 473–482.
- 209Piper, C., Casey, P.G., Hill, C., Cotter, P.D., and Ross, R.P. (2012). The lantibiotic lacticin 3147 prevents systemic spread of Staphylococcus aureus in a murine infection model. Int. J. Microbiol. 2012: 806230.
- 210Ross, A.C. and Vederas, J.C. (2011). Fundamental functionality: recent developments in understanding the structure–activity relationships of lantibiotic peptides. J. Antibiot. 64 (1): 27–34.
- 211Smith, L. and Hillman, J. (2008). Therapeutic potential of type A (I) lantibiotics, a group of cationic peptide antibiotics. Curr. Opin. Microbiol. 11 (5): 401–408.
- 212Boakes, S. and Dawson, M.J. (2014). Discovery and development of NVB302, a semisynthetic antibiotic for treatment of Clostridium difficile infection. In: Natural Products: Discourse, Diversity, and Design (ed. A. Osbourn, R. Goss and G.T. Carter), 455–468. Wiley-Blackwell.
10.1002/9781118794623.ch24 Google Scholar
- 213 S. Febbraro, A. Hancock, A. Boyd and M. J. Dawson (eds.) (2012). 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Francisco, CA.
- 214Boakes, S., Weiss, W.J., Vinson, M., Wadman, S., and Dawson, M.J. (2016). Antibacterial activity of the novel semisynthetic lantibiotic NVB333 in vitro and in experimental infection models. J. Antibiot. 69 (12): 850–857.
- 215Jabes, D., Brunati, C., Candiani, G., Riva, S., Romano, G., and Donadio, S. (2011). Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant Gram-positive pathogens. Antimicrob. Agents Chemother. 55 (4): 1671–1676.
- 216Lepak, A.J., Marchillo, K., Craig, W.A., and Andes, D.R. (2015). In vivo pharmacokinetics and pharmacodynamics of the lantibiotic NAI-107 in a neutropenic murine thigh infection model. Antimicrob. Agents Chemother. 59 (2): 1258–1264.
- 217Hillman, J.D., Johnson, K.P., and Yaphe, B.I. (1984). Isolation of a Streptococcus mutans strain producing a novel bacteriocin. Infect. Immun. 44 (1): 141–144.
- 218Hillman, J.D., Novak, J., Sagura, E., Gutierrez, J.A., Brooks, T.A., Crowley, P.J. et al. (1998). Genetic and biochemical analysis of mutacin 1140, a lantibiotic from Streptococcus mutans. Infect. Immun. 66 (6): 2743–2749.
- 219Kers, J.A., Sharp, R.E., Defusco, A.W., Park, J.H., Xu, J., Pulse, M.E. et al. (2018). Mutacin 1140 lantibiotic variants are efficacious against Clostridium difficile infection. Front. Microbiol. 9: 415.
- 220Kers, J.A., Sharp, R.E., Muley, S., Mayo, M., Colbeck, J., Zhu, Y. et al. (2018). Blueprints for the rational design of therapeutic mutacin 1140 variants. Chem. Biol. Drug Des. 92 (6): 1940–1953.
- 221Rajeshkumar, N.V., Kers, J.A., Moncrief, S., Defusco, A.W., Park, J.H., and Handfield, M. (2019). Preclinical evaluation of the maximum tolerated dose and toxicokinetics of enteric-coated lantibiotic OG253 capsules. Toxicol. Appl. Pharmacol. 374: 32–40.
- 222Kers, J.A., DeFusco, A.W., Park, J.H., Xu, J., Pulse, M.E., Weiss, W.J. et al. (2018). OG716: Designing a fit-for-purpose lantibiotic for the treatment of Clostridium difficile infections. PLoS One 13 (6): e0197467.
- 223Sandiford, S.K. (2015). Perspectives on lantibiotic discovery - where have we failed and what improvements are required? Exp. Opin. Drug Siscov. 10 (4): 315–320.
- 224Chatterjee, S., Chatterjee, D.K., Jani, R.H., Blumbach, J., Ganguli, B.N., Klesel, N. et al. (1992). Mersacidin, a new antibiotic from Bacillus. In vitro and in vivo antibacterial activity. J. Antibiot. 45 (6): 839–845.
- 225Coronelli, C., Tamoni, G., and Lancini, G.C. (1976). Gardimycin, a new antibiotic from Actinoplanes. II. Isolation and preliminary characterization. J. Antibiot. 29 (5): 507–510.
- 226Malabarba, A., Pallanza, R., Berti, M., and Cavalleri, B. (1990). Synthesis and biological activity of some amide derivatives of the lantibiotic actagardine. J. Antibiot. 43 (9): 1089–1097.
- 227Boakes, S., Cortes, J., Appleyard, A.N., Rudd, B.A., and Dawson, M.J. (2009). Organization of the genes encoding the biosynthesis of actagardine and engineering of a variant generation system. Mol. Microbiol. 72 (5): 1126–1136.
- 228Appleyard, A.N., Choi, S., Read, D.M., Lightfoot, A., Boakes, S., Hoffmann, A. et al. (2009). Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem. Biol. 16 (5): 490–498.
- 229Boakes, S., Appleyard, A.N., Cortes, J., and Dawson, M.J. (2010). Organization of the biosynthetic genes encoding deoxyactagardine B (DAB), a new lantibiotic produced by Actinoplanes liguriae NCIMB41362. J. Antibiot. 63 (7): 351–358.
- 230Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J. et al. (2005). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet (London, England) 366 (9491): 1079–1084.
- 231 S.N. Wadman, D.M. Citron, S. Choi, et al. (eds.) (2009). 49th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), San Fransisco, CA, USA.
- 232Crowther, G.S., Baines, S.D., Todhunter, S.L., Freeman, J., Chilton, C.H., and Wilcox, M.H. (2013). Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection. J. Antimicrob. Chemother. 68 (1): 168–176.
- 233Crook, D.W., Walker, A.S., Kean, Y., Weiss, K., Cornely, O.A., Miller, M.A. et al. (2012). Fidaxomicin versus vancomycin for Clostridium difficile infection: meta-analysis of pivotal randomized controlled trials. Clin. Infect. Dis. 55 (Suppl 2): S93–S103.
- 234Stranges, P.M., Hutton, D.W., and Collins, C.D. (2013). Cost-effectiveness analysis evaluating fidaxomicin versus oral vancomycin for the treatment of Clostridium difficile infection in the United States. J. Int. Soc. Pharmacoeconomics Outcomes Res. 16 (2): 297–304.
- 235Fitzpatrick, F., Skally, M., Brady, M., Burns, K., Rooney, C., and Wilcox, M.H. (2018). European practice for CDI treatment. Adv. Exp. Med. Biol. 1050: 117–135.
- 236McDonald, L.C., Gerding, D.N., Johnson, S., Bakken, J.S., Carroll, K.C., Coffin, S.E. et al. (2018). Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66 (7): e1–e48.
- 237Lee, Y., Lim, W.I., Bloom, C.I., Moore, S., Chung, E., and Marzella, N. (2017). Bezlotoxumab (zinplava) for Clostridium difficile infection: the first monoclonal antibody approved to prevent the recurrence of a bacterial infection. P & T: J. Formulary Manage. 42 (12): 735–738.
- 238Quraishi, M.N., Widlak, M., Bhala, N., Moore, D., Price, M., Sharma, N. et al. (2017). Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46 (5): 479–493.
- 239Riley, T.V., Lyras, D., and Douce, G.R. (2019). Status of vaccine research and development for Clostridium difficile. Vaccine. doi: 10.1016/j.vaccine.2019.02.052.
- 240Castiglione, F., Lazzarini, A., Carrano, L., Corti, E., Ciciliato, I., Gastaldo, L. et al. (2008). Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem. Biol. 15 (1): 22–31.
- 241Monciardini, P., Iorio, M., Maffioli, S., Sosio, M., and Donadio, S. (2014). Discovering new bioactive molecules from microbial sources. Microb. Biotechnol. 7 (3): 209–220.
- 242Maffioli, S.I., Cruz, J.C., Monciardini, P., Sosio, M., and Donadio, S. (2016). Advancing cell wall inhibitors towards clinical applications. J. Ind. Microbiol. Biotechnol. 43 (2-3): 177–184.
- 243Maffioli, S.I., Iorio, M., Sosio, M., Monciardini, P., Gaspari, E., and Donadio, S. (2014). Characterization of the congeners in the lantibiotic NAI-107 complex. J. Nat. Prod. 77 (1): 79–84.
- 244Pozzi, R., Coles, M., Linke, D., Kulik, A., Nega, M., Wohlleben, W. et al. (2016). Distinct mechanisms contribute to immunity in the lantibiotic NAI-107 producer strain Microbispora ATCC PTA-5024. Environ. Microbiol. 18 (1): 118–132.
- 245Cruz, J.C., Iorio, M., Monciardini, P., Simone, M., Brunati, C., Gaspari, E. et al. (2015). Brominated variant of the lantibiotic NAI-107 with enhanced antibacterial potency. J. Nat. Prod. 78 (11): 2642–2647.
- 246Maffioli, S.I., Monciardini, P., Catacchio, B., Mazzetti, C., Munch, D., Brunati, C. et al. (2015). Family of class I lantibiotics from actinomycetes and improvement of their antibacterial activities. ACS Chem. Biol. 10 (4): 1034–1042.
- 247Brunati, C., Thomsen, T.T., Gaspari, E., Maffioli, S., Sosio, M., Jabes, D. et al. (2018). Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells. J. Antimicrob. Chemother. 73 (2): 414–424.
- 248Qi, F., Chen, P., and Caufield, P.W. (1999). Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl. Environ. Microbiol. 65 (9): 3880–3887.
- 249Smith, L., Zachariah, C., Thirumoorthy, R., Rocca, J., Novak, J., Hillman, J.D. et al. (2003). Structure and dynamics of the lantibiotic mutacin 1140. Biochemistry 42 (35): 10372–10384.
- 250Escano, J., Deng, P., Lu, S.E., and Smith, L. (2016). Draft genome sequence of oral bacterium Streptococcus mutans JH1140. Genome Announc. 4 (3): e00472-16.
- 251Ghobrial, O., Derendorf, H., and Hillman, J.D. (2010). Pharmacokinetic and pharmacodynamic evaluation of the lantibiotic MU1140. J. Pharmaceut. Sci. 99 (5): 2521–2528.
- 252de Kruijff, B., van Dam, V., and Breukink, E. (2008). Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. Prostag. Leukot. Essent. Fatty Acids 79 (3-5): 117–121.
- 253Smith, L., Hasper, H., Breukink, E., Novak, J., Cerkasov, J., Hillman, J.D. et al. (2008). Elucidation of the antimicrobial mechanism of mutacin 1140. Biochemistry 47 (10): 3308–3314.
- 254Christ, K., Al-Kaddah, S., Wiedemann, I., Rattay, B., Sahl, H.G., and Bendas, G. (2008). Membrane lipids determine the antibiotic activity of the lantibiotic gallidermin. J. Membr. Biol. 226 (1-3): 9–16.
- 255 Antibiotic Resistance Threats in the United States (2013). Centers for Diseae Control and Prevention. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed 5 November 2020).
- 256Wilcox, M. (2016). Interview with professor Mark Wilcox. Future Microbiol. 11: 991–994.
- 257Vaishnavi, C. (2015). Fidaxomicin – the new drug for Clostridium difficile infection. Ind. J. Med. Res. 141 (4): 398–407.
- 258Kufel, W.D., Devanathan, A.S., Marx, A.H., Weber, D.J., and Daniels, L.M. (2017). Bezlotoxumab: a novel agent for the prevention of recurrent Clostridium difficile infection. Pharmacotherapy 37 (10): 1298–1308.
- 259Surawicz, C.M., Brandt, L.J., Binion, D.G., Ananthakrishnan, A.N., Curry, S.R., Gilligan, P.H. et al. (2013). Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 108 (4): 478–498. quiz 99.
- 260O'Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations the review on antimicrobial resistance. https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (accessed 4 November 2020).