Tumor Metabolism: Focused on Tumor Glycolysis, Progress, and Prospects in Cancer Therapy
Atul Kumar
Amity Institute of Engineering and Technology, Amity University, Greater Noida, Uttar Pradesh, India
Search for more papers by this authorMamta Singh
Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorDolly Sharma
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorVinit Kumar
Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorReshma Rani
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorAtul Kumar
Amity Institute of Engineering and Technology, Amity University, Greater Noida, Uttar Pradesh, India
Search for more papers by this authorMamta Singh
Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorDolly Sharma
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorVinit Kumar
Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorReshma Rani
Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
Search for more papers by this authorAbstract
The metabolic reprogramming of cell is a well-established clinical hallmark of cancer and accordingly has attracted significant attention from researchers in the field of drug discovery. The dependency of cancer cells toward altered “cancer metabolism” (CM) encouraged scientists to work to better understand their metabolic alteration and tumor microenvironment. In fact, the cellular energetics of cancer cells is significantly different from normal cells due to the high demand of energy and metabolites that are required for cancer cell growth and proliferation. A combination of identification of metabolic processes and detailed study of how oncogenic signaling pathways can modulate the metabolic processes might be useful to achieve the selective killing of cancer cells. Recently, several studies have confirmed that cancer metabolism plays a fundamental role in cancer progression and metastasis. Carbohydrate metabolism, particularly glucose metabolism in tumor cells, has received significant attention because rapidly growing cancer cells preferentially rely on the enhanced rate of tumor glycolytic process uncoupled with oxidative phosphorylation. Small molecules targeting tumor glycolysis hold promise for drug discovery and drug development in cancer therapeutics. In addition, it offers the development of new treatment options by synergizing potential glycolytic inhibitors with existing drugs. Therefore, this article includes recent updates on tumor glycolysis and small molecules that counteract tumor glycolysis.
References
- 1Kato, Y., Maeda, T., Suzuki, A., and Baba, Y. (2018). Jpn. Dent. Sci. Rev. 54 (1): 8–21. doi: 10.1016/j.jdsr.2017.08.003.
- 2DeBerardinis, R.J., Sayed, N., Ditsworth, D., and Thompson, C.B. (2008). Curr. Opin. Genet. Dev. 18 (1): 54–61. doi: 10.1016/j.gde.2008.02.003.
- 3Galluzzi, L., Morselli, E., Kepp, O., Vitale, I., Rigoni, A., Vacchelli, E., Michaud, M., Zischk, H., Castedo, M., and Kroemer, G. (2010). Mol. Asp. Med. 31 (1): 1–20. doi: 10.1016/j.mam.2009.08.002.
- 4Brand, M.D. (1997). J. Exp. Biol. 200 (2): 193–202. https://www.ncbi.nlm.nih.gov/pubmed/9050227.
- 5Bauer, D.E., Harris, M.H., Plas, D.R., Lum, J.J., Hammerman, P.S., Rathmell, J.C., Riley, J.L., and Thompson, C.B. (2004). FASEB J. 18 (11): 1303–1305. doi: 10.1096/fj.03-1001fje.
- 6Lunt, S.Y. and Vander Heiden, M.G. (2011). Annu. Rev. Cell Dev. Biol. 27 (1): 441–464. doi: 10.1146/annurev-cellbio-092910-154237.
- 7Warburg, O. (1956). Science 123 (3191): 309–314. https://www.ncbi.nlm.nih.gov/pubmed/13298683.
- 8Koppenol, W.H., Bounds, P.L., and Dang, C.V. (2011). Nat. Rev. Cancer 11 (5): 325–337. doi: 10.1038/nrc3038.
- 9Kim, J.W. and Dang, C.V. (2006). Cancer Res. 66 (18): 8927–8930. doi: 10.1158/0008-5472.CAN-06-1501.
- 10Stine, Z.E., Walton, Z.E., Altman, B.J., Hsieh, A.L., and Dang, C.V. (2015). Cancer Discov. 5 (10): 1024–1039. doi: 10.1158/2159-8290.CD-15-0507.
- 11Dang, C.V. (2012). Genes Dev. 26 (9): 877–890. doi: 10.1101/gad.189365.112.
- 12Pavlova, N.N. and Thompson, C.B. (2016). Cell Metab. 23 (1): 27–47. doi: 10.1016/j.cmet.2015.12.006.
- 13Lin, G., Lin, K.-J., Wang, F., Chen, T.-C., Yen, T.-C., and Yeh, T.-S. (2018). Dis. Model. Mech. 11 (8): dmm033050. doi: 10.1242/dmm.033050.
- 14Schulze, A. and Yuneva, M. (2018). Dis. Model. Mech. 11 (8): 1–5. doi: 10.1242/dmm.036673.
- 15Peixoto, J. and Lima, J. (2018). Dis. Model. Mech. 11 (8): 1–13. doi: 10.1242/dmm.033464.
- 16Robey, R.B. and Hay, N. (2006). Oncogene 25 (34): 4683–4696. doi: 10.1038/sj.onc.1209595.
- 17Patra, K.C. and Hay, N. (2013). Oncotarget 4 (11): 1862–1863. doi: 10.18632/oncotarget.1563.
- 18Feher, J. (2017). ATP production I: Glycolysis. In: Quantitative Human Physiology: An Introduction, 2e, 218–226. Academic Press. doi: 10.1016/B978-0-12-800883-6.00020-3.
10.1016/B978‐0‐12‐800883‐6.00020‐3 Google Scholar
- 19Kumari, A. (2018). Sweet Biochemistry “Remembering Structures, Cycles, and Pathways by Mnemonics”, 1–5. Academic Press. doi: 10.1016/B978-0-12-814453-4.00001-7.
10.1016/B978‐0‐12‐814453‐4.00001‐7 Google Scholar
- 20Naifeh, J. and Varacallo, M. (2018). Biochemistry, Aerobic Glycolysis. Treasure Island: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK470170/.
- 21Ganapathy-Kanniappan, S. and Geschwind, J.F. (2013). Mol. Cancer 12 (152): 1–11. doi: 10.1186/1476-4598-12-152.
- 22Granchi, C. and Minutolo, F. (2012). ChemMedChem 7 (8): 1318–1350. doi: 10.1002/cmdc.201200176.
- 23Fidler, T.P., Middleton, E.A., Rowley, J.W., Boudreau, L.H., Campbell, R.A., Souvenir, R., Funari, T., Tessandier, N., Boilard, E., Weyrich, A.S., and Abel, E.D. (2017). Arterioscler. Thromb. Vasc. Biol. 37 (9): 1628–1639. doi: 10.1161/ATVBAHA.117.309184.
- 24Terry, A.R. and Hay, N. (2019). Nat. Rev. Endocrinol. 15 (2): 71–72. doi: 10.1038/s41574-018-0146-6.
- 25Hui, S., Ghergurovich, J.M., Morscher, R.J., Jang, C., Teng, X., Lu, W., Esparza, L.A., Reya, T., Zhan, L., Guo, J.Y., White, E., and Rabinowitz, J.D. (2017). Nature 551 (7678): 115–118. doi: 10.1038/nature24057.
- 26Faubert, B., Li, K.Y., Cai, L., Hensley, C.T., Kim, J., Zacharias, L.G., Yang, C., Do, Q.N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R.E., Malloy, C.R., Wachsmann, J.W., Young, J.D., Kernstine, K., and DeBerardinis, R.J. (2017). Cell 171 (2): 358–371. doi: 10.1016/j.cell.2017.09.019.
- 27Chen, X.S., Li, L.Y., Guan, Y.D., Yang, J.M., and Cheng, Y. (2016). Acta Pharmacol. Sin. 37 (8): 1013–1019. doi: 10.1038/aps.2016.47.
- 28Allison, J., Knight, J.R.P., Granchi, C., Rani, R., Minutolo, F., Milner, J., and Phillips, R.M. (2014). Oncogenesis 3 (e102): 1–11. doi: 10.1038/oncsis.2014.16.
- 29Rani, R. and Kumar, V. (2016). J. Med. Chem. 59 (2): 487–496. doi: 10.1021/acs.jmedchem.5b00168.
- 30Wood, I.S. and Trayhurn, P. (2003). Br. J. Nutr. 89 (1): 3–9. doi: 10.1079/BJN2002763.
- 31Phay, J.E., Hussain, H.B., and Moley, J.F. (2000). Surgery 128 (6): 946–951. doi: 10.1067/msy.2000.109967.
- 32Sasaki, T., Minoshima, S., Shiohama, A., Shintani, A., Shimizu, A., Asakawa, S. et al. (2001). Biochem. Biophys. Res. Commun. 289 (5): 1218–1224. doi: 10.1006/bbrc.2001.6101.
- 33Godoy, A., Ulloa, V., Rodríguez, F., Reinicke, K., Yañez, A.J., García, M. et al. (2006). J. Cell. Physiol. 207 (3): 614–627. doi: 10.1002/jcp.20606.
- 34Lisinski, I., Schurmann, A., Joost, H.G., Cushman, S.W., and Al-Hasani, H. (2001). Biochem. J. 358 (2): 517–522. doi: 10.1042/0264-6021:3580517.
- 35McBrayer, S.K., Cheng, J.C., Singhal, S., Krett, N.L., Rosen, S.T., and Shanmugam, M. (2012). Blood 119 (20): 4686–4697. doi: 10.1182/blood-2011-09-377846.
- 36Shin, B.C., McKnight, R.A., and Devaskar, S.U. (2004). J. Neurosci. Res. 75 (6): 835–844. doi: 10.1002/jnr.20054.
- 37Schmidt, S., Joost, H.G., and Schurmann, A. (2009). Am. J. Physiol. Endocrinol. Metab. 296 (4): 614–618. doi: 10.1152/ajpendo.91019.2008.
- 38Uldry, M. and Thorens, B. (2004). Pflugers Arch. 447 (5): 480–489. doi: 10.1007/s00424-003-1085-0.
- 39Navale, A.M. and Paranjape, A.N. (2016). Biophys. Rev. 8 (1): 5–9. doi: 10.1007/s12551-015-0186-2.
- 40Thompson, A.M.G., Iancu, C.V., Nguyen, T.T.H., Kim, D., and Choe, J. (2005). Sci. Rep. 5 (1): 12804. doi: 10.1038/srep12804.
- 41Wood, I.S. and Trayhurn, P. (2004). Br. J. Nutr. 92 (3): 347–355. doi: 10.1079/bjn20041213.
- 42Thorens, B. and Mueckler, M. (2010). Am. J. Physiol. Endocrinol. Metab. 298 (2): 141–145. doi: 10.1152/ajpendo.00712.2009.
- 43Mueckler, M. and Thorens, B. (2013). Mol. Asp. Med. 34 (2-3): 121–138. doi: 10.1016/j.mam.2012.07.001.
- 44Elsas, L.J. and Longo, N. (1992). Annu. Rev. Med. 43 (1): 377–393. doi: 10.1146/annurev.me.43.020192.002113.
- 45Song, D.H. and Wolfe, M.M. (2007). Curr. Opin. Endocrinol. Diabetes. Obes. 14 (1): 46–51. doi: 10.1097/MED.0b013e328011aa88.
- 46Kawamura, Y., Matsuo, H., Chiba, T., Nagamori, S., Nakayama, A., Inoue, H., Utsumi, Y., Oda, T., Nishiyama, J., Kanai, Y., and Shinomiya, N. (2011). Nucleos. Nucleot. Nucl. 30 (12): 1105–1111. doi: 10.1080/15257770.2011.623685.
- 47Miele, C., Formisano, P., Condorelli, G., Caruso, M., Oriente, F., Andreozzi, F., Tocchetti, C.G., Riccardi, G., and Beguinot, F. (1997). Diabetologia 40 (4): 421–429. doi: 10.1007/s001250050696.
- 48Yamamoto, T., Seino, Y., Fukumoto, H., Koh, G., Yano, H., Inagaki, N., Yamada, Y., Inoue, K., Manabe, T., and Imura, H. (1990). Biochem. Biophys. Res. Commun. 170 (1): 223–230. doi: 10.1016/0006-291x(90)91263-r.
- 49Younes, M., Brown, R.W., Stephenson, M., Gondo, M., and Cagle, P.T. (1997). Cancer 80 (6): 1046–1051. doi: 10.1002/(SICI)1097-0142(19970915)80:6<1046::AID-CNCR6>3.0.CO;2-7.
10.1002/(SICI)1097-0142(19970915)80:6<1046::AID-CNCR6>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- 50Ayala, F.R.R., Rocha, R., Carvalho, K., Carvalho, A.L., Cunha, I.W., Lourenço, S.V., and Soares, F.A. (2010). Molecules 15 (4): 2374–2387. doi: 10.3390/molecules15042374.
- 51Calvo, M.B., Figueroa, A., Pulido, E.G., Campelo, R.G., and Aparicio, L.A. (2010). Int. J. Endocrinol. 2010: 1–14. doi: 10.1155/2010/205357.
- 52Sung, J.Y., Kim, G.Y., Lim, S.J., Park, Y.K., and Kim, Y.W. (2010). Pathol. Res. Pract. 206 (1): 24–29. doi: 10.1016/j.prp.2009.07.018.
- 53Kang, S.S., Chun, Y.K., Hur, M.H., Lee, H.K., Kim, Y.J., Hong, S.R., Lee, J.H., Lee, S.G., and Park, Y.K. (2002). Jpn. J. Cancer Res. 93 (10): 1123–1128. doi: 10.1111/j.1349-7006.2002.tb01214.
- 54Yu, M., Yongzhi, H., Chen, S., Luo, X., Li, Y., Zhou, Y., Jin, H., Hou, B., Deng, Y., Tu, L., and Jian, Z. (2005). Dis. Esophagus 18: 185–189. doi: 10.18632/oncotarget.17445.
- 55Haber, R.S., Rathan, A., Weiser, K.R., Pritsker, A., Itzkowitz, S.H., Bodian, C., Slater, G., Weiss, A., and Burstein, D.E. (1998). Cancer 83 (1): 34–40. doi: 10.1002/(SICI)1097-0142(19980701)83:1<34::AID CNCR5>3.0.CO;2-E.
10.1002/(SICI)1097-0142(19980701)83:1<34::AID-CNCR5>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 56Cantuaria, G., Fagotti, A., Ferrandina, G., Magalhaes, A., Nadji, M., Angioli, R., Penalver, M., Mancuso, S., and Scambia, G. (2001). Cancer 92 (5): 1144–1150. doi: 10.1002/1097-0142(20010901)92:5<1144::AID-CNCR1432>3.0.CO;2-T.
10.1002/1097-0142(20010901)92:5<1144::AID-CNCR1432>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 57Tan, Z., Yang, C., Zhang, X., Zheng, P., and Shen, W. (2017). Oncotarget 8 (37): 60954–60961. doi: 10.18632/oncotarget.17604.
- 58Baer, S., Casaubon, L., Schwartz, M.R., Marcogliese, A., and Younes, M. (2002). Laryngoscope 112 (2): 393–396. doi: 10.1097/00005537-200202000-00034.
- 59Ojelabi, O.A., Lloyd, K.P., De Zutter, J.K., and Carruthers, A. (2018). J. Biol. Chem. 293: 19823–19834. doi: 10.1074/jbc.RA118.002326.
- 60Torres, M.P., Rachagani, S., Purohit, V., Pandey, P., Joshi, S., Moore, E.D., Johansson, S.L., Singh, P.K., Ganti, A.K., and Batra, S.K. (2012). Cancer Lett. 323 (1): 29–40. doi: 10.1016/j.canlet.2012.03.031.
- 61Hamilton, K.E., Rekman, J.F., Gunnink, L.K., Busscher, B.M., Scott, J.L., Tidball, A.M., Stehouwer, N.R., Johnecheck, G.N., Looyenga, B.D., and Louters, L.L. (2018). Biochimie 151: 107–114. doi: 10.1016/j.biochi.2018.05.012.
- 62Vera, J.C., Reyes, A.M., Cárcamo, J.G., Velásquez, F.V., Rivas, C.I., Zhang, R.H., Strobel, P., Iribarren, R., Scher, H.I., Slebe, J.C., and Golde, D.W. (1996). J. Biol. Chem. 271 (15): 8719–8724. doi: 10.1074/jbc.271.15.8719.
- 63Pérez, A., Ojeda, P., Ojeda, L., Salas, M., Rivas, C.I., Vera, J.C., and Reyes, A.M. (2011). Biochemistry 50 (41): 8834–8845. doi: 10.1021/bi200748b.
- 64Hillerns, P.I., Zu, Y., Fu, Y.J., and Wink, M. (2005). Z. Naturforsch. C 60 (7–8): 649–656. https://www.ncbi.nlm.nih.gov/pubmed/16163844.
- 65Zhan, T., Digel, M., Küch, E.M., Stremmel, W., and Füllekrug, J. (2011). J. Cell. Biochemist 112 (3): 849–859. doi: 10.1002/jcb.22984.
- 66Flaig, T.W., Gustafson, D.L., Su, L., Zirrolli, J.A., Crighton, F., Harrison, G.S., Pierson, A.S., Agarwal, R., and Glodé, L.M. (2007). Investig. New Drugs 25 (2): 139–146. doi: 10.1007/s10637-006-9019-2.
- 67Kraageorgis, G., Reckzeh, E.S., Ceballos, J., Schwalfenberg, M., Sievers, S., Ostermann, C., Pahl, A., Ziegler, S., and Waldmann, H. (2018). Nat. Chem. 10 (11): 1103–1111. doi: 10.1038/s41557-018-0132-6.
- 68Ojelabi, O.A., Lloyd, K.P., Simon, A.H., De Zutter, J.K., and Carruthers, A. (2016). J. Biol. Chem. 291 (52): 26762–26772. doi: 10.1074/jbc.M116.759175.
- 69Sage, J.M., Cura, A.J., Lloyd, K.P., and Carruthers, A. (2015). Am. J. Physiol. Cell Physiol. 308 (10): C827–C834. doi: 10.1152/ajpcell.00001.2015.
- 70Liu, Y., Cao, Y., Zhang, W., Bergmeier, S., Qian, Y., Akbar, H., Colvin, R., Ding, J., Tong, L., Wu, S., Hines, J., and Chen, X. (2012). Mol. Cancer Ther. 11 (8): 1672–1682. doi: 10.1158/1535-7163.MCT-12-0131.
- 71Chan, D.A., Sutphin, P.D., Nguyen, P., Turcotte, S., Lai, E.W., Banh, A., Reynolds, G.E., Chi, J., Wu, J., Solow-Cordero, D.E., Bonnet, M., Flanagan, J.U., Bouley, D.M., Graves, E.E., Denny, W.A., Hay, M.P., and Giaccia, A.J. (2011). Sci. Transl. Med. 3 (94): 94ra70. doi: 10.1126/scitranslmed.3002394.
- 72Schimmer, A.D., Thomas, M.P., Hurren, R., Gronda, M., Pellecchia, M., Pond, G.R., Konopleva, M., Gurfinkel, D., Mawji, I.A., Brown, E., and Reed, J.C. (2006). Cancer Res. 66 (4): 2367–2375. doi: 10.1158/0008-5472.CAN-05-1061.
- 73Wood, T.E., Dalili, S., Simpson, C.D., Hurren, R., Mao, X., Saiz, F.S., Gronda, M., Eberhard, Y., Minden, M.D., Bilan, P.J., Klip, A., Batey, R.A., and Schimmer, A.D. (2008). Mol. Cancer Ther. 7 (11): 3546–3555. doi: 10.1158/1535-7163.MCT-08-0569.
- 74Siebeneicher, H., Cleve, A., Rehwinkel, H., Neuhaus, R., Heisler, I., Müller, T., Bauser, M., and Buchmann, B. (2016). ChemMedChem 11 (20): 2261–2271. doi: 10.1002/cmdc.201600276.
- 75Granchi, C., Qian, Y., Lee, H.Y., Paterni, I., Pasero, C., Iegre, J., Carlson, K.E., Tuccinardi, T., Chen, X., Katzenellenbogen, J.A., Hergenrother, P.J., and Minutolo, F. (2015). ChemMedChem 10 (11): 1892–1900. doi: 10.1002/cmdc.201500320.
- 76Granchi, C., Tuccinardi, T., and Minutolo, F. (2018). Design, synthesis, and evaluation of GLUT inhibitors. In: Glucose Transport. Methods in Molecular Biology, vol. 1713 (ed. K. Lindkvist-Petersson and J. Hansen), 93–107. New York: Humana Press. doi: 10.1007/978-1-4939-7507-5_8.
10.1007/978‐1‐4939‐7507‐5_8 Google Scholar
- 77Siebeneicher, H., Bauser, M., Buchmann, B., Heisler, I., Müller, T., Neuhaus, R., Rehwinkel, H., Telser, J., and Zorn, L. (2016). Bioorg. Med. Chem. Lett. 26 (7): 1732–1737. doi: 10.1016/j.bmcl.2016.02.050.
- 78Kapoor, K., Finer-Moore, J.S., Pedersen, B.P., Caboni, L., Waight, A., Hillig, R.C., Bringmann, P., Heisler, I., Müller, T., Siebeneicher, H., and Stroud, R.M. (2016). Proc. Natl. Acad. Sci. U. S. A. 113 (17): 4711–4716. doi: 10.1073/pnas.1603735113.
- 79Wilson, J.E. (2003). J. Exp. Biol. 206 (12): 2049–2057. doi: 10.1242/jeb.00241.
- 80Wu, J., Hu, L., Hu, F., Zou, L., and He, T. (2017). Oncotarget 8 (19): 32332–32344. doi: 10.18632/oncotarget.15974.
- 81John, S., Weiss, J.N., and Ribalet, B. (2011). PLoS ONE 6 (3): e17674. doi: 10.1371/journal.pone.0017674.
- 82Patra, K.C., Wang, Q., Bhaskar, P.T., Miller, L., Wang, Z., Wheaton, W., Chandel, N., Laakso, M., Muller, W.J., Allen, E.L., Jha, A.K., Smolen, G.A., Clasquin, M.F., Robey, B., and Hay, N. (2013). Cancer Cell 24 (2): 213–228. doi: 10.1016/j.ccr.2013.06.014.
- 83Xu, S., Catapang, A., Braas, D., Stiles, L., Doh, H.M., Lee, J.T., Graeber, T.G., Damoiseaux, R., Shirihai, O., and Herschman, H.R. (2018). Cancer Metab. 6 (1): 7. doi: 10.1186/s40170-018-0181-8.
- 84DeWaal, D., Nogueira, V., Terry, A.R., Patra, K.C., Jeon, S., Guzman, G., Au, J., Long, C.P., Antoniewicz, M.R., and Hay, N. (2018). Nat. Commun. 9 (446): 1–14. doi: 10.1038/s41467-017-02733-4.
- 85Bao, F., Yang, K., Wu, C., Gao, S., Wang, P., Chen, L., and Li, H. (2018). Fitoterapia 125: 123–129. doi: 10.1016/j.fitote.2018.01.001.
- 86Cardaci, S., Desideri, E., and Ciriolo, M.R. (2012). J. Bioenerg. Biomembr. 44 (1): 17. doi: 10.1007/s10863-012-9422-7.
- 87Lin, H., Zeng, J., Xie, R., Schulz, M.J., Tedesco, R., Qu, J., Erhard, K.F., Mack, J.F., Raha, K., Rendina, A.R., Szewczuk, L.M., Kratz, P.M., Jurewicz, A.J., Cecconie, T., Martens, S., McDevitt, P.J., Martin, J.D., Chen, S.B., Jiang, Y., Nickels, L., Schwartz, B.J., Smallwood, A., Zhao, B., Campobasso, N., Qian, Y., Briand, J., Rominger, C.M., Oleykowski, C., Hardwicke, M.A., and Luengo, J.I. (2016). ACS Med. Chem. Lett. 7 (3): 217–222. doi: 10.1021/acsmedchemlett.5b00214.
- 88Kochel, K., Tomczyk, M.D., Simões, R.F., Fraczek, T., Sobon, A., Oliveira, P.J., Walczak, K.Z., and Koceva-Chyla, A. (2016). Bioorg. Med. Chem. Lett. 27 (3): 427–431. doi: 10.1016/j.bmcl.2016.12.055.
- 89Agnihotri, S., Mansouri, S., Burrell, K., Li, M., Yasin, M., Liu, J., Nejad, R., Kumar, S., Jalali, S., Singh, S.K., Vartanian, A., Chen, E.X., Karimi, S., Singh, O., Bunda, S., Mansouri, A., Aldape, K.D., and Zadeh, G. (2018). Clin. Cancer Res. 25 (2): 844–855. doi: 10.1158/1078-0432.CCR-18-1854.
- 90Khalid, M.H., Tokunaga, Y., Caputy, A.J., and Walters, E. (2005). J. Neurosurg. 103 (1): 79–86. doi: 10.3171/jns.2005.103.1.0079.
- 91Rotem, R., Heyfets, A., Fingrut, O., Blickstein, D., Shaklai, M., and Flescher, E. (2005). Cancer Res. 65 (5): 1984–1993. doi: 10.1158/0008-5472.CAN-04-3091.
- 92Sun, A.Q., Yuksel, K.U., Jacobson, T.M., and Gracy, R.W. (1990). Arch. Biochem. Biophys. 283 (1): 120–129. doi: 10.1016/0003-9861(90)90621-5.
- 93Ma, Y.T., Xing, X.F., Dong, B., Cheng, X.J., Guo, T., Du, H., Wen, X.Z., and Ji, J.F. (2018). Cancer Manag. Res. 10: 4969–4980. doi: 10.2147/CMAR.S177441.
- 94Niinaka, Y., Paku, S., Haga, A., Watanabe, H., and Raz, A. (1998). Cancer Res. 58 (12): 2667–2674. https://www.ncbi.nlm.nih.gov/pubmed/9635595.
- 95Funasaka, T., Haga, A., Raz, A., and Nagase, H. (2001). Biochem. Biophys. Res. Commun. 284 (1): 118–128. doi: 10.1006/bbrc.2001.5135.
- 96Yanagawa, T., Funasaka, T., Tsutsumi, S., Watanabe, H., and Raz, A. (2004). Endocr. Relat. Cancer 11 (4): 749–759. doi: 10.1158/0008-5472.CAN-07-1586.
- 97Tsutsumi, S., Fukasawa, T., Yamauchi, H., Kato, T., Kigure, W., Morita, H., Asao, T., and Kuwano, H. (2009). Int. J. Oncol. 35 (5): 1117–1121. doi: 10.3892/ijo_00000427.
- 98Meng, M., Chane, T.L., Sun, Y.J., and Hsiao, C.D. (1999). Protein Sci. 8 (11): 2438–2443. doi: 10.1110/ps.8.11.2438.
- 99Chou, C.C., Sun, Y.J., Meng, M., and Hsiao, C.D. (2000). J. Biol. Chem. 275 (30): 23154–23160. doi: 10.1074/jbc.M002017200.
- 100Lee, J.H., Chang, K.Z., Patel, V., and Jeffery, C.J. (2001). Biochemist 40 (26): 7799–7805. doi: 10.1021/bi002916o.
- 101Arsenieva, D. and Jeffery, C.J. (2002). J. Mol. Biol. 323 (1): 77–84. doi: 10.1016/S0022-2836(02)00892-6.
- 102Hardrè, R., Bonnette, C., Salmon, L., and Gaudemer, A. (1998). Bioorg. Med. Chem. Lett. 8 (23): 3435–3438. doi: 10.3109/14756360009040706.
- 103Chirgwin, J.M., Parsons, T.F., and Noltmann, E.A. (1975). J. Biol. Chem. 250 (18): 7277–7279. https://www.ncbi.nlm.nih.gov/pubmed/240822.
- 104Mansour, T.E. (1963). J. Biol. Chem. 238 (7): 2285–2292. http: //www.jbc.org/content/238/7/2285.
- 105Schaftingen, E.V., Hue, L., and Hers, H.G. (1980). Biochem. J. 192 (3): 897–901. doi: 10.1042/bj1920897.
- 106Atsumi, T., Chesney, J., Metz, C., Leng, L., Donnelly, S., Makita, Z., Mitchell, R., and Bucala, R. (2002). Cancer Res. 62 (20): 5881–5887. https://www.ncbi.nlm.nih.gov/pubmed/12384552.
- 107Spitz, G.A., Furtado, C.M., Sola-Penna, M., and Zancan, P. (2009). Biochem. Pharmacol. 77 (1): 46–53. doi: 10.1016/j.bcp.2008.09.020.
- 108Clem, B., Telang, S., Clem, A., Yalcin, A., Meier, J., Simmons, A., Rasku, M.A., Arumugam, S., Dean, W.L., Eaton, J., Lane, A., Trent, J.O., and Chesney, J. (2008). Mol. Cancer Ther. 7 (1): 110–120. doi: 10.1158/1535-7163.MCT-07-0482.
- 109Clem, B.F., O'Neal, J., Tapolsky, G., Clem, A.L., Imbert-Fernandez, Y., Kerr, D.A., Klarer, A.C., Redman, R., Miller, D.M., Trent, J.O., Telang, S., and Chesney, J. (2013). Mol. Cancer Ther. 12 (8): 1461–1470. doi: 10.1158/1535-7163.MCT-13-0097.
- 110Seo, M., Kim, J.D., Neau, D., Sehgal, I., and Lee, Y.H. (2011). PLoS ONE 6 (9): e24179. doi: 10.1371/journal.pone.0024179.
- 111Boyd, S., Brookfield, J.L., Critchlow, S.E., Cumming, I.A., Curtis, N.J., Debreczeni, J., Degorce, S.B.L., Donald, C., Evans, N.J., Groombridge, S., Hopcroft, P., Jones, N.P., Kettle, J.G., Lamont, S., Lewis, H.J., MacFaull, P., McLoughlin, S.B., Rigoreau, L.J.M., Smith, J.M., St-Gallay, S., Stock, J.K., Turnbull, A.P., Wheatley, E.R., Winter, J., and Wingfield, J. (2015). J. Med. Chem. 58 (8): 3611–3625. doi: 10.1021/acs.jmedchem.5b00352.
- 112Khan, K.N., Nakata, K., Nakao, K., Kato, Y., and Eguchi, K. (1999). Dig. Dis. Sci. 44 (8): 1610–1618. doi: 10.1023/a:1026623312806.
- 113Semenza, G.L., Jiang, B.H., Leung, S.W., Passantino, R., Concordet, J.P., Maire, P., and Giallongo, A. (1996). J. Biol. Chem. 271 (51): 32529–32537. doi: 10.1074/jbc.271.51.32529.
- 114Rho, J.H., Roehrl, M.H.A., and Wang, J.Y. (2009). Protein J. 28 (3–4): 148–160. doi: 10.1007/s10930-009-9177-0.
- 115Poschmann, G., Sitek, B., Sipos, B., Ulrich, A., Wiese, S., Stephan, C., Warscheid, B., Klöppel, G., Borght, A.V., Ramaekers, F.C.S., Meyer, H.E., and Stühler, K. (2009). Mol. Cell. Proteomics 8 (5): 1105–1116. doi: 10.1074/mcp.M800422-MCP200.
- 116Du, S., Guan, Z., Hao, L., Song, Y., Wang, L., Gong, L., Liu, L., Qi, X., Hou, Z., and Shao, S. (2014). PLoS ONE 9 (1): e85804. doi: 10.1371/journal.pone.0085804.
- 117Chaerkady, R., Harsha, H.C., Nalli, A., Gucek, M., Vivekanandan, P., Akhtar, J., Cole, R.N., Simmers, J., Schulick, R.D., Singh, S., Torbenson, M., Pandey, A., and Thuluvath, P.J. (2008). J. Proteome Res. 7 (10): 4289–4298. doi: 10.1021/pr800197z.
- 118Ji, S., Zhang, B., Liu, J., Qin, Y., Liang, C., Shi, S., Jin, K., Liang, D., Xu, W., Xu, H., Wang, W., Wu, C., Liu, L., Liu, C., Xu, J., Ni, Q., and Yu, X. (2016). Cancer Lett. 374 (1): 127–135. doi: 10.1016/j.canlet.2016.01.054.
- 119Peng, Y., Li, X., Wu, M., Yang, J., Liu, M., Zhang, W., Xiang, B., Wang, X., Li, X., Li, G., and Shen, S. (2012). Mol. BioSyst. 8 (11): 3077–3088. doi: 10.1039/c2mb25286d.
- 120Tao, Q., Yuan, S., Yang, F., Yang, S., Yang, Y., Yuan, J., Wang, Z., Xu, Q., Lin, K., Cai, J., Yu, J., Huang, W., Teng, X., Zhou, C., Wang, F., Sun, S., and Zhou, W. (2015). Mol. Cancer 14 (1): 170. doi: 10.1186/s12943-015-0437-7.
- 121Ginsburg, A. and Mehler, A.H. (1966). Biochemistry 5 (8): 2623–2634. https://www.ncbi.nlm.nih.gov/pubmed/5968573.
- 122Mabiala-Bassiloua, C.G., Zwolinska, M., Therisod, H., Sygusch, J., and Therisod, M. (2008). Bioorg. Med. Chem. Lett. 18 (5): 1735–1737. doi: 10.1016/j.bmcl.2008.01.076.
- 123Gefflaut, T., Blonski, C., Perie, J., and Willson, M. (1995). Prog. Biophys. Mol. Biol. 63 (3): 301–340. https://www.ncbi.nlm.nih.gov/pubmed/8599032.
- 124Dax, C., Coinçon, M., Sygusch, J., and Blonski, C. (2005). Biochemistry 44 (14): 5430–5443. doi: 10.1021/bi0477992.
- 125Anai, M., Lai, C.Y., and Horecker, B.L. (1973). Arch. Biochem. Biophys. 156 (2): 712–719. doi: 10.1016/0003-9861(73)90324-X.
- 126Skarzynksy, T., Moody, P.C., and Wonacott, A.J. (1987). J. Mol. Biol. 193 (1): 171–187. https://www.ncbi.nlm.nih.gov/pubmed/3586018.
- 127Biesecker, G., Harris, J.I., Thierry, J.C., Walker, J.E., and Wonacott, A.J. (1977). Nature 266 (5600): 328–333. doi: 10.1038/266328a0.
- 128Tristan, C., Shahani, N., Sedlak, T.W., and Sawa, A. (2011). Cell. Signal. 23 (2): 317–323. doi: 10.1016/j.cellsig.2010.08.003.
- 129Tang, Z., Yuan, S., Hu, Y., Zhang, H., Wu, W., Zeng, Z., Yang, J., Yun, J., Xu, R., and Huang, P. (2012). J. Bioenerg. Biomembr. 44 (1): 117–125. doi: 10.1007/s10863-012-9420-9.
- 130Ganapathy-Kanniappan, S., Kunjithapatham, R., and Geschwind, J.F. (2012). Oncotarget 3 (9): 940–953. doi: 10.18632/oncotarget.623.
- 131Revillion, F., Pawlowski, V., and Hornez, L. (2000). Eur. J. Cancer 36 (8): 1038–1042. https://www.ncbi.nlm.nih.gov/pubmed/10885609.
- 132Tokunaga, K., Nakamura, Y., Sakata, K., Fujimori, K., Ohkubo, M., Sawada, K., and Sakiyama, S. (1987). Cancer Res. 47 (21): 5616–5619. https://www.ncbi.nlm.nih.gov/pubmed/3664468.
- 133Vila, M.R., Nicolas, A., Morote, J., and Meseguer, A. (2000). Cancer 89 (1): 152–164. https://www.ncbi.nlm.nih.gov/pubmed/10897012.
10.1002/1097-0142(20000701)89:1<152::AID-CNCR20>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 134Schek, N., Hall, B.L., and Finn, O.J. (1988). Cancer Res. 48 (22): 6354–6359. https://www.ncbi.nlm.nih.gov/pubmed/3180054.
- 135Ramos, D., Pellin-Carcelen, A., Agusti, J., Murgui, A., Jorda, E., Pellin, A., and Monteagudo, C. (2015). Anticancer Res. 35 (1): 439–444. https://www.ncbi.nlm.nih.gov/pubmed/25550585.
- 136Liu, K., Tang, Z., Huang, A., Chen, P., Liu, P., Yang, J., Lu, W., Liao, J., Sun, Y., Wen, S., Hu, Y., and Huang, P. (2017). Int. J. Oncol. 50 (1): 252–262. doi: 10.3892/ijo.2016.3774.
- 137Chernorizov, K.A., Elkina, J.L., Semenyuk, P.I., Svedas, V.K., and Muronetz, V.I. (2010). Biochemistry Mosc. 75 (12): 1444–1449. doi: 10.1134/S0006297910120047.
- 138Norris, A.J., Sartippour, M.R., Lu, M., Park, T., Rao, J.Y., Jackson, M.I., Fukuto, J.M., and Brooks, M.N. (2008). Int. J. Cancer 122 (8): 1905–1910. doi: 10.1002/ijc.23305.
- 139Lopez, B.E., Wink, D.A., and Fukuto, J.M. (2007). Arch. Biochem. Biophys. 465 (2): 430–436. doi: 10.1016/j.abb.2007.06.017.
- 140Gerszon, J., Serafin, E., Buczkowski, A., Michlewska, S., Bielnicki, J.A., and Rodacka, A. (2018). PLoS ONE 13 (1): e0190656. doi: 10.1371/journal.pone.0190656.
- 141Sakai, K., Hasumi, K., and Endo, A. (1991). Biochim. Biophys. Acta 1077 (2): 192–196. doi: 10.1016/0167-4838(91)90058-8.
- 142Endo, A., Hasumi, K., Sakai, K., and Kanbe, T. (1985). J. Antibiot. 38 (7): 920–925. https://www.ncbi.nlm.nih.gov/pubmed/4030504.
- 143Sakai, K., Hasumi, K., and Endo, A. (1988). Biochim. Biophys. Acta 952: 297–303. https://www.ncbi.nlm.nih.gov/pubmed/3337830.
- 144Kumagai, S., Narasaki, R., and Hasumi, K. (2008). Biochem. Biophys. Res. Commun. 365 (2): 362–368. doi: 10.1016/j.bbrc.2007.10.199.
- 145Brown-Woodman, P.D.C., Mohri, H., Mohri, T., Suter, D., and White, I.G. (1978). Biochem. J. 170 (1): 23–37. doi: 10.1042/bj1700023.
- 146Jones, A.R., Bubb, W.A., Murdoch, S.R., and Stevenson, D.A. (1986). Aust. J. Biol. Sci. 39 (4): 395–406. https://www.ncbi.nlm.nih.gov/pubmed/3593119.
- 147Grace, R.F., Layton, D.M., and Barcellini, W. (2019). Br. J. Haematol. 184 (5): 721–734. doi: 10.1111/bjh.15758.
- 148Imamura, K. and Tanaka, T. (1982). Methods Enzymol. 90 (25): 150–165. doi: 10.1016/S0076-6879(82)90121-5.
- 149Cardenas, J.M. and Dyson, R.D. (1978). J. Exp. Zool. 204 (3): 361–367. doi: 10.1016/0006-291X(78)91610-8.
- 150Strandholm, J.J., Dyson, R.D., and Cardenas, J.M. (1976). Arch. Biochem. Biophys. 173 (1): 125–131. https://www.ncbi.nlm.nih.gov/pubmed/1259434.
- 151Stammers, D.K. and Muirhead, H. (1977). J. Mol. Biol. 112 (2): 309–316. doi: 10.1016/S0022-2836(77)80146-0.
- 152Muirhead, H., Clayden, D.A., Barford, D., Lorimer, C.G., Fothergill-Gilmore, L.A., and Schiltz, E. (1986). EMBO J. 5 (3): 475–481. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166788.
- 153Hsu, M.C. and Hung, W.C. (2018). Mol. Cancer 17 (1): 35. doi: 10.1186/s12943-018-0791-3.
- 154Xia, L., Qin, K., Wang, X., Wang, X., Zhou, A., Chen, G., and Lu, Y. (2017). Oncotarget 8 (65): 109120–109134. doi: 10.18632/oncotarget.22621.
- 155Lim, J.Y., Yoon, S.O., Seol, S.Y., Hong, S.W., Kim, J.W., Choi, S.H., and Cho, J.Y. (2012). World J. Gastroenterol. 18 (30): 4037–4043. doi: 10.3748/wjg.v18.i30.4037.
- 156Li, J., Yang, Z., Zou, Q., Yuan, Y., Li, J., Liang, L., Zeng, G., and Chen, S. (2014). Clin. Transl. Oncol. 16 (2): 200–207. doi: 10.1007/s12094-013-1063-8.
- 157Hjerpe, E., Brage, S.E., Carlson, J., Stolt, M.F., Schedvins, K., Johansson, H., Shoshan, M., and Avall-Lundqvist, E. (2013). BMC Clin. Pathol. 13: 30. doi: 10.1186/1472-6890-13-30.
- 158Yuan, C., Li, Z., Wang, Y., Qi, B., Zhang, W., Ye, J., Wu, H., Jiang, H., Song, L.N., Yang, J., and Cheng, J. (2014). Histopathology 65 (5): 595–605. doi: 10.1155/2014/789761.
- 159Li, W., Xu, Z., Hong, J., and Xu, Y. (2014). Med. Oncol. 31 (9): 118. doi: 10.1007/s12032-014-0118-1.
- 160Zhao, Y., Shen, L., Chen, X., Qian, Y., Zhou, Q., Wang, Y., Wang, K., Liu, M., Zhang, S., and Huang, X. (2015). Histol. Histopathol. 30 (11): 1313–1320. https://www.ncbi.nlm.nih.gov/pubmed/25936600.
- 161Hu, W., Lu, S.X., Li, M., Zhang, C., Liu, L.L., Fu, J., Jin, J.T., Luo, R.Z., Zhang, C.Z., and Yun, J.P. (2015). Oncotarget 6 (9): 6570–6583. doi: 10.18632/oncotarget.3262.
- 162Ogawa, H., Nagano, H., Konno, M., Eguchi, H., Koseki, J., Kawamoto, K., Nishida, N., Colvin, H., Tomokuni, A., and Tomimaru, Y. (2015). Mol. Clin. Oncol. 3 (3): 563–571. doi: 10.3892/mco.2015.490.
- 163Lockney, N.A., Zhang, M., Lu, Y., Sopha, S.C., Washington, M.K., Merchant, N., Zhao, Z., Shyr, Y., Chakravarthy, A.B., and Xia, F. (2015). J. Gastrointest. Cancer 46 (4): 390–398. doi: 10.1007/s12029-015-9764-6.
- 164Lin, Y., Liu, F., Fan, Y., Qian, X., Lang, R., Gu, F., Gu, J., and Fu, L. (2015). Int. J. Clin. Exp. Pathol. 8 (7): 8028–8037. https://www.ncbi.nlm.nih.gov/pubmed/26339369.
- 165Chen, J., Xie, J., and Jiang, Z. (2011). Oncogene 30 (42): 4297–4306. doi: 10.1038/onc.2011.137.
- 166Li, W., Liu, J., and Zhao, Y. (2014). Mol. Carcinog. 53 (5): 403–412. doi: 10.1002/mc.21988.
- 167Chen, J., Jiang, Z., Wang, B., Wang, Y., and Hu, X. (2012). Cancer Lett. 316 (2): 204–210. doi: 10.1016/j.canlet.2011.10.039.
- 168Babu, M.S., Mahanta, S., Lakhter, A.J., Hato, T., Paul, S., and Naidu, S.R. (2018). PLoS ONE 13 (2): e0191419. doi: 10.1371/journal.pone.0191419.
- 169Vander Heiden, M.G., Christofk, H.R., Schuman, E., Subtelny, A.O., Sharfi, H., Harlow, E.E., Xian, J., and Cantley, L.C. (2010). Biochem. Pharmacol. 79 (8): 1118–1124. doi: 10.1016/j.bcp.2009.12.003.
- 170Ning, X., Qi, H., Li, R., Li, Y., Jin, Y., McNutt, M.A., Liu, J., and Yin, Y. (2017). Eur. J. Med. Chem. 138: 343–352. doi: 10.1016/j.ejmech.2017.06.064.
- 171Cui, J., Shi, M., Xie, D., Wei, D., Jia, Z., Zheng, S., Gao, Y., Huang, S., and Xie, K. (2014). Clin. Cancer Res. 20 (10): 2595–2606. doi: 10.1158/1078-0432.CCR-13-2407.
- 172Xie, H., Hanai, J., Ren, J.G., Kats, L., Burgess, K., Bhargava, P., Signoretti, S., Billiard, J., Duffy, K.J., Grant, A., Wang, X., Lorkiewicz, P.K., Schatzman, S., Bousamra, M., Lane, A.N., Higashi, R.M., Fan, T.W., Pandolfi, P.P., and Sukhatme, V.P. (2014). Cell Metab. 19 (5): 795–809. doi: 10.1016/j.cmet.2014.03.003.
- 173Yadav, C., Ahmad, A., D'Souza, B., Agarwal, A., Nandini, M., Prabhu, K.A., and D'Souza, V. (2016). Indian J. Clin. Biochem. 31 (2): 240–242. doi: 10.1007/s12291-015-0511-3.
- 174Sheng, S.L., Liu, J.J., Dai, Y.H., Sun, X.G., Xiong, X.P., and Huang, G. (2012). FEBS J. 279 (20): 3898–38910. doi: 10.1111/j.1742-4658.2012.08748.x.
- 175Wang, Z.Y., Loo, T.Y., Shen, J.G., Wang, N., Wang, D.M., Yang, D.P., Mo, S.L., Guan, X.Y., and Chen, J.P. (2012). Breast Cancer Res. Treat. 131 (3): 791–800. doi: 10.1007/s10549-011-1466-6.
- 176Le, A., Cooper, C.R., Gouw, A.M., Dinavahi, R., Maitra, A., Deck, L.M., Royer, R.E., Vander Jagt, D.L., Semenza, G.L., and Dang, C.V. (2010). Proc. Natl. Acad. Sci. U. S. A. 107 (5): 2037–2042. doi: 10.1073/pnas.0914433107.
- 177Koukourakis, M.I., Giatromanolaki, A., Sivridis, E., Gatter, K.C., Trarbach, T., Folprecht, G., Shi, M.M., Lebwohl, D., Jalava, T., Laurent, D., Meinhardt, G., and Harris, A.L. (2011). Clin. Cancer Res. 17 (14): 4892–4900. doi: 10.1158/1078-0432.CCR-10-2918.
- 178Maftouh, M., Avan, A., Sciarrillo, R., Granchi, C., Leon, L.G., Rani, R., Fune, N., Smid, K., Honeywell, R., Boggi, U., Minutolo, F., Peters, G.J., and Giovannetti, E. (2014). Br. J. Cancer 110 (1): 172–182. doi: 10.1038/bjc.2013.681.
- 179Kolev, Y., Uetake, H., Takagi, Y., and Sugihara, K. (2008). Ann. Surg. Oncol. 15 (8): 2336–2344. doi: 10.1245/s10434-008-9955-5.
- 180Koukourakis, M.I., Giatromanolaki, A., and Sivridis, E. (2003). Br. J. Cancer 89 (5): 877–885. doi: 10.1038/sj.bjc.6601205.
- 181Kayser, G., Kassem, A., and Sienel, W. (2010). Diagn. Pathol. 2010 (5): 22–32. doi: 10.1186/1746-1596-5-22.
10.1186/1746‐1596‐5‐22 Google Scholar
- 182Giatromanolaki, A., Sivridis, E., Gatter, K.C., Turley, H., Harris, A.L., and Koukourakis, M.I. (2006). Gynecol. Oncol. 103 (3): 912–918. doi: 10.1016/j.ygyno.2006.05.043.
- 183Grimm, M., Alexander, D., Munz, A., Hoffmann, J., and Reinert, S. (2013). Clin. Exp. Metastasis 30 (4): 529–540. doi: 10.1007/s10585-012-9557-2.
- 184Zhuang, L., Scolyer, R.A., Murali, R., McCarthy, S.W., Zhang, X.D., Thompson, J.F., and Hersey, P. (2010). Mod. Pathol. 23 (1): 45–53. doi: 10.1038/modpathol.2009.129.
- 185Yao, F., Zhao, T., Zhong, C., Zhu, J., and Zhao, H. (2013). Tumour Biol. 34 (1): 25–31. doi: 10.1007/s13277-012-0506-0.
- 186Koukourakis, M.I., Giatromanolaki, A., Winter, S., Leek, R., Sivridis, E., and Harris, A.L. (2009). Oncology 77 (5): 285–292. doi: 10.1159/000259260.
- 187Jin, L., Chun, J., Pan, C., Alesi, G.N., Li, D., Magliocca, K.R., Kang, Y., Chen, Z.G., Shin, D.M., Khuri, F.R., Fan, J., and Kang, S. (2017). Oncogene 36 (27): 3797–3806. doi: 10.1038/onc.2017.6.
- 188Koukourakis, M.I., Giatromanolaki, A., Simopoulos, C., Polychronidis, A., and Sivridis, E. (2007). Clin. Exp. Metastasis 22 (1): 25–30. doi: 10.1007/s10585-005-2343-7.
10.1007/s10585‐005‐2343‐7 Google Scholar
- 189Fantin, V.R., St-Pierre, J., and Leder, P. (2006). Cancer Cell 9 (6): 425–434. doi: 10.1016/j.ccr.2006.04.023.
- 190Shim, H., Dolde, C., Lewis, B.C., Wu, C.S., Dang, G., Jungmann, R.A., Dalla-Favera, R., and Dang, C.V. (1997). Proc. Natl. Acad. Sci. U. S. A. 94 (13): 6658–6663. doi: 10.1073/pnas.94.13.6658.
- 191Kaller, M., Liffers, S.-T., Oeljeklaus, S., Kuhlmann, K., Roh, S., Hoffmann, R., Warscheid, B., and Hermeking, H. (2011). Mol. Cell. Proteomics 10 (8): M111.010462. doi: 10.1074/mcp.M111.010462.
- 192Kumar, V., Kumar, A., and Rani, R. (2017). Topics in Anti-Cancer Research, vol. 6, 114–142. Bentham Science Publishers. doi: 10.2174/97816810845581170601.
10.2174/97816810845581170601 Google Scholar
- 193Rani, R. and Kumar, V. (2017). Future Med. Chem. 9 (11): 1113–1117. doi: 10.4155/fmc-2017-0082.
- 194Jing, X., Li, J., Yang, Q., Wang, J., Su, T., and Zhou, S. (2019). Breast Cancer Res. 19 (1): 27. doi: 10.1186/s13058-017-0818-5.
10.1186/s13058‐017‐0818‐5 Google Scholar
- 195Bader, A., Tuccinardi, T., Granchi, C., Martinelli, A., Macchia, M., Minutolo, F., De Tommasi, N., and Braca, A. (2015). Phytochemistry 116: 262–268. doi: 10.1016/j.phytochem.2015.03.007.
- 196Li, B., Jin, X., Meng, H., Hu, B., Zhang, T., Yu, J., Chen, S., Guo, X., Wang, W., Jiang, W., and Wang, J. (2017). Oncotarget 8 (29): 47849–47860. doi: 10.18632/oncotarget.18133.
- 197Manerba, M., Vettraino, M., Fiume, L., Di Stefano, G., Sartini, A., Giacomini, E., Buonfiglio, R., and Roberti, M. (2017). ChemMedChem 7 (2): 311–317. doi: 10.1002/cmdc.201100471.
- 198Ward, R.A., Brassington, C., Breeze, A.L., Caputo, A., Critchlow, S., Davies, G., Goodwin, L., Hassall, G., Greenwood, R., Holdgate, G.A., Mrosek, M., Norman, R.A., Pearson, S., Tart, J., Tucker, J.A., Vogtherr, M., Whittaker, D., Wingfield, J., Winter, J., and Hudson, K. (2012). J. Med. Chem. 55 (7): 3285–3306. doi: 10.1021/jm201734r.
- 199Dragovich, P.S., Fauber, B.P., Boggs, J., Chen, J., Corson, L.B., Ding, C.Z., Eigenbrot, C., Ge, H., Giannetti, A.M., Hunsaker, T., Labadie, S., Li, C., Liu, Y., Liu, Y., Ma, S., Malek, S., Peterson, D., Pitts, K.E., and Zhou, A. (2014). Bioorg. Med. Chem. Lett. 24 (16): 3764–3771. doi: 10.1016/j.bmcl.2014.06.076.
- 200Kohlmann, A., Zech, S.G., Li, F., Zhou, T., Squillace, R.M., Commodore, L., Greenfield, M.T., Lu, X., Miller, D.P., Huang, W.-S., Qi, J., Thomas, R.M., Wang, Y., Zhang, S., Dodd, R., Liu, S., Xu, R., Xu, Y., Miret, J.J., Rivera, V., Clackson, T., Shakespeare, W.C., Zhu, X., and Dalgarno, D.C. (2013). J. Med. Chem. 56 (3): 1023–1040. doi: 10.1021/jm3014844.
- 201Minutolo, F., Macchia, M., Granchi, C., Bussolo, V.D., Giannaccini, G., Lucacchini, A., Hergenrother, P.J., and Calvaresi, E.C. (2014). Patent WO/2013/092753, US20140343001.
- 202Granchi, C., Roy, S., Giacomelli, C., Macchia, M., Tuccinardi, T., Martinelli, A., Lanza, M., Betti, L., Giannaccini, G., Lucacchini, A., Funel, N., Leon, L.G., Giovannetti, E., Peters, G.J., Palchaudhuri, R., Calvaresi, E.C., Hergenrother, P.J., and Minutolo, F. (2011). J. Med. Chem. 54 (6): 1599–1612. doi: 10.1021/jm101007q.
- 203Calvaresi, E.C., Granchi, C., Tuccinardi, T., Bussolo, V.D., Huigens, R.W., Lee, H.Y., Palchaudhuri, R., Macchia, M., Martinelli, A., Minutolo, F., and Hergenrother, P.J. (2013). Chembiochem 14 (17): 2263–2267. doi: 10.1002/cbic.201300562.
- 204Billiard, J., Dennison, J.B., Briand, J., Annan, R.S., Chai, D., Colon, A.M., Dodson, C.S., Gilbert, S.A., Greshock, J., Jing, J., Lu, H., McSurdy-Freed, J.E., Orband-Miller, L.A., Mills, G.B., Quinn, C.J., Schneck, J.L., Scott, G.F., Shaw, A.N., Waitt, G.M., Wooster, R.F., and Duffy, K.J. (2013). Cancer Metab. 19 (15): 26–40. doi: 10.1186/2049-3002-1-19.
10.1186/2049‐3002‐1‐19 Google Scholar
- 205Flores, A., Sandoval-Gonzalez, S., Takahashi, R., Krall, A., Sathe, L., Wei, L., Radu, C., Joly, J.H., Graham, N.A., Christofk, H.R., and Lowry, W.E. (2019). Nat. Commun. 10 (91): 1449. doi: 10.1038/s41467-018-07857-9.
- 206Fang, A., Zhang, Q., Fan, H., Zhou, Y., Yao, Y., Zhang, Y., and Huang, H. (2017). Med. Chem. Commun. 8 (8): 1720–1726. doi: 10.1039/c7md00222j.
- 207Boudreau, A., Purkey, H.E., Hitz, A., Robarge, K., Peterson, D., Labadie, S., Kwong, M., Hong, R., Gao, M., Del Nagro, C., Pusapati, R., Ma, S., Salphati, L., Pang, J., Lai, A., Zhou, T., Li, Y., Chen, Z., Wei, B., Yen, I., Sideris, S., McCleland, M., Firestein, R., Corson, L., Vanderbilt, A., Williams, S., Daemen, A., Belvin, M., Eigenbrot, C., Jackson, P.K., Malek, S., Hatzivassiliou, G., Sampath, D., Evangelista, M., and O'Brien, T. (2016). Nat. Chem. Biol. 12 (10): 779–786. doi: 10.1038/nchembio.2143.
- 208Li, X.-M., Xiao, W.-H., and Zhao, H.-X. (2017). Med. Chem. Commun. 8 (3): 599–605. doi: 10.1039/c6md00670a.
- 209Halestrap, A.P. (2012). IUBMB Life 64 (1): 1–9. doi: 10.1002/iub.573.
- 210Pinheiro, C., Longatto-Filho, A., Azevedo-Silva, J., Casal, M., Schmitt, F.C., and Baltazar, F. (2012). J. Bioenerg. Biomembr. 44 (1): 127–139. doi: 10.1007/s10863-012-9428-1.
- 211Hirschhaeuser, F., Sattler, U.G.A., and Mueller-Klieser, W. (2011). Cancer Res. 71 (22): 6921–6925. doi: 10.1158/0008-5472.CAN-11-1457.
- 212Polet, F. and Feron, O. (2013). J. Intern. Med. 273 (2): 156–165. doi: 10.1111/joim.12016.
- 213Halestrap, A.P. (2013). Compr. Physiol. 3 (4): 1611–1643. doi: 10.1002/cphy.c130008.
- 214Dimmer, K.S., Friedrich, B., Lang, F., Deitmer, J.W., and Broer, S. (2000). Biochem. J. 350 (1): 219–227. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221245.
- 215Ullah, M.S., Davies, A.J., and Halestrap, A.P. (2006). J. Biol. Chem. 281 (14): 9030–9037. doi: 10.1074/jbc.M511397200.
- 216Martinez-Outschoorn, U.E., Balliet, R.M., Lin, Z., Whitaker-Menezes, D., Howell, A., Sotgia, F., and Lisanti, M.P. (2012). Cell Cycle 11 (22): 4152–4166. doi: 10.4161/cc.22226.
- 217Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A.K., Frank, P.G., Casimiro, M.C., Wang, C., Fortina, P., Addya, S., Pestell, R.G., Martinez-Outschoorn, U.E., Sotgia, F., and Lisanti, M.P. (2009). Cell Cycle 8 (23): 3984–4001. doi: 10.4161/cc.8.23.10238.
- 218Pinheiro, C., Longatto-Filho, A., Scapulatempo, C., Ferreira, L., Martins, S., Pellerin, L., Rodrigues, M., Alves, V.A., Schmitt, F., and Baltazar, F. (2008). Virchows Arch. 452 (2): 139–146. doi: 10.1007/s00428-007-0558-5.
- 219De Oliveira, A.T., Pinheiro, C., Longatto-Filho, A., Brito, M.J., Martinho, O., Matos, D., Carvalho, A.L., Vazquez, V.L., Silva, T.B., Scapulatempo, C., Saad, S.S., Reis, R.M., and Baltazar, F. (2012). J. Bioenerg. Biomembr. 44 (1): 171–178. doi: 10.1007/s10863-012-9408-5.
- 220Pertega-Gomes, N., Felisbino, S., Massie, C.E., Vizcaino, J.R., Coelho, R., Sandi, C., Simoes-Sousa, S., Jurmeister, S., Ramos-Montoya, A., Asim, M., Tran, M., Oliveira, E., Lobo da Cunha, A., Maximo, V., Baltazar, F., Neal, D.E., and Fryer, L.G. (2015). J. Pathol. 236 (4): 517–530. doi: 10.1002/path.4547.
- 221Pouysségur, J., Dayan, F., and Mazure, N.M. (2006). Nature 44 (7092): 437–443. doi: 10.1038/nature04871.
- 222Murray, C.M., Hutchinson, R., Bantick, J.R., Belfield, G.P., Benjamin, A.D., Brazma, D., Bundick, R.V., Cook, I.D., Craggs, R.I., Edwards, S., Evans, L.R., Harrison, R., Holness, E., Jackson, A.P., Jackson, C.G., Kingston, L.P., Perry, M.W., Ross, A.R., Rugman, P.A., Sidhu, S.S., Sullivan, M., Taylor-Fishwick, D.A., Walker, P.C., Whitehead, Y.M., Wilkinson, D.J., Wright, A., and Donald, D.K. (2005). Nat. Chem. Biol. 1 (7): 371–376. doi: 10.1038/nchembio744.
- 223Polański, R., Hodgkinson, C.L., Fusi, A., Nonaka, D., Priest, L., Kelly, P., Trapani, F., Bishop, P.W., White, A., Critchlow, S.E., Smith, P.D., Blackhall, F., Dive, C., and Morrow, C.J. (2014). Clin. Cancer Res. 20 (4): 926–937. doi: 10.1158/1078-0432.CCR-13-2270.
- 224Bola, B.M., Chadwick, A.L., Michopoulos, F., Blount, K.G., Telfer, B.A., Williams, K.J., Smith, P.D., Critchlow, S.E., and Stratford, I.J. (2014). Mol. Cancer Ther. 13 (12): 2805–2816. doi: 10.1158/1535-7163.MCT-13-1091.
- 225https://clinicaltrials.gov/ct2/history/NCT01791595?V_14=View#StudyPageTop (NCT01791595).
- 226Halford, S.E.R., Jones, P., Wedge, S., Hirschberg, S., Katugampola, S., Veal, G., Payne, G., Bacon, C., Potter, S., Griffin, M., Chenard-Poirier, M., Petrides, G., Holder, G., Keun, H.C., Banerji, U., and Plummer, E.R. (2017). J. Clin. Oncol. 35 (15): 2516–2516. doi: 10.1200/JCO.2017.35.15_suppl.2516.
- 227Beloueche-Babari, M., Wantuch, S., Galobart, T.C., Koniordou, M., Parkes, H.G., Arunan, V., Chung, Y.-L., REykyn, T., Smith, P.D., and Leach, M.O. (2017). Cancer Res. 77 (21): 5913–5924. doi: 10.1158/0008-5472.CAN-16-2686.
- 228Kobayashi, M., Otsuka, Y., Itagaki, S., Hirano, T., and Iseki, K. (2006). Int. J. Pharm. 317 (1): 19–25. doi: 10.1016/j.ijpharm.2006.02.043.
- 229Harris, R., Bowker-Kinley, M.M., Huang, B., and Wu, P. (2002). Adv. Enzym. Regul. 42: 249–259. doi: 10.1016/S0065-2571(01)00061-9.
- 230Bowker-Kinley, M.M., Davis, W.I., Wu, P., Harris, R.A., and Popov, K.M. (1998). Biochem. J. 329 (1): 191. doi: 10.1042/bj3290191.
- 231Zhang, S.L., Hu, X., Zhang, W., Yao, H.T., and Tam, K.Y. (2015). Drug Discov. Today 20 (9): 1112–1119. doi: 10.1016/j.drudis.2015.03.012.
- 232Li, J., Kato, M., and Chuang, D.T. (2009). J. Biol. Chem. 284 (49): 34458–34467. doi: 10.1074/jbc.M109.065557.
- 233Stacpoole, P.W., Henderson, G.N., Yan, Z., and James, M.O. (1998). Environ. Health Perspect. 106 (4): 989–994. doi: 10.1289/ehp.98106s4989.
- 234EMayers, R.J., Butlin, R.J., Kilgour, E., Leighton, B., Martin, D., Myatt, J., Orme, J.P., and Holloway, B.R. (2003). Biochem. Soc. Trans. 31 (6): 1165–1167. doi: 10.1042/bst0311165.
- 235Morrell, J.A., Orme, J., Butlin, R.J., Roche, T.E., Mayers, R.M., and Kilgour, E. (2016). Biochem. Soc. Trans. 31 (6): 1168–1170. doi: 10.1042/bst0311168.
10.1042/bst0311168 Google Scholar
- 236Kato, M., Li, J., Chuang, J.L., and Chuang, D.T. (2007). Structure 15 (8): 992–1004. doi: 10.1016/j.str.2007.07.001.
- 237Kukimoto-Niino, M., Tokmakov, A., Terada, T., Ohbayashi, N., Fujimoto, T., Gomi, S., Shiromizu, I., Kawamoto, M., Matsusue, T., Shirouzu, M., and Yokoyama, S. (2011). Acta Crystallogr. D Biol. Crystallogr. 67 (9): 763–773. doi: 10.1107/S090744491102405X.
- 238Sun, W., Xie, Z., Liu, Y., Zhao, D., Wu, Z., Zhang, D., Lv, H., Tang, S., Jin, N., Jiang, H., Tan, M., Ding, J., Luo, C., Li, J., Huang, M., and Geng, M. (2015). Cancer Res. 75 (22): 4923–4936. doi: 10.1158/0008-5472.CAN-15-1023.
- 239Liu, Y., Xie, Z., Zhao, D., Zhu, J., Mao, F., Tang, S., Xu, H., Cheng, L., Geng, M., Huang, M., and Li, J. (2017). J. Med. Chem. 60 (6): 2227–2244. doi: 10.1021/acs.jmedchem.6b01245.
- 240Yang, R. and Guo, C. (2018). Med. Chem. Commun. 9: 1843–1849. doi: 10.1039/C8MD00453F.
- 241Roche, T.E. and Hiromasa, Y. (2007). Cell. Mol. Life Sci. 64 (7–8): 830–849. doi: 10.1007/s00018-007-6380-z.