Eicosanoid Pathway Modulators: Prostaglandins, Prostacyclin, and Thromboxane
Liudmila L. Mazaleuskaya
University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorEmanuela Ricciotti
University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorLiudmila L. Mazaleuskaya
University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorEmanuela Ricciotti
University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorAbstract
Prostanoids (prostaglandins, prostacyclin, and thromboxane) are bioactive lipids, members of the eicosanoid class of compounds, derived from arachidonic acid (AA). They are involved in controlling homeostatic and pathophysiological processes. Their biosynthesis is the result of the coordinated actions of several enzymes. Cyclooxygenases (COXs) catalyze the committed step in the conversion of AA into prostanoids. There are two COX isozymes: the constitutive COX-1 and the inducible COX-2, both of which have different patterns of expression and biological functions. COX-1 and COX-2 are the targets of traditional nonsteroidal anti-inflammatory drugs (tNSAIDs), which are used to relieve pain, fever and inflammation. Despite their clinical efficacy, tNSAIDs cause side effects, particularly in the gastrointestinal (GI) tract. NSAIDs selective for COX-2 inhibition (coxibs) were purposefully designed to spare GI side effects, but predisposed patients to increased cardiovascular (CV) risks. The GI and CV complications from existing NSAIDs prompted interest in the downstream effectors of the COX enzymes as novel drug targets. This article describes various safety issues with tNSAIDs and coxibs, and discusses the current development of novel classes of drugs targeting the AA pathway, including nitric oxide-releasing and hydrogen sulfide-releasing NSAIDs, inhibitors of prostanoid synthases, dual inhibitors, and prostanoid receptor agonists and antagonists.
References
- 1Smith, W.L., DeWitt, D.L., and Garavito, R.M. (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69: 145–182. doi: 10.1146/annurev.biochem.69.1.145.
- 2Milne, G.L., Yin, H., Hardy, K.D., Davies, S.S., and Roberts, L.J. 2nd. (2011). Isoprostane generation and function. Chem. Rev. 111: 5973–5996. doi: 10.1021/cr200160h.
- 3US, V.E. (1934). An adrenaline-like action in extracts from the prostatic and related glands. J. Physiol. 81: 102–112. doi: 10.1113/jphysiol.1934.sp003119.
- 4Bergstroem, S., Danielsson, H., and Samuelsson, B. (1964). The enzymatic formation of prostaglandin E2 from arachidonic acid prostaglandins and related factors 32. Biochim. Biophys. Acta 90: 207–210. doi: 10.1016/0304-4165(64)90145-x.
- 5Vane, J.R. (1971). Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 231: 232–235.
- 6Moncada, S., Gryglewski, R., Bunting, S., and Vane, J.R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665. doi: 10.1038/263663a0.
- 7Leslie, C.C. (2015). Cytosolic phospholipase A(2): physiological function and role in disease. J. Lipid Res. 56: 1386–1402. doi: 10.1194/jlr.R057588.
- 8Ricciotti, E. and FitzGerald, G.A. (2011). Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31: 986–1000. doi: 10.1161/ATVBAHA.110.207449.
- 9Samuelsson, B., Morgenstern, R., and Jakobsson, P.J. (2007). Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol. Rev. 59: 207–224. doi: 10.1124/pr.59.3.1.
- 10Song, W.L., Ricciotti, E., Liang, X., Grosser, T., Grant, G.R., and FitzGerald, G.A. (2018). Lipocalin-like prostaglandin D synthase but not hemopoietic prostaglandin D synthase deletion causes hypertension and accelerates thrombogenesis in mice. J. Pharmacol. Exp. Ther. 367: 425–432. doi: 10.1124/jpet.118.250936.
- 11Ueno, N., Takegoshi, Y., Kamei, D., Kudo, I., and Murakami, M. (2005). Coupling between cyclooxygenases and terminal prostanoid synthases. Biochem. Biophys. Res. Commun. 338: 70–76. doi: 10.1016/j.bbrc.2005.08.152.
- 12Schuster, V.L. (1998). Molecular mechanisms of prostaglandin transport. Annu. Rev. Physiol. 60: 221–242. doi: 10.1146/annurev.physiol.60.1.221.
- 13Song, W.L., Wang, M., Ricciotti, E., Fries, S., Yu, Y., Grosser, T., Reilly, M., Lawson, J.A., and FitzGerald, G.A. (2008). Tetranor PGDM, an abundant urinary metabolite reflects biosynthesis of prostaglandin D2 in mice and humans. J. Biol. Chem. 283: 1179–1188. doi: 10.1074/jbc.M706839200.
- 14Cheng, Y., Wang, M., Yu, Y., Lawson, J., Funk, C.D., and Fitzgerald, G.A. (2006). Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function. J. Clin. Invest. 116: 1391–1399. doi: 10.1172/JCI27540.
- 15Daiyasu, H. and Toh, H. (2000). Molecular evolution of the myeloperoxidase family. J. Mol. Evol. 51: 433–445.
- 16Hemler, M. and Lands, W.E. (1976). Purification of the cyclooxygenase that forms prostaglandins. Demonstration of two forms of iron in the holoenzyme. J. Biol. Chem. 251: 5575–5579.
- 17Miyamoto, T., Ogino, N., Yamamoto, S., and Hayaishi, O. (1976). Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. J. Biol. Chem. 251: 2629–2636.
- 18Merlie, J.P., Fagan, D., Mudd, J., and Needleman, P. (1988). Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase). J. Biol. Chem. 263: 3550–3553.
- 19DeWitt, D.L. and Smith, W.L. (1988). Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc. Natl. Acad. Sci. U.S.A. 85: 1412–1416. doi: 10.1073/pnas.85.5.1412.
- 20Yokoyama, C. and Tanabe, T. (1989). Cloning of human gene encoding prostaglandin endoperoxide synthase and primary structure of the enzyme. Biochem. Biophys. Res. Commun. 165: 888–894. doi: 10.1016/s0006-291x(89)80049-x.
- 21Kujubu, D.A., Fletcher, B.S., Varnum, B.C., Lim, R.W., and Herschman, H.R. (1991). TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J. Biol. Chem. 266: 12866–12872.
- 22Xie, W.L., Chipman, J.G., Robertson, D.L., Erikson, R.L., and Simmons, D.L. (1991). Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. U.S.A. 88: 2692–2696. doi: 10.1073/pnas.88.7.2692.
- 23Hla, T. and Neilson, K. (1992). Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. U.S.A. 89: 7384–7388. doi: 10.1073/pnas.89.16.7384.
- 24Picot, D., Loll, P.J., and Garavito, R.M. (1994). The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature 367: 243–249. doi: 10.1038/367243a0.
- 25Luong, C., Miller, A., Barnett, J., Chow, J., Ramesha, C., and Browner, M.F. (1996). Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat. Struct. Biol. 3: 927–933.
- 26Kurumbail, R.G., Stevens, A.M., Gierse, J.K., McDonald, J.J., Stegeman, R.A., Pak, J.Y., Gildehaus, D., Miyashiro, J.M., Penning, T.D., Seibert, K. et al. (1996). Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384: 644–648. doi: 10.1038/384644a0.
- 27Smith, W.L., Urade, Y., and Jakobsson, P.J. (2011). Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem. Rev. 111: 5821–5865. doi: 10.1021/cr2002992.
- 28Chandrasekharan, N.V. and Simmons, D.L. (2004). The cyclooxygenases. Genome Biol. 5: 241. doi: 10.1186/gb-2004-5-9-241.
- 29Smith, W.L. and Malkowski, M.G. (2019). Interactions of fatty acids, nonsteroidal anti-inflammatory drugs, and coxibs with the catalytic and allosteric subunits of cyclooxygenases-1 and -2. J. Biol. Chem. 294: 1697–1705. doi: 10.1074/jbc.TM118.006295.
- 30Yu, Y., Fan, J., Chen, X.S., Wang, D., Klein-Szanto, A.J., Campbell, R.L., FitzGerald, G.A., and Funk, C.D. (2006). Genetic model of selective COX2 inhibition reveals novel heterodimer signaling. Nat. Med. 12: 699–704. doi: 10.1038/nm1412.
- 31Otto, J.C., DeWitt, D.L., and Smith, W.L. (1993). N-Glycosylation of prostaglandin endoperoxide synthases-1 and -2 and their orientations in the endoplasmic reticulum. J. Biol. Chem. 268: 18234–18242.
- 32Smyth, E.M., Grosser, T., Wang, M., Yu, Y., and FitzGerald, G.A. (2009). Prostanoids in health and disease. J. Lipid Res. 50 (Suppl): S423–S428. doi: 10.1194/jlr.R800094-JLR200.
- 33Patrignani, P., Tacconelli, S., Bruno, A., Sostres, C., and Lanas, A. (2011). Managing the adverse effects of nonsteroidal anti-inflammatory drugs. Exp. Rev. Clin. Pharmacol. 4: 605–621. doi: 10.1586/ecp.11.36.
- 34Bjarnason, I., Scarpignato, C., Holmgren, E., Olszewski, M., Rainsford, K.D., and Lanas, A. (2018). Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology 154: 500–514. doi: 10.1053/j.gastro.2017.10.049.
- 35Hao, C.M. and Breyer, M.D. (2008). Physiological regulation of prostaglandins in the kidney. Annu. Rev. Physiol. 70: 357–377. doi: 10.1146/annurev.physiol.70.113006.100614.
- 36Topper, J.N., Cai, J., Falb, D., and Gimbrone, M.A. Jr. (1996). Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc. Natl. Acad. Sci. U.S.A. 93: 10417–10422. doi: 10.1073/pnas.93.19.10417.
- 37Ricciotti, E., Yu, Y., Grosser, T., and Fitzgerald, G.A. (2013). COX-2, the dominant source of prostacyclin. Proc. Natl. Acad. Sci. U.S.A. 110: E183. doi: 10.1073/pnas.1219073110.
- 38Weksler, B.B. (2015). Prostanoids and NSAIDs in cardiovascular biology and disease. Curr. Atheroscler. Rep. 17: 41. doi: 10.1007/s11883-015-0514-9.
- 39Braun, M. and Schror, K. (1992). Prostaglandin D2 relaxes bovine coronary arteries by endothelium-dependent nitric oxide-mediated cGMP formation. Circ. Res. 71: 1305–1313.
- 40Narumiya, S. and Toda, N. (1985). Different responsiveness of prostaglandin D2-sensitive systems to prostaglandin D2 and its analogues. Br. J. Pharmacol. 85: 367–375. doi: 10.1111/j.1476-5381.1985.tb08870.x.
- 41Hall, I.P. (2000). Second messengers, ion channels and pharmacology of airway smooth muscle. Eur. Respir. J. 15: 1120–1127.
- 42Song, W.L., Stubbe, J., Ricciotti, E., Alamuddin, N., Ibrahim, S., Crichton, I., Prempeh, M., Lawson, J.A., Wilensky, R.L., Rasmussen, L.M. et al. (2012). Niacin and biosynthesis of PGD(2)by platelet COX-1 in mice and humans. J. Clin. Invest. 122: 1459–1468. doi: 10.1172/JCI59262.
- 43Patrono, C. (2016). Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br. J. Clin. Pharmacol. 82: 957–964. doi: 10.1111/bcp.13048.
- 44McAdam, B.F., Mardini, I.A., Habib, A., Burke, A., Lawson, J.A., Kapoor, S., and FitzGerald, G.A. (2000). Effect of regulated expression of human cyclooxygenase isoforms on eicosanoid and isoeicosanoid production in inflammation. J. Clin. Invest. 105: 1473–1482. doi: 10.1172/JCI9523.
- 45Gilroy, D.W., Colville-Nash, P.R., Willis, D., Chivers, J., Paul-Clark, M.J., and Willoughby, D.A. (1999). Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 5: 698–701. doi: 10.1038/9550.
- 46Engblom, D., Saha, S., Engstrom, L., Westman, M., Audoly, L.P., Jakobsson, P.J., and Blomqvist, A. (2003). Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat. Neurosci. 6: 1137–1138. doi: 10.1038/nn1137.
- 47Basu, S. (2007). Novel cyclooxygenase-catalyzed bioactive prostaglandin F2alpha from physiology to new principles in inflammation. Med. Res. Rev. 27: 435–468. doi: 10.1002/med.20098.
- 48Sugimoto, Y., Yamasaki, A., Segi, E., Tsuboi, K., Aze, Y., Nishimura, T., Oida, H., Yoshida, N., Tanaka, T., Katsuyama, M. et al. (1997). Failure of parturition in mice lacking the prostaglandin F receptor. Science 277: 681–683. doi: 10.1126/science.277.5326.681.
- 49Murakami, Y., Akahoshi, T., Hayashi, I., Endo, H., Hashimoto, A., Kono, S., Kondo, H., Kawai, S., Inoue, M., and Kitasato, H. (2003). Inhibition of monosodium urate monohydrate crystal-induced acute inflammation by retrovirally transfected prostaglandin D synthase. Arthritis Rheumatol. 48: 2931–2941. doi: 10.1002/art.11271.
- 50Zayed, N., Afif, H., Chabane, N., Mfuna-Endam, L., Benderdour, M., Martel-Pelletier, J., Pelletier, J.P., Motiani, R.K., Trebak, M., Duval, N. et al. (2008). Inhibition of interleukin-1beta-induced matrix metalloproteinases 1 and 13 production in human osteoarthritic chondrocytes by prostaglandin D2. Arthritis Rheumatol. 58: 3530–3540. doi: 10.1002/art.23958.
- 51Rajakariar, R., Hilliard, M., Lawrence, T., Trivedi, S., Colville-Nash, P., Bellingan, G., Fitzgerald, D., Yaqoob, M.M., and Gilroy, D.W. (2007). Hematopoietic prostaglandin D2 synthase controls the onset and resolution of acute inflammation through PGD2 and 15-deoxyDelta12 14 PGJ2. Proc. Natl. Acad. Sci. U.S.A. 104: 20979–20984. doi: 10.1073/pnas.0707394104.
- 52Chen, L., Yang, G., and Grosser, T. (2013). Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat. 104-105: 58–66. doi: 10.1016/j.prostaglandins.2012.08.006.
- 53Pettipher, R., Hansel, T.T., and Armer, R. (2007). Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat. Rev. Drug Discov. 6: 313–325. doi: 10.1038/nrd2266.
- 54Wang, D. and Dubois, R.N. (2010). Eicosanoids and cancer. Nat. Rev. Cancer 10: 181–193. doi: 10.1038/nrc2809.
- 55Liu, C.H., Chang, S.H., Narko, K., Trifan, O.C., Wu, M.T., Smith, E., Haudenschild, C., Lane, T.F., and Hla, T. (2001). Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J. Biol. Chem. 276: 18563–18569. doi: 10.1074/jbc.M010787200.
- 56Harris, R.E. (2009). Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 17: 55–67. doi: 10.1007/s10787-009-8049-8.
- 57Patrignani, P. and Patrono, C. (2016). Aspirin and cancer. J. Am. Coll. Cardiol. 68: 967–976. doi: 10.1016/j.jacc.2016.05.083.
- 58Patrignani, P. and Patrono, C. (2018). Aspirin, platelet inhibition and cancer prevention. Platelets 29: 779–785. doi: 10.1080/09537104.2018.1492105.
- 59Grosser, T., Theken, K.N., and FitzGerald, G.A. (2017). Cyclooxygenase inhibition: pain, inflammation, and the cardiovascular system. Clin. Pharmacol. Ther. 102: 611–622. doi: 10.1002/cpt.794.
- 60Brune, K. and Hinz, B. (2004). The discovery and development of antiinflammatory drugs. Arthritis Rheumatol. 50: 2391–2399. doi: 10.1002/art.20424.
- 61FitzGerald, G.A. and Patrono, C. (2001). The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med. 345: 433–442. doi: 10.1056/NEJM200108093450607.
- 62Patrono, C., Ciabattoni, G., Pinca, E., Pugliese, F., Castrucci, G., De Salvo, A., Satta, M.A., and Peskar, B.A. (1980). Low dose aspirin and inhibition of thromboxane B2 production in healthy subjects. Thromb. Res. 17: 317–327.
- 63Patrignani, P., Panara, M.R., Greco, A., Fusco, O., Natoli, C., Iacobelli, S., Cipollone, F., Ganci, A., Creminon, C., Maclouf, J. et al. (1994). Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. J. Pharmacol. Exp. Ther. 271: 1705–1712.
- 64Tacconelli, S., Bruno, A., Grande, R., Ballerini, P., and Patrignani, P. (2017). Nonsteroidal anti-inflammatory drugs and cardiovascular safety – translating pharmacological data into clinical readouts. Exp. Opin. Drug Saf. 16: 791–807. doi: 10.1080/14740338.2017.1338272.
- 65Antithrombotic Trialists, C., Baigent, C., Blackwell, L., Collins, R., Emberson, J., Godwin, J., Peto, R., Buring, J., Hennekens, C., Kearney, P. et al. (1849-1860). Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet 2009: 373. doi: 10.1016/S0140-6736(09)60503-1.
10.1016/S0140‐6736(09)60503‐1 Google Scholar
- 66Lecomte, M., Laneuville, O., Ji, C., DeWitt, D.L., and Smith, W.L. (1994). Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J. Biol. Chem. 269: 13207–13215.
- 67Patrono, C. and Baigent, C. (2014). Nonsteroidal anti-inflammatory drugs and the heart. Circulation 129: 907–916. doi: 10.1161/CIRCULATIONAHA.113.004480.
- 68Grosser, T., Ricciotti, E., and FitzGerald, G.A. (2017). The cardiovascular pharmacology of nonsteroidal anti-inflammatory drugs. Trends Pharmacol. Sci. 38: 733–748. doi: 10.1016/j.tips.2017.05.008.
- 69Bjarnason, I., Scarpignato, C., Takeuchi, K., and Rainsford, K.D. (2007). Determinants of the short-term gastric damage caused by NSAIDs in man. Aliment Pharmacol. Ther. 26: 95–106. doi: 10.1111/j.1365-2036.2007.03348.x.
- 70Geis, G.S., Stead, H., Wallemark, C.B., and Nicholson, P.A. (1991). Prevalence of mucosal lesions in the stomach and duodenum due to chronic use of NSAID in patients with rheumatoid arthritis or osteoarthritis, and interim report on prevention by misoprostol of diclofenac associated lesions. J. Rheumatol. Suppl. 28: 11–14.
- 71Sostres, C., Gargallo, C.J., and Lanas, A. (2013). Nonsteroidal anti-inflammatory drugs and upper and lower gastrointestinal mucosal damage. Arthritis Res. Ther. 15 (Suppl 3): S3. doi: 10.1186/ar4175.
- 72Maiden, L., Thjodleifsson, B., Theodors, A., Gonzalez, J., and Bjarnason, I. (2005). A quantitative analysis of NSAID-induced small bowel pathology by capsule enteroscopy. Gastroenterology 128: 1172–1178.
- 73Grosser, T., Fries, S., and FitzGerald, G.A. (2006). Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest. 116: 4–15. doi: 10.1172/JCI27291.
- 74Pillans, P.I., Ghiculescu, R.A., Lampe, G., Wilson, R., Wong, R., and Macdonald, G.A. (2012). Severe acute liver injury associated with lumiracoxib. J. Gastroenterol. Hepatol. 27: 1102–1105. doi: 10.1111/j.1440-1746.2011.07036.x.
- 75Patrono, C., Patrignani, P., and Garcia Rodriguez, L.A. (2001). Cyclooxygenase-selective inhibition of prostanoid formation: transducing biochemical selectivity into clinical read-outs. J. Clin. Invest. 108: 7–13. doi: 10.1172/JCI13418.
- 76Silverstein, F.E., Faich, G., Goldstein, J.L., Simon, L.S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N.M., Stenson, W.F. et al. (2000). Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib long-term arthritis safety study. JAMA 284: 1247–1255.
- 77Bombardier, C., Laine, L., Reicin, A., Shapiro, D., Burgos-Vargas, R., Davis, B., Day, R., Ferraz, M.B., Hawkey, C.J., Hochberg, M.C. et al. (2000). Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N. Engl. J. Med. 343: 1520–1528, 1522 p following 1528. doi: 10.1056/NEJM200011233432103.
- 78Schnitzer, T.J., Burmester, G.R., Mysler, E., Hochberg, M.C., Doherty, M., Ehrsam, E., Gitton, X., Krammer, G., Mellein, B., Matchaba, P. et al. (2004). Comparison of lumiracoxib with naproxen and ibuprofen in the therapeutic arthritis research and gastrointestinal event trial (TARGET), reduction in ulcer complications: randomised controlled trial. Lancet 364: 665–674. doi: 10.1016/S0140-6736(04)16893-1.
- 79Tacconelli, S., Capone, M.L., and Patrignani, P. (2004). Clinical pharmacology of novel selective COX-2 inhibitors. Curr. Pharm. Des. 10: 589–601.
- 80Thun, M.J., Henley, S.J., and Patrono, C. (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 94: 252–266. doi: 10.1093/jnci/94.4.252.
- 81Bertagnolli, M.M., Eagle, C.J., Zauber, A.G., Redston, M., Solomon, S.D., Kim, K., Tang, J., Rosenstein, R.B., Wittes, J., Corle, D. et al. (2006). Celecoxib for the prevention of sporadic colorectal adenomas. N. Engl. J. Med. 355: 873–884. doi: 10.1056/NEJMoa061355.
- 82Baron, J.A., Sandler, R.S., Bresalier, R.S., Quan, H., Riddell, R., Lanas, A., Bolognese, J.A., Oxenius, B., Horgan, K., Loftus, S. et al. (2006). A randomized trial of rofecoxib for the chemoprevention of colorectal adenomas. Gastroenterology 131, 1674–1682. doi: 10.1053/j.gastro.2006.08.079.
- 83Kuehn, B.M. (2005). FDA panel: keep COX-2 drugs on market: black box for COX-2 labels, caution urged for all NSAIDs. JAMA 293: 1571–1572. doi: 10.1001/jama.293.13.1571.
- 84Grosser, T., Yu, Y., and Fitzgerald, G.A. (2010). Emotion recollected in tranquility: lessons learned from the COX-2 saga. Annu. Rev. Med. 61: 17–33. doi: 10.1146/annurev-med-011209-153129.
- 85McAdam, B.F., Catella-Lawson, F., Mardini, I.A., Kapoor, S., Lawson, J.A., and FitzGerald, G.A. (1999). Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc. Natl. Acad. Sci. U.S.A. 96: 272–277. doi: 10.1073/pnas.96.1.272.
- 86Capone, M.L., Tacconelli, S., Sciulli, M.G., Anzellotti, P., Di Francesco, L., Merciaro, G., Di Gregorio, P., and Patrignani, P. (2007). Human pharmacology of naproxen sodium. J. Pharmacol. Exp. Ther. 322: 453–460. doi: 10.1124/jpet.107.122283.
- 87Wang, D., Patel, V.V., Ricciotti, E., Zhou, R., Levin, M.D., Gao, E., Yu, Z., Ferrari, V.A., Lu, M.M., Xu, J. et al. (2009). Cardiomyocyte cyclooxygenase-2 influences cardiac rhythm and function. Proc. Natl. Acad. Sci. U.S.A. 106: 7548–7552. doi: 10.1073/pnas.0805806106.
- 88Yu, Y., Ricciotti, E., Scalia, R., Tang, S.Y., Grant, G., Yu, Z., Landesberg, G., Crichton, I., Wu, W., Pure, E. et al. (2012). Vascular COX-2 modulates blood pressure and thrombosis in mice. Sci. Transl. Med. 4: 132ra154. doi: 10.1126/scitranslmed.3003787.
- 89 Coxib; traditional, N.T.C, Bhala, N., Emberson, J., Merhi, A., Abramson, S., Arber, N., Baron, J.A., Bombardier, C., Cannon, C. et al. (2013). Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 382: 769–779. doi: 10.1016/S0140-6736(13)60900-9.
- 90Capone, M.L., Tacconelli, S., Di Francesco, L., Sacchetti, A., Sciulli, M.G., and Patrignani, P. (2007). Pharmacodynamic of cyclooxygenase inhibitors in humans. Prostaglandins Other Lipid Mediat. 82: 85–94. doi: 10.1016/j.prostaglandins.2006.05.019.
- 91Patrignani, P., Panara, M.R., Sciulli, M.G., Santini, G., Renda, G., and Patrono, C. (1997). Differential inhibition of human prostaglandin endoperoxide synthase-1 and -2 by nonsteroidal anti-inflammatory drugs. J. Physiol. Pharmacol. 48: 623–631.
- 92Patrono, C. and Baigent, C. (2017). Coxibs, traditional NSAIDs, and cardiovascular safety post-PRECISION: what we thought we knew then and what we think we know now. Clin. Pharmacol. Ther. 102: 238–245. doi: 10.1002/cpt.696.
- 93FitzGerald, G.A. (2017). Imprecision: limitations to interpretation of a large randomized clinical trial. Circulation 135: 113–115. doi: 10.1161/CIRCULATIONAHA.116.026324.
- 94Borhade, N., Pathan, A.R., Halder, S., Karwa, M., Dhiman, M., Pamidiboina, V., Gund, M., Deshattiwar, J.J., Mali, S.V., Deshmukh, N.J. et al. (2012). NO-NSAIDs. Part 3: nitric oxide-releasing prodrugs of non-steroidal anti-inflammatory drugs. Chem. Pharm. Bull. (Tokyo) 60: 465–481.
- 95Davies, N.M., Roseth, A.G., Appleyard, C.B., McKnight, W., Del Soldato, P., Calignano, A., Cirino, G., and Wallace, J.L. (1997). NO-naproxen vs. naproxen: ulcerogenic, analgesic and anti-inflammatory effects. Aliment Pharmacol. Ther. 11: 69–79.
- 96Fiorucci, S. and Del Soldato, P. (2003). NO-aspirin: mechanism of action and gastrointestinal safety. Dig. Liver Dis. 35 (Suppl 2): S9–S19.
- 97Fiorucci, S., Distrutti, E., Cirino, G., and Wallace, J.L. (2006). The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 131: 259–271. doi: 10.1053/j.gastro.2006.02.033.
- 98van Goor, H., van den Born, J.C., Hillebrands, J.L., and Joles, J.A. (2016). Hydrogen sulfide in hypertension. Curr. Opin. Nephrol. Hypertens. 25: 107–113. doi: 10.1097/MNH.0000000000000206.
- 99Fagerholm, U. and Bjornsson, M.A. (2005). Clinical pharmacokinetics of the cyclooxygenase inhibiting nitric oxide donator (CINOD) AZD3582. J. Pharm. Pharmacol. 57: 1539–1554. doi: 10.1211/jpp.57.12.0004.
- 100Muscara, M.N. and Wallace, J.L. (1999). Nitric Oxide. V. therapeutic potential of nitric oxide donors and inhibitors. Am. J. Physiol. 276: G1313–G1316. doi: 10.1152/ajpgi.1999.276.6.G1313.
- 101Karlsson, J., Pivodic, A., Aguirre, D., and Schnitzer, T.J. (2009). Efficacy, safety, and tolerability of the cyclooxygenase-inhibiting nitric oxide donator naproxcinod in treating osteoarthritis of the hip or knee. J. Rheumatol. 36: 1290–1297. doi: 10.3899/jrheum.081011.
- 102Fagerholm, U., Breuer, O., Swedmark, S., and Hoogstraate, J. (2005). Pre-clinical pharmacokinetics of the cyclooxygenase-inhibiting nitric oxide donor (CINOD) AZD3582. J. Pharm. Pharmacol. 57: 587–597. doi: 10.1211/0022357056028.
- 103Schnitzer, T.J., Hochberg, M.C., Marrero, C.E., Duquesroix, B., Frayssinet, H., and Beekman, M. (2011). Efficacy and safety of naproxcinod in patients with osteoarthritis of the knee: a 53-week prospective randomized multicenter study. Semin. Arthritis Rheum. 40: 285–297. doi: 10.1016/j.semarthrit.2010.06.002.
- 104Schnitzer, T.J., Kivitz, A., Frayssinet, H., and Duquesroix, B. (2010). Efficacy and safety of naproxcinod in the treatment of patients with osteoarthritis of the knee: a 13-week prospective, randomized, multicenter study. Osteoarthritis Cartilage 18: 629–639. doi: 10.1016/j.joca.2009.12.013.
- 105Baerwald, C., Verdecchia, P., Duquesroix, B., Frayssinet, H., and Ferreira, T. (2010). Efficacy, safety, and effects on blood pressure of naproxcinod 750 mg twice daily compared with placebo and naproxen 500 mg twice daily in patients with osteoarthritis of the hip: a randomized, double-blind, parallel-group, multicenter study. Arthritis Rheum. 62: 3635–3644. doi: 10.1002/art.27694.
- 106Atkinson, T.J., Fudin, J., Jahn, H.L., Kubotera, N., Rennick, A.L., and Rhorer, M. (2013). What's new in NSAID pharmacotherapy: oral agents to injectables. Pain Med. 14 (Suppl 1): S11–S17. doi: 10.1111/pme.12278.
- 107White, W.B., Schnitzer, T.J., Bakris, G.L., Frayssinet, H., Duquesroix, B., and Weber, M. (2011). Effects of naproxcinod on blood pressure in patients with osteoarthritis. Am. J. Cardiol. 107: 1338–1345. doi: 10.1016/j.amjcard.2010.12.046.
- 108Miglietta, D., De Palma, C., Sciorati, C., Vergani, B., Pisa, V., Villa, A., Ongini, E., and Clementi, E. (2015). Naproxcinod shows significant advantages over naproxen in the mdx model of Duchenne muscular dystrophy. Orphanet. J. Rare Dis. 10: 101. doi: 10.1186/s13023-015-0311-0.
- 109Grosch, S., Niederberger, E., and Geisslinger, G. (2017). Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. Exp. Opin. Investig. Drugs 26: 51–61. doi: 10.1080/13543784.2017.1260544.
- 110Wallace, J.L. and Wang, R. (2015). Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Discov. 14: 329–345. doi: 10.1038/nrd4433.
- 111Fiorucci, S., Antonelli, E., Distrutti, E., Rizzo, G., Mencarelli, A., Orlandi, S., Zanardo, R., Renga, B., Di Sante, M., Morelli, A. et al. (2005). Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129: 1210–1224. doi: 10.1053/j.gastro.2005.07.060.
- 112Wallace, J.L., Dicay, M., McKnight, W., and Martin, G.R. (2007). Hydrogen sulfide enhances ulcer healing in rats. FASEB J. 21: 4070–4076. doi: 10.1096/fj.07-8669com.
- 113Wallace, J.L., Vong, L., McKnight, W., Dicay, M., and Martin, G.R. (2009). Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137: 569–578, 578 e561. doi: 10.1053/j.gastro.2009.04.012.
- 114Linden, D.R., Sha, L., Mazzone, A., Stoltz, G.J., Bernard, C.E., Furne, J.K., Levitt, M.D., Farrugia, G., and Szurszewski, J.H. (2008). Production of the gaseous signal molecule hydrogen sulfide in mouse tissues. J. Neurochem. 106: 1577–1585. doi: 10.1111/j.1471-4159.2008.05502.x.
- 115Schicho, R., Krueger, D., Zeller, F., Von Weyhern, C.W., Frieling, T., Kimura, H., Ishii, I., De Giorgio, R., Campi, B., and Schemann, M. (2006). Hydrogen sulfide is a novel prosecretory neuromodulator in the Guinea-pig and human colon. Gastroenterology 131: 1542–1552. doi: 10.1053/j.gastro.2006.08.035.
- 116Zanardo, R.C., Brancaleone, V., Distrutti, E., Fiorucci, S., Cirino, G., and Wallace, J.L. (2006). Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 20: 2118–2120. doi: 10.1096/fj.06-6270fje.
- 117Yang, G., Wu, L., Jiang, B., Yang, W., Qi, J., Cao, K., Meng, Q., Mustafa, A.K., Mu, W., Zhang, S. et al. (2008). H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322: 587–590. doi: 10.1126/science.1162667.
- 118Li, L., Rossoni, G., Sparatore, A., Lee, L.C., Del Soldato, P., and Moore, P.K. (2007). Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med. 42: 706–719. doi: 10.1016/j.freeradbiomed.2006.12.011.
- 119Wallace, J.L., Caliendo, G., Santagada, V., and Cirino, G. (2010). Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br. J. Pharmacol. 159: 1236–1246. doi: 10.1111/j.1476-5381.2009.00611.x.
- 120Wallace, J.L., Vaughan, D., Dicay, M., MacNaughton, W.K., and de Nucci, G. (2018). Hydrogen sulfide-releasing therapeutics: translation to the clinic. Antioxid. Redox Signal. 28: 1533–1540. doi: 10.1089/ars.2017.7068.
- 121Blackler, R., Syer, S., Bolla, M., Ongini, E., and Wallace, J.L. (2012). Gastrointestinal-sparing effects of novel NSAIDs in rats with compromised mucosal defence. PLoS One 7: e35196. doi: 10.1371/journal.pone.0035196.
- 122Wallace, J.L. (2013). Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J. Gastroenterol. 19: 1861–1876. doi: 10.3748/wjg.v19.i12.1861.
- 123Wallace, J.L., Nagy, P., Feener, T.D., Allain, T., Ditroi, T., Vaughan, D.J., Muscara, M.N., de Nucci, G., and Buret, A.G. (2019). A proof-of-concept, Phase 2 clinical trial of the gastrointestinal safety of a hydrogen sulfide-releasing anti-inflammatory drug. Br. J. Pharmacol. doi: 10.1111/bph.14641, 10.1111/bph.14641.
- 124Trebino, C.E., Stock, J.L., Gibbons, C.P., Naiman, B.M., Wachtmann, T.S., Umland, J.P., Pandher, K., Lapointe, J.M., Saha, S., Roach, M.L. et al. (2003). Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc. Natl. Acad. Sci. U.S.A. 100: 9044–9049. doi: 10.1073/pnas.1332766100.
- 125Kamei, D., Yamakawa, K., Takegoshi, Y., Mikami-Nakanishi, M., Nakatani, Y., Oh-Ishi, S., Yasui, H., Azuma, Y., Hirasawa, N., Ohuchi, K. et al. (2004). Reduced pain hypersensitivity and inflammation in mice lacking microsomal prostaglandin e synthase-1. J. Biol. Chem. 279: 33684–33695. doi: 10.1074/jbc.M400199200.
- 126Ikeda-Matsuo, Y., Ota, A., Fukada, T., Uematsu, S., Akira, S., and Sasaki, Y. (2006). Microsomal prostaglandin E synthase-1 is a critical factor of stroke-reperfusion injury. Proc. Natl. Acad. Sci. U.S.A. 103: 11790–11795. doi: 10.1073/pnas.0604400103.
- 127Wang, M., Zukas, A.M., Hui, Y., Ricciotti, E., Pure, E., and FitzGerald, G.A. (2006). Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis. Proc. Natl. Acad. Sci. U.S.A. 103: 14507–14512. doi: 10.1073/pnas.0606586103.
- 128Wang, M., Lee, E., Song, W., Ricciotti, E., Rader, D.J., Lawson, J.A., Pure, E., and FitzGerald, G.A. (2008). Microsomal prostaglandin E synthase-1 deletion suppresses oxidative stress and angiotensin II-induced abdominal aortic aneurysm formation. Circulation 117: 1302–1309. doi: 10.1161/CIRCULATIONAHA.107.731398.
- 129Wang, M., Cooper, P.R., Jiang, M., Zhao, H., Hui, Y., Yao, Y., Tate, J.C., Damera, G., Lawson, J.A., Jester, W.F. Jr. et al. (2010). Deletion of microsomal prostaglandin E synthase-1 does not alter ozone-induced airway hyper-responsiveness. J. Pharmacol. Exp. Ther. 334: 63–68. doi: 10.1124/jpet.110.166678.
- 130Wang, M., Ihida-Stansbury, K., Kothapalli, D., Tamby, M.C., Yu, Z., Chen, L., Grant, G., Cheng, Y., Lawson, J.A., Assoian, R.K. et al. (2011). Microsomal prostaglandin e2 synthase-1 modulates the response to vascular injury. Circulation 123: 631–639. doi: 10.1161/CIRCULATIONAHA.110.973685.
- 131Xu, D., Rowland, S.E., Clark, P., Giroux, A., Cote, B., Guiral, S., Salem, M., Ducharme, Y., Friesen, R.W., Methot, N. et al. (2008). MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)-isophthalonitrile], a selective microsomal prostaglandin E synthase-1 inhibitor, relieves pyresis and pain in preclinical models of inflammation. J. Pharmacol. Exp. Ther. 326: 754–763. doi: 10.1124/jpet.108.138776.
- 132Facemire, C.S., Griffiths, R., Audoly, L.P., Koller, B.H., and Coffman, T.M. (2010). The impact of microsomal prostaglandin e synthase 1 on blood pressure is determined by genetic background. Hypertension 55: 531–538. doi: 10.1161/HYPERTENSIONAHA.109.145631.
- 133Degousee, N., Fazel, S., Angoulvant, D., Stefanski, E., Pawelzik, S.C., Korotkova, M., Arab, S., Liu, P., Lindsay, T.F., Zhuo, S. et al. (1701-1710). Microsomal prostaglandin E2 synthase-1 deletion leads to adverse left ventricular remodeling after myocardial infarction. Circulation 2008: 117. doi: 10.1161/CIRCULATIONAHA.107.749739.
- 134Degousee, N., Simpson, J., Fazel, S., Scholich, K., Angoulvant, D., Angioni, C., Schmidt, H., Korotkova, M., Stefanski, E., Wang, X.H. et al. (2012). Lack of microsomal prostaglandin e2 synthase-1 in bone marrow-derived myeloid cells impairs left ventricular function and increases mortality after acute myocardial infarction. Circulation 125: 2904–2913. doi: 10.1161/CIRCULATIONAHA.112.099754.
- 135Zhu, L., Xu, C., Huo, X., Hao, H., Wan, Q., Chen, H., Zhang, X., Breyer, R.M., Huang, Y., Cao, X. et al. (1888). The cyclooxygenase-1/mPGES-1/endothelial prostaglandin EP4 receptor pathway constrains myocardial ischemia-reperfusion injury. Nat. Commun. 2019: 10. doi: 10.1038/s41467-019-09492-4.
10.1038/s41467‐019‐09492‐4 Google Scholar
- 136Kawabata, A. (2011). Prostaglandin E2 and pain – an update. Biol. Pharm. Bull. 34: 1170–1173.
- 137Chen, M., Boilard, E., Nigrovic, P.A., Clark, P., Xu, D., Fitzgerald, G.A., Audoly, L.P., and Lee, D.M. (2008). Predominance of cyclooxygenase 1 over cyclooxygenase 2 in the generation of proinflammatory prostaglandins in autoantibody-driven K/BxN serum-transfer arthritis. Arthritis Rheum. 58: 1354–1365. doi: 10.1002/art.23453.
- 138Chen, L., Yang, G., Xu, X., Grant, G., Lawson, J.A., Bohlooly, Y.M., and FitzGerald, G.A. (2013). Cell selective cardiovascular biology of microsomal prostaglandin E synthase-1. Circulation 127: 233–243. doi: 10.1161/CIRCULATIONAHA.112.119479.
- 139Chen, L., Yang, G., Monslow, J., Todd, L., Cormode, D.P., Tang, J., Grant, G.R., DeLong, J.H., Tang, S.Y., Lawson, J.A. et al. (2014). Myeloid cell microsomal prostaglandin E synthase-1 fosters atherogenesis in mice. Proc. Natl. Acad. Sci. U.S.A. 111: 6828–6833. doi: 10.1073/pnas.1401797111.
- 140Quraishi, O., Mancini, J.A., and Riendeau, D. (2002). Inhibition of inducible prostaglandin E(2) synthase by 15-deoxy-delta(12,14)-prostaglandin J(2) and polyunsaturated fatty acids. Biochem. Pharmacol. 63: 1183–1189.
- 141Thoren, S. and Jakobsson, P.J. (2000). Coordinate up- and down-regulation of glutathione-dependent prostaglandin E synthase and cyclooxygenase-2 in A549 cells. Inhibition by NS-398 and leukotriene C4. Eur. J. Biochem. 267: 6428–6434.
- 142Mancini, J.A., Blood, K., Guay, J., Gordon, R., Claveau, D., Chan, C.C., and Riendeau, D. (2001). Cloning, expression, and up-regulation of inducible rat prostaglandin e synthase during lipopolysaccharide-induced pyresis and adjuvant-induced arthritis. J. Biol. Chem. 276: 4469–4475. doi: 10.1074/jbc.M006865200.
- 143Riendeau, D., Aspiotis, R., Ethier, D., Gareau, Y., Grimm, E.L., Guay, J., Guiral, S., Juteau, H., Mancini, J.A., Methot, N. et al. (2005). Inhibitors of the inducible microsomal prostaglandin E2 synthase (mPGES-1) derived from MK-886. Bioorg. Med. Chem. Lett. 15: 3352–3355. doi: 10.1016/j.bmcl.2005.05.027.
- 144Masse, F., Guiral, S., Fortin, L.J., Cauchon, E., Ethier, D., Guay, J., and Brideau, C. (2005). An automated multistep high-throughput screening assay for the identification of lead inhibitors of the inducible enzyme mPGES-1. J. Biomol. Screen. 10: 599–605. doi: 10.1177/1087057105276083.
- 145Cote, B., Boulet, L., Brideau, C., Claveau, D., Ethier, D., Frenette, R., Gagnon, M., Giroux, A., Guay, J., Guiral, S. et al. (2007). Substituted phenanthrene imidazoles as potent, selective, and orally active mPGES-1 inhibitors. Bioorg. Med. Chem. Lett. 17: 6816–6820. doi: 10.1016/j.bmcl.2007.10.033.
- 146Giroux, A., Boulet, L., Brideau, C., Chau, A., Claveau, D., Cote, B., Ethier, D., Frenette, R., Gagnon, M., Guay, J. et al. (2009). Discovery of disubstituted phenanthrene imidazoles as potent, selective and orally active mPGES-1 inhibitors. Bioorg. Med. Chem. Lett. 19: 5837–5841. doi: 10.1016/j.bmcl.2009.08.085.
- 147Pawelzik, S.C., Uda, N.R., Spahiu, L., Jegerschold, C., Stenberg, P., Hebert, H., Morgenstern, R., and Jakobsson, P.J. (2010). Identification of key residues determining species differences in inhibitor binding of microsomal prostaglandin E synthase-1. J. Biol. Chem. 285: 29254–29261. doi: 10.1074/jbc.M110.114454.
- 148Abe, M., Oka, T., Hori, T., and Takahashi, S. (2001). Prostanoids in the preoptic hypothalamus mediate systemic lipopolysaccharide-induced hyperalgesia in rats. Brain Res. 916: 41–49.
- 149Gosselin, F., Lau, S., Nadeau, C., Trinh, T., O'Shea, P.D., and Davies, I.W. (2009). A practical synthesis of m-prostaglandin E synthase-1 inhibitor MK-7285. J. Org. Chem. 74: 7790–7797. doi: 10.1021/jo901798d.
- 150Leclerc, P., Idborg, H., Spahiu, L., Larsson, C., Nekhotiaeva, N., Wannberg, J., Stenberg, P., Korotkova, M., and Jakobsson, P.J. (2013). Characterization of a human and murine mPGES-1 inhibitor and comparison to mPGES-1 genetic deletion in mouse models of inflammation. Prostaglandins Other Lipid Mediat. 107: 26–34. doi: 10.1016/j.prostaglandins.2013.09.001.
- 151Leclerc, P., Pawelzik, S.C., Idborg, H., Spahiu, L., Larsson, C., Stenberg, P., Korotkova, M., and Jakobsson, P.J. (2013). Characterization of a new mPGES-1 inhibitor in rat models of inflammation. Prostaglandins Other Lipid Mediat. 102–103: 1–12. doi: 10.1016/j.prostaglandins.2013.03.005.
- 152Arhancet, G.B., Walker, D.P., Metz, S., Fobian, Y.M., Heasley, S.E., Carter, J.S., Springer, J.R., Jones, D.E., Hayes, M.J., Shaffer, A.F. et al. (2013). Discovery and SAR of PF-4693627, a potent, selective and orally bioavailable mPGES-1 inhibitor for the potential treatment of inflammation. Bioorg. Med. Chem. Lett. 23: 1114–1119. doi: 10.1016/j.bmcl.2012.11.109.
- 153Walker, D.P., Arhancet, G.B., Lu, H.F., Heasley, S.E., Metz, S., Kablaoui, N.M., Franco, F.M., Hanau, C.E., Scholten, J.A., Springer, J.R. et al. (2013). Synthesis and biological evaluation of substituted benzoxazoles as inhibitors of mPGES-1: use of a conformation-based hypothesis to facilitate compound design. Bioorg. Med. Chem. Lett. 23: 1120–1126. doi: 10.1016/j.bmcl.2012.11.107.
- 154Schiffler, M.A., Antonysamy, S., Bhattachar, S.N., Campanale, K.M., Chandrasekhar, S., Condon, B., Desai, P.V., Fisher, M.J., Groshong, C., Harvey, A. et al. (2016). Discovery and characterization of 2-acylaminoimidazole microsomal prostaglandin E synthase-1 inhibitors. J. Med. Chem. 59: 194–205. doi: 10.1021/acs.jmedchem.5b01249.
- 155Jin, Y., Smith, C.L., Hu, L., Campanale, K.M., Stoltz, R., Huffman, L.G. Jr., McNearney, T.A., Yang, X.Y., Ackermann, B.L., Dean, R. et al. (2016). Pharmacodynamic comparison of LY3023703, a novel microsomal prostaglandin e Synthase 1 inhibitor, with celecoxib. Clin. Pharmacol. Ther. 99: 274–284. doi: 10.1002/cpt.260.
- 156Norman, B.H., Fisher, M.J., Schiffler, M.A., Kuklish, S.L., Hughes, N.E., Czeskis, B.A., Cassidy, K.C., Abraham, T.L., Alberts, J.J., and Luffer-Atlas, D. (2018). Identification and mitigation of reactive metabolites of 2-aminoimidazole-containing microsomal prostaglandin E synthase-1 inhibitors terminated due to clinical drug-induced liver injury. J. Med. Chem. 61: 2041–2051. doi: 10.1021/acs.jmedchem.7b01806.
- 157Jin, Y., Regev, A., Kam, J., Phipps, K., Smith, C., Henck, J., Campanale, K., Hu, L., Hall, D.G., Yang, X.Y. et al. (2018). Dose-dependent acute liver injury with hypersensitivity features in humans due to a novel microsomal prostaglandin E synthase 1 inhibitor. Br. J. Clin. Pharmacol. 84: 179–188. doi: 10.1111/bcp.13423.
- 158Fries, S., Grosser, T., Price, T.S., Lawson, J.A., Kapoor, S., DeMarco, S., Pletcher, M.T., Wiltshire, T., and FitzGerald, G.A. (2006). Marked interindividual variability in the response to selective inhibitors of cyclooxygenase-2. Gastroenterology 130: 55–64. doi: 10.1053/j.gastro.2005.10.002.
- 159Mazaleuskaya, L.L., Lawson, J.A., Li, X., Grant, G., Mesaros, C., Grosser, T., Blair, I.A., Ricciotti, E., and FitzGerald, G.A. (2016). A broad-spectrum lipidomics screen of antiinflammatory drug combinations in human blood. JCI Insight 1: doi: 10.1172/jci.insight.87031.
- 160Banerjee, A., Pawar, M.Y., Patil, S., Yadav, P.S., Kadam, P.A., Kattige, V.G., Deshpande, D.S., Pednekar, P.V., Pisat, M.K., and Gharat, L.A. (2014). Development of 2-aryl substituted quinazolin-4(3H)-one, pyrido[4,3-d]pyrimidin-4(3H)-one and pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as microsomal prostaglandin E(2) synthase-1 inhibitors. Bioorg. Med. Chem. Lett. 24: 4838–4844. doi: 10.1016/j.bmcl.2014.08.056.
- 161Sant, S., Tandon, M., Menon, V., Gudi, G., Kattige, V., Khairatkar Joshi, N., Korukonda, K., and Levine-Dolberg, O. (2018). GRC 27864, novel, microsomal prostaglandin E synthase-1 enzyme inhibitor: phase 1 study to evaluate safety, PK and biomarkers in healthy, adult subjects. Osteoarthritis Cartilage 26: S351–S352.
- 162Glenmark Pharmaceuticals (2018). Glenmark Pharmaceuticals provides update on clinical development of GRC 27864. Capital Market. January 15, www.business-standard.com/article/news-cm/glenmark-pharmaceuticals-provides-update-on-clinical-development-of-grc-27864-118011500958_1.html (accessed 24 May 2019).
- 163Ratti, S., Quarato, P., Casagrande, C., Fumagalli, R., and Corsini, A. (1998). Picotamide, an antithromboxane agent, inhibits the migration and proliferation of arterial myocytes. Eur. J. Pharmacol. 355: 77–83. doi: 10.1016/s0014-2999(98)00467-1.
- 164Capra, V., Back, M., Angiolillo, D.J., Cattaneo, M., and Sakariassen, K.S. (2014). Impact of vascular thromboxane prostanoid receptor activation on hemostasis, thrombosis, oxidative stress, and inflammation. J. Thromb. Haemost. 12: 126–137. doi: 10.1111/jth.12472.
- 165Kunitoh, H., Watanabe, K., Nagatomo, A., Okamoto, H., and Nakagawa, T. (1998). A double-blind, placebo-controlled trial of the thromboxane synthetase blocker OKY-046 on bronchial hypersensitivity in bronchial asthma patients. J. Asthma 35: 355–360.
- 166Kurosawa, M. (1995). Role of thromboxane A2 synthetase inhibitors in the treatment of patients with bronchial asthma. Clin. Ther. 17: 2–11. discussion 11.
- 167Gardiner, P.V., Young, C.L., Holmes, K., Hendrick, D.J., and Walters, E.H. (1993). Lack of short-term effect of the thromboxane synthetase inhibitor UK-38,485 on airway reactivity to methacholine in asthmatic subjects. Eur. Respir. J. 6: 1027–1030.
- 168Manning, P.J., Stevens, W.H., Cockcroft, D.W., and O'Byrne, P.M. (1991). The role of thromboxane in allergen-induced asthmatic responses. Eur. Respir. J. 4: 667–672.
- 169Arima, M. and Fukuda, T. (2011). Prostaglandin D(2) and T(H)2 inflammation in the pathogenesis of bronchial asthma. Korean J. Intern. Med. 26: 8–18. doi: 10.3904/kjim.2011.26.1.8.
- 170Peebles, R.S. Jr. (2019). Prostaglandins in asthma and allergic diseases. Pharmacol. Ther. 193: 1–19. doi: 10.1016/j.pharmthera.2018.08.001.
- 171Sulaiman, I., Lim, J.C., Soo, H.L., and Stanslas, J. (2016). Molecularly targeted therapies for asthma: Current development, challenges and potential clinical translation. Pulm. Pharmacol. Ther. 40: 52–68. doi: 10.1016/j.pupt.2016.07.005.
- 172Stinson, S.E., Amrani, Y., and Brightling, C.E. (2015). D prostanoid receptor 2 (chemoattractant receptor-homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects on bronchial epithelial cells. J. Allergy Clin. Immunol. 135: 395–406. doi: 10.1016/j.jaci.2014.08.027.
- 173Rittchen, S. and Heinemann, A. (2019). Therapeutic potential of hematopoietic prostaglandin D2 synthase in allergic inflammation. Cells 8: doi: 10.3390/cells8060619.
- 174Barnes, N., Pavord, I., Chuchalin, A., Bell, J., Hunter, M., Lewis, T., Parker, D., Payton, M., Collins, L.P., Pettipher, R. et al. (2012). A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin. Exp. Allergy 42: 38–48. doi: 10.1111/j.1365-2222.2011.03813.x.
- 175Singh, D., Cadden, P., Hunter, M., Pearce Collins, L., Perkins, M., Pettipher, R., Townsend, E., Vinall, S., and O'Connor, B. (2013). Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459. Eur. Respir. J. 41: 46–52. doi: 10.1183/09031936.00092111.
- 176Pettipher, R., Hunter, M.G., Perkins, C.M., Collins, L.P., Lewis, T., Baillet, M., Steiner, J., Bell, J., and Payton, M.A. (2014). Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy 69: 1223–1232. doi: 10.1111/all.12451.
- 177Horak, F., Zieglmayer, P., Zieglmayer, R., Lemell, P., Collins, L.P., Hunter, M.G., Steiner, J., Lewis, T., Payton, M.A., Perkins, C.M. et al. (2012). The CRTH2 antagonist OC000459 reduces nasal and ocular symptoms in allergic subjects exposed to grass pollen, a randomised, placebo-controlled, double-blind trial. Allergy 67: 1572–1579. doi: 10.1111/all.12042.
- 178Mohri, I., Aritake, K., Taniguchi, H., Sato, Y., Kamauchi, S., Nagata, N., Maruyama, T., Taniike, M., and Urade, Y. (1735-1744). Inhibition of prostaglandin D synthase suppresses muscular necrosis. Am. J. Pathol. 2009: 174. doi: 10.2353/ajpath.2009.080709.
- 179Kamauchi, S. and Urade, Y. (2011). Hematopoietic prostaglandin D synthase inhibitors for the treatment of duchenne muscular dystrophy. Brain Nerve 63: 1261–1269.
- 180Thurairatnam, S. (2012). Hematopoietic prostaglandin D synthase inhibitors. Prog. Med. Chem. 51: 97–133. doi: 10.1016/B978-0-12-396493-9.00004-2.
- 181Nakagawa, T., Takeuchi, A., Kakiuchi, R., Lee, T., Yagi, M., Awano, H., Iijima, K., Takeshima, Y., Urade, Y., and Matsuo, M. (2013). A prostaglandin D2 metabolite is elevated in the urine of Duchenne muscular dystrophy patients and increases further from 8 years old. Clin. Chim. Acta 423: 10–14. doi: 10.1016/j.cca.2013.03.031.
- 182Takeshita, E., Komaki, H., Tachimori, H., Miyoshi, K., Yamamiya, I., Shimizu-Motohashi, Y., Ishiyama, A., Saito, T., Nakagawa, E., Sugai, K. et al. (2018). Urinary prostaglandin metabolites as Duchenne muscular dystrophy progression markers. Brain Dev. 40: 918–925. doi: 10.1016/j.braindev.2018.06.012.
- 183Tanaka, K., Aritake, K., Tayama, M., Sasaki, E., Utsugi, T., Sasaoka, T., and Urade, Y. (2014). Novel inhibitor of hematopoietic prostaglandin D synthase improves the muscle disorder in an experimental model of Duchenne muscular dystrophy. Neuromusc. Disorders 24: 821. doi: 10.1016/j.nmd.2014.06.102.
- 184Takeshita, E., Komaki, H., Shimizu-Motohashi, Y., Ishiyama, A., Sasaki, M., and Takeda, S. (2018). A phase I study of TAS-205 in patients with Duchenne muscular dystrophy. Ann. Clin. Transl. Neurol. 5: 1338–1349. doi: 10.1002/acn3.651.
- 185Charlier, C. and Michaux, C. (2003). Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem. 38: 645–659.
- 186Jaismy Jacob, P., Manju, S.L., Ethiraj, K.R., and Elias, G. (2018). Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: a structure-based approach. Eur. J. Pharm. Sci. 121: 356–381. doi: 10.1016/j.ejps.2018.06.003.
- 187Alvaro-Gracia, J.M. (2004). Licofelone – clinical update on a novel LOX/COX inhibitor for the treatment of osteoarthritis. Rheumatology (Oxford) 43 (Suppl 1): i21–i25. doi: 10.1093/rheumatology/keh105.
- 188Koeberle, A., Siemoneit, U., Buhring, U., Northoff, H., Laufer, S., Albrecht, W., and Werz, O. (2008). Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J. Pharmacol. Exp. Ther. 326: 975–982. doi: 10.1124/jpet.108.139444.
- 189Fischer, L., Hornig, M., Pergola, C., Meindl, N., Franke, L., Tanrikulu, Y., Dodt, G., Schneider, G., Steinhilber, D., and Werz, O. (2007). The molecular mechanism of the inhibition by licofelone of the biosynthesis of 5-lipoxygenase products. Br. J. Pharmacol. 152: 471–480. doi: 10.1038/sj.bjp.0707416.
- 190Liedtke, A.J., Keck, P.R., Lehmann, F., Koeberle, A., Werz, O., and Laufer, S.A. (2009). Arylpyrrolizines as inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) or as dual inhibitors of mPGES-1 and 5-lipoxygenase (5-LOX). J. Med. Chem. 52: 4968–4972. doi: 10.1021/jm900481c.
- 191Elkady, M., Niess, R., Schaible, A.M., Bauer, J., Luderer, S., Ambrosi, G., Werz, O., and Laufer, S.A. (2012). Modified acidic nonsteroidal anti-inflammatory drugs as dual inhibitors of mPGES-1 and 5-LOX. J. Med. Chem. 55: 8958–8962. doi: 10.1021/jm3010543.
- 192Bitto, A., Squadrito, F., Irrera, N., Pizzino, G., Pallio, G., Mecchio, A., Galfo, F., and Altavilla, D. (2014). Flavocoxid, a nutraceutical approach to blunt inflammatory conditions. Mediators Inflamm. 2014: 790851. doi: 10.1155/2014/790851.
- 193Burnett, B.P., Jia, Q., Zhao, Y., and Levy, R.M. (2007). A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J. Med. Food 10: 442–451. doi: 10.1089/jmf.2006.255.
- 194Burnett, B.P., Bitto, A., Altavilla, D., Squadrito, F., Levy, R.M., and Pillai, L. (2011). Flavocoxid inhibits phospholipase A2, peroxidase moieties of the cyclooxygenases (COX), and 5-lipoxygenase, modifies COX-2 gene expression, and acts as an antioxidant. Mediators Inflamm. 2011: 385780. doi: 10.1155/2011/385780.
- 195Levy, R.M., Khokhlov, A., Kopenkin, S., Bart, B., Ermolova, T., Kantemirova, R., Mazurov, V., Bell, M., Caldron, P., Pillai, L. et al. (2010). Efficacy and safety of flavocoxid, a novel therapeutic, compared with naproxen: a randomized multicenter controlled trial in subjects with osteoarthritis of the knee. Adv. Ther. 27: 731–742. doi: 10.1007/s12325-010-0064-z.
- 196Levy, R., Khokhlov, A., Kopenkin, S., Bart, B., Ermolova, T., Kantemirova, R., Mazurov, V., Bell, M., Caldron, P., Pillai, L. et al. (2010). Efficacy and safety of flavocoxid compared with naproxen in subjects with osteoarthritis of the knee- a subset analysis. Adv. Ther. 27: 953–962. doi: 10.1007/s12325-010-0083-9.
- 197Pillai, L., Levy, R.M., Yimam, M., Zhao, Y., Jia, Q., and Burnett, B.P. (2010). Flavocoxid, an anti-inflammatory agent of botanical origin, does not affect coagulation or interact with anticoagulation therapies. Adv. Ther. 27: 400–411. doi: 10.1007/s12325-010-0040-7.
- 198Pillai, L., Burnett, B.P., Levy, R.M., and Group, G.S.C. (2010). GOAL: multicenter, open-label, post-marketing study of flavocoxid, a novel dual pathway inhibitor anti-inflammatory agent of botanical origin. Curr. Med. Res. Opin. 26: 1055–1063. doi: 10.1185/03007991003694522.
- 199Selg, E., Buccellati, C., Andersson, M., Rovati, G.E., Ezinga, M., Sala, A., Larsson, A.K., Ambrosio, M., Lastbom, L., Capra, V. et al. (2007). Antagonism of thromboxane receptors by diclofenac and lumiracoxib. Br. J. Pharmacol. 152: 1185–1195. doi: 10.1038/sj.bjp.0707518.
- 200Bertinaria, M., Shaikh, M.A., Buccellati, C., Cena, C., Rolando, B., Lazzarato, L., Fruttero, R., Gasco, A., Hoxha, M., Capra, V. et al. (2012). Designing multitarget anti-inflammatory agents: chemical modulation of the lumiracoxib structure toward dual thromboxane antagonists-COX-2 inhibitors. ChemMedChem (7): 1647–1660. doi: 10.1002/cmdc.201200272.
- 201Carnevali, S., Buccellati, C., Bolego, C., Bertinaria, M., Rovati, G.E., and Sala, A. (2017). Nonsteroidal anti-inflammatory drugs: exploiting bivalent COXIB/ TP antagonists for the control of cardiovascular risk. Curr. Med. Chem. 24: 3218–3230. doi: 10.2174/0929867324666170602083428.
- 202Hall, A., Billinton, A., and Giblin, G.M. (2007). EP1 antagonists for the treatment of inflammatory pain. Curr. Opin. Drug Discov. Dev. 10: 597–612.
- 203Chapple, C.R., Abrams, P., Andersson, K.E., Radziszewski, P., Masuda, T., Small, M., Kuwayama, T., and Deacon, S. (2014). Phase II study on the efficacy and safety of the EP1 receptor antagonist ONO-8539 for nonneurogenic overactive bladder syndrome. J. Urol. 191: 253–260. doi: 10.1016/j.juro.2013.08.082.
- 204Kondo, T., Sei, H., Yamasaki, T., Tomita, T., Ohda, Y., Oshima, T., Fukui, H., Watari, J., and Miwa, H. (2017). A novel prostanoid EP1 receptor antagonist, ONO-8539, reduces acid-induced heartburn symptoms in healthy male volunteers: a randomized clinical trial. J. Gastroenterol. 52: 1081–1089. doi: 10.1007/s00535-017-1308-3.
- 205Paralkar, V.M., Borovecki, F., Ke, H.Z., Cameron, K.O., Lefker, B., Grasser, W.A., Owen, T.A., Li, M., DaSilva-Jardine, P., Zhou, M. et al. (2003). An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc. Natl. Acad. Sci. U.S.A. 100: 6736–6740. doi: 10.1073/pnas.1037343100.
- 206Cameron, K.O., Lefker, B.A., Ke, H.Z., Li, M., Zawistoski, M.P., Tjoa, C.M., Wright, A.S., DeNinno, S.L., Paralkar, V.M., Owen, T.A. et al. (2009). Discovery of CP-533536: an EP2 receptor selective prostaglandin E2 (PGE2) agonist that induces local bone formation. Bioorg. Med. Chem. Lett. 19: 2078–2075. doi: 10.1016/j.bmcl.2009.01.059.
- 207af Forselles, K.J., Root, J., Clarke, T., Davey, D., Aughton, K., Dack, K., and Pullen, N. (2011). In vitro and in vivo characterization of PF-04418948, a novel, potent and selective prostaglandin EP(2) receptor antagonist. Br. J. Pharmacol. 164: 1847–1856. doi: 10.1111/j.1476-5381.2011.01495.x.
- 208Singh, J., Zeller, W., Zhou, N., Hategan, G., Mishra, R.K., Polozov, A., Yu, P., Onua, E., Zhang, J., Ramirez, J.L. et al. (2010). Structure–activity relationship studies leading to the identification of (2E)-3-[l-[(2,4-dichlorophenyl)methyl]-5-fluoro-3-methyl-1H-indol-7-yl]-N-[(4,5-dichloro-2-thienyl)sulfonyl]-2-propenamide (DG-041), a potent and selective prostanoid EP3 receptor antagonist, as a novel antiplatelet agent that does not prolong bleeding. J. Med. Chem. 53: 18–36. doi: 10.1021/jm9005912.
- 209Tilly, P., Charles, A.L., Ludwig, S., Slimani, F., Gross, S., Meilhac, O., Geny, B., Stefansson, K., Gurney, M.E., and Fabre, J.E. (2014). Blocking the EP3 receptor for PGE2 with DG-041 decreases thrombosis without impairing haemostatic competence. Cardiovasc. Res. 101: 482–491. doi: 10.1093/cvr/cvt276.
- 210Camras, C.B., Bito, L.Z., and Eakins, K.E. (1977). Reduction of intraocular pressure by prostaglandins applied topically to the eyes of conscious rabbits. Invest. Ophthalmol. Vis. Sci. 16: 1125–1134.
- 211Matsou, A. and Anastasopoulos, E. (2018). Investigational drugs targeting prostaglandin receptors for the treatment of glaucoma. Exp. Opin. Investig. Drugs 27: 777–785. doi: 10.1080/13543784.2018.1526279.
- 212Klimko, P.G. and Sharif, N.A. (2019). Discovery, characterization and clinical utility of prostaglandin agonists for the treatment of glaucoma. Br. J. Pharmacol. 176: 1051–1058. doi: 10.1111/bph.14327.
- 213Mukhopadhyay, P., Bian, L., Yin, H., Bhattacherjee, P., and Paterson, C. (2001). Localization of EP(1) and FP receptors in human ocular tissues by in situ hybridization. Invest. Ophthalmol. Vis. Sci. 42: 424–428.
- 214Schlotzer-Schrehardt, U., Zenkel, M., and Nusing, R.M. (2002). Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. Invest. Ophthalmol. Vis. Sci. 43: 1475–1487.
- 215Nakajima, T., Matsugi, T., Goto, W., Kageyama, M., Mori, N., Matsumura, Y., and Hara, H. (2003). New fluoroprostaglandin F(2alpha) derivatives with prostanoid FP-receptor agonistic activity as potent ocular-hypotensive agents. Biol. Pharm. Bull. 26: 1691–1695.
- 216Takagi, Y., Nakajima, T., Shimazaki, A., Kageyama, M., Matsugi, T., Matsumura, Y., Gabelt, B.T., Kaufman, P.L., and Hara, H. (2004). Pharmacological characteristics of AFP-168 (tafluprost), a new prostanoid FP receptor agonist, as an ocular hypotensive drug. Exp. Eye Res. 78: 767–776. doi: 10.1016/j.exer.2003.12.007.
- 217Ota, T., Aihara, M., Saeki, T., Narumiya, S., and Araie, M. (2007). The IOP-lowering effects and mechanism of action of tafluprost in prostanoid receptor-deficient mice. Br. J. Ophthalmol. 91: 673–676. doi: 10.1136/bjo.2006.105585.
- 218Faulkner, R., Sharif, N.A., Orr, S., Sall, K., Dubiner, H., Whitson, J.T., Moster, M., Craven, E.R., Curtis, M., Pailliotet, C. et al. (2010). Aqueous humor concentrations of bimatoprost free acid, bimatoprost and travoprost free acid in cataract surgical patients administered multiple topical ocular doses of LUMIGAN or TRAVATAN. J. Ocul. Pharmacol. Ther. 26: 147–156. doi: 10.1089/jop.2009.0098.
- 219Woodward, D.F., Liang, Y., and Krauss, A.H. (2008). Prostamides (prostaglandin-ethanolamides) and their pharmacology. Br. J. Pharmacol. 153: 410–419. doi: 10.1038/sj.bjp.0707434.
- 220Scherer, W.J. (2002). A retrospective review of non-responders to latanoprost. J. Ocul. Pharmacol. Ther. 18: 287–291. doi: 10.1089/108076802760116205.
- 221Sakurai, M., Higashide, T., Ohkubo, S., Takeda, H., and Sugiyama, K. (2014). Association between genetic polymorphisms of the prostaglandin F2alpha receptor gene, and response to latanoprost in patients with glaucoma and ocular hypertension. Br. J. Ophthalmol. 98: 469–473. doi: 10.1136/bjophthalmol-2013-304267.
- 222Gabelt, B.T. and Kaufman, P.L. (2005). Changes in aqueous humor dynamics with age and glaucoma. Prog. Retin. Eye Res. 24: 612–637. doi: 10.1016/j.preteyeres.2004.10.003.
- 223Alm, A. and Nilsson, S.F. (2009). Uveoscleral outflow – a review. Exp. Eye Res. 88: 760–768. doi: 10.1016/j.exer.2008.12.012.
- 224Winkler, N.S. and Fautsch, M.P. (2014). Effects of prostaglandin analogues on aqueous humor outflow pathways. J. Ocul. Pharmacol. Ther. 30: 102–109. doi: 10.1089/jop.2013.0179.
- 225Cavet, M.E., Vittitow, J.L., Impagnatiello, F., Ongini, E., and Bastia, E. (2014). Nitric oxide (NO): an emerging target for the treatment of glaucoma. Invest. Ophthalmol. Vis. Sci. 55: 5005–5015. doi: 10.1167/iovs.14-14515.
- 226Muenster, S., Lieb, W.S., Fabry, G., Allen, K.N., Kamat, S.S., Guy, A.H., Dordea, A.C., Teixeira, L., Tainsh, R.E., Yu, B. et al. (2017). The ability of nitric oxide to lower intraocular pressure is dependent on guanylyl cyclase. Invest. Ophthalmol. Vis. Sci. 58: 4826–4835. doi: 10.1167/iovs.17-22168.
- 227Krauss, A.H., Impagnatiello, F., Toris, C.B., Gale, D.C., Prasanna, G., Borghi, V., Chiroli, V., Chong, W.K., Carreiro, S.T., and Ongini, E. (2011). Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2alpha agonist, in preclinical models. Exp. Eye Res. 93: 250–255. doi: 10.1016/j.exer.2011.03.001.
- 228Costa, V.P., Harris, A., Anderson, D., Stodtmeister, R., Cremasco, F., Kergoat, H., Lovasik, J., Stalmans, I., Zeitz, O., Lanzl, I. et al. (2014). Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 92: e252–e266. doi: 10.1111/aos.12298.
- 229Resch, H., Garhofer, G., Fuchsjager-Mayrl, G., Hommer, A., and Schmetterer, L. (2009). Endothelial dysfunction in glaucoma. Acta Ophthalmol. 87: 4–12. doi: 10.1111/j.1755-3768.2007.01167.x.
- 230Impagnatiello, F., Toris, C.B., Batugo, M., Prasanna, G., Borghi, V., Bastia, E., Ongini, E., and Krauss, A.H. (2015). Intraocular pressure-lowering activity of NCX 470, a novel nitric oxide-donating bimatoprost in preclinical models. Invest. Ophthalmol. Vis. Sci. 56: 6558–6564. doi: 10.1167/iovs.15-17190.
- 231Nilsson, S.F., Drecoll, E., Lutjen-Drecoll, E., Toris, C.B., Krauss, A.H., Kharlamb, A., Nieves, A., Guerra, T., and Woodward, D.F. (2006). The prostanoid EP2 receptor agonist butaprost increases uveoscleral outflow in the cynomolgus monkey. Invest. Ophthalmol. Vis. Sci. 47: 4042–4049. doi: 10.1167/iovs.05-1627.
- 232Prasanna, G., Carreiro, S., Anderson, S., Gukasyan, H., Sartnurak, S., Younis, H., Gale, D., Xiang, C., Wells, P., Dinh, D. et al. (2011). Effect of PF-04217329 a prodrug of a selective prostaglandin EP(2) agonist on intraocular pressure in preclinical models of glaucoma. Exp. Eye Res. 93: 256–264. doi: 10.1016/j.exer.2011.02.015.
- 233Schachar, R.A., Raber, S., Courtney, R., and Zhang, M. (2011). A phase 2, randomized, dose-response trial of taprenepag isopropyl (PF-04217329) versus latanoprost 0.005% in open-angle glaucoma and ocular hypertension. Curr. Eye Res. 36: 809–817. doi: 10.3109/02713683.2011.593725.
- 234Yanochko, G.M., Affolter, T., Eighmy, J.J., Evans, M.G., Khoh-Reiter, S., Lee, D., Miller, P.E., Shiue, M.H., Trajkovic, D., and Jessen, B.A. (2014). Investigation of ocular events associated with taprenepag isopropyl, a topical EP2 agonist in development for treatment of glaucoma. J. Ocul. Pharmacol. Ther. 30: 429–439. doi: 10.1089/jop.2013.0222.
- 235Fuwa, M., Toris, C.B., Fan, S., Taniguchi, T., Ichikawa, M., Odani-Kawabata, N., Iwamura, R., Yoneda, K., Matsugi, T., Shams, N.K. et al. (2018). Effects of a novel selective EP2 receptor agonist, omidenepag isopropyl, on aqueous humor dynamics in laser-induced ocular hypertensive monkeys. J. Ocul. Pharmacol. Ther. 34: 531–537. doi: 10.1089/jop.2017.0146.
- 236Aihara, M., Lu, F., Kawata, H., Iwata, A., Liu, K., Odani-Kawabata, N., and Shams, N.K. (2019). Phase 2, randomized, dose-finding studies of omidenepag isopropyl, a selective EP2 agonist, in patients with primary open-angle glaucoma or ocular hypertension. J. Glaucoma 28: 375–385. doi: 10.1097/IJG.0000000000001221.
- 237Duggan, S. (2018). Omidenepag isopropyl ophthalmic solution 0.002%: first global approval. Drugs 78: 1925–1929. doi: 10.1007/s40265-018-1016-1.
- 238Suto, F., Rowe-Rendleman, C.L., Ouchi, T., Jamil, A., Wood, A., and Ward, C.L. (2015). A novel dual agonist of EP3 and FP receptors for OAG and OHT: safety, pharmacokinetics, and pharmacodynamics of ONO-9054 in healthy volunteers. Invest. Ophthalmol. Vis. Sci. 56: 7963–7970. doi: 10.1167/iovs.15-18166.
- 239Yamane, S., Karakawa, T., Nakayama, S., Nagai, K., Moriyuki, K., Neki, S., Suto, F., Kambe, T., Hirota, Y., and Kawabata, K. (2015). IOP-lowering effect of ONO-9054, a novel dual agonist of prostanoid EP3 and FP receptors, in monkeys. Invest. Ophthalmol. Vis. Sci. 56: 2547–2552. doi: 10.1167/iovs.14-16181.
- 240Berlin, M.S., Rowe-Rendleman, C., Ahmed, I., Ross, D.T., Fujii, A., Ouchi, T., Quach, C., Wood, A., and Ward, C.L. (2016). EP3/FP dual receptor agonist ONO-9054 administered morning or evening to patients with open-angle glaucoma or ocular hypertension: results of a randomised crossover study. Br. J. Ophthalmol. 100: 843–847. doi: 10.1136/bjophthalmol-2015-307000.
- 241Harris, A., Ward, C.L., Rowe-Rendleman, C.L., Ouchi, T., Wood, A., Fujii, A., and Serle, J.B. (2016). Ocular hypotensive effect of ONO-9054, an EP3/FP receptor agonist: results of a randomized, placebo-controlled, dose escalation study. J. Glaucoma 25: e826–e833. doi: 10.1097/IJG.0000000000000449.
- 242Miller Ellis, E., Berlin, M.S., Ward, C.L., Sharpe, J.A., Jamil, A., and Harris, A. (2017). Ocular hypotensive effect of the novel EP3/FP agonist ONO-9054 versus Xalatan: results of a 28-day, double-masked, randomised study. Br. J. Ophthalmol. 101: 796–800. doi: 10.1136/bjophthalmol-2016-309023.
- 243Nitta, M., Hirata, I., Toshina, K., Murano, M., Maemura, K., Hamamoto, N., Sasaki, S., Yamauchi, H., and Katsu, K. (2002). Expression of the EP4 prostaglandin E2 receptor subtype with rat dextran sodium sulphate colitis: colitis suppression by a selective agonist, ONO-AE1-329. Scand. J. Immunol. 56: 66–75.
- 244Kabashima, K., Saji, T., Murata, T., Nagamachi, M., Matsuoka, T., Segi, E., Tsuboi, K., Sugimoto, Y., Kobayashi, T., Miyachi, Y. et al. (2002). The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J. Clin. Invest. 109: 883–893. doi: 10.1172/JCI14459.
- 245Yoshida, K., Oida, H., Kobayashi, T., Maruyama, T., Tanaka, M., Katayama, T., Yamaguchi, K., Segi, E., Tsuboyama, T., Matsushita, M. et al. (2002). Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc. Natl. Acad. Sci. U.S.A. 99: 4580–4585. doi: 10.1073/pnas.062053399.
- 246Nakase, H., Fujiyama, Y., Oshitani, N., Oga, T., Nonomura, K., Matsuoka, T., Esaki, Y., Murayama, T., Teramukai, S., Chiba, T. et al. (2010). Effect of EP4 agonist (ONO-4819CD) for patients with mild to moderate ulcerative colitis refractory to 5-aminosalicylates: a randomized phase II, placebo-controlled trial. Inflamm. Bowel Dis. 16: 731–733. doi: 10.1002/ibd.21080.
- 247Watanabe, Y., Murata, T., Amakawa, M., Miyake, Y., Handa, T., Konishi, K., Matsumura, Y., Tanaka, T., and Takeuchi, K. (2015). KAG-308, a newly-identified EP4-selective agonist shows efficacy for treating ulcerative colitis and can bring about lower risk of colorectal carcinogenesis by oral administration. Eur. J. Pharmacol. 754: 179–189. doi: 10.1016/j.ejphar.2015.02.021.
- 248Markovic, T., Jakopin, Z., Dolenc, M.S., and Mlinaric-Rascan, I. (2017). Structural features of subtype-selective EP receptor modulators. Drug Discov. Today 22: 57–71. doi: 10.1016/j.drudis.2016.08.003.
- 249Lin, C.R., Amaya, F., Barrett, L., Wang, H., Takada, J., Samad, T.A., and Woolf, C.J. (2006). Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. J. Pharmacol. Exp. Ther. 319: 1096–1103. doi: 10.1124/jpet.106.105569.
- 250Nakao, K., Murase, A., Ohshiro, H., Okumura, T., Taniguchi, K., Murata, Y., Masuda, M., Kato, T., Okumura, Y., and Takada, J. (2007). CJ-023,423, a novel, potent and selective prostaglandin EP4 receptor antagonist with antihyperalgesic properties. J. Pharmacol. Exp. Ther. 322: 686–694. doi: 10.1124/jpet.107.122010.
- 251Chen, Q., Muramoto, K., Masaaki, N., Ding, Y., Yang, H., Mackey, M., Li, W., Inoue, Y., Ackermann, K., Shirota, H. et al. (2010). A novel antagonist of the prostaglandin E(2) EP(4) receptor inhibits Th1 differentiation and Th17 expansion and is orally active in arthritis models. Br. J. Pharmacol. 160: 292–310. doi: 10.1111/j.1476-5381.2010.00647.x.
- 252Boyd, M.J., Berthelette, C., Chiasson, J.F., Clark, P., Colucci, J., Denis, D., Han, Y., Levesque, J.F., Mathieu, M.C., Stocco, R. et al. (2011). A novel series of potent and selective EP(4) receptor ligands: facile modulation of agonism and antagonism. Bioorg. Med. Chem. Lett. 21: 484–487. doi: 10.1016/j.bmcl.2010.10.106.
- 253McCoy, J.M., Wicks, J.R., and Audoly, L.P. (2002). The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J. Clin. Invest. 110: 651–658. doi: 10.1172/JCI15528.
- 254Clark, P., Rowland, S.E., Denis, D., Mathieu, M.C., Stocco, R., Poirier, H., Burch, J., Han, Y., Audoly, L., Therien, A.G. et al. (2008). MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbenzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J. Pharmacol. Exp. Ther. 325: 425–434. doi: 10.1124/jpet.107.134510.
- 255Colucci, J., Boyd, M., Berthelette, C., Chiasson, J.F., Wang, Z., Ducharme, Y., Friesen, R., Wrona, M., Levesque, J.F., Denis, D. et al. (2010). Discovery of 4-[1-[([1-[4-(trifluoromethyl)benzyl]-1H-indol-7-yl]carbonyl)amino]cyclopropyl]benzoic acid (MF-766), a highly potent and selective EP4 antagonist for treating inflammatory pain. Bioorg. Med. Chem. Lett. 20: 3760–3763. doi: 10.1016/j.bmcl.2010.04.065.
- 256Chandrasekhar, S., Yu, X.P., Harvey, A.K., Oskins, J.L., Lin, C., Wang, X., Blanco, M.J., Fisher, M.J., Kuklish, S.L., Schiffler, M.A. et al. (2017). Analgesic and anti-inflammatory properties of novel, selective, and potent EP4 receptor antagonists. Pharmacol. Res. Perspect. 5: e00316. doi: 10.1002/prp2.316.
- 257Caselli, G., Bonazzi, A., Lanza, M., Ferrari, F., Maggioni, D., Ferioli, C., Giambelli, R., Comi, E., Zerbi, S., Perrella, M. et al. (2018). Pharmacological characterisation of CR6086, a potent prostaglandin E2 receptor 4 antagonist, as a new potential disease-modifying anti-rheumatic drug. Arthritis Res. Ther. 20: 39. doi: 10.1186/s13075-018-1537-8.
- 258Blanco, M.J., Vetman, T., Chandrasekhar, S., Fisher, M.J., Harvey, A., Kuklish, S.L., Chambers, M., Lin, C., Mudra, D., Oskins, J. et al. (2016). Identification and biological activity of 6-alkyl-substituted 3-methyl-pyridine-2-carbonyl amino dimethyl-benzoic acid EP4 antagonists. Bioorg. Med. Chem. Lett. 26: 2303–2307. doi: 10.1016/j.bmcl.2016.03.041.
- 259Lebkowska-Wieruszewska, B., De Vito, V., Owen, H., Poapholatep, A., and Giorgi, M. (2017). Pharmacokinetics of grapiprant, a selective EP4 prostaglandin PGE2 receptor antagonist, after 2 mg/kg oral and i.v. administrations in cats. J. Vet. Pharmacol. Ther. 40: e11–e15. doi: 10.1111/jvp.12414.
- 260De Vito, V., Salvadori, M., Poapolathep, A., Owen, H., Rychshanova, R., and Giorgi, M. (2017). Pharmacokinetic/pharmacodynamic evaluation of grapiprant in a carrageenan-induced inflammatory pain model in the rabbit. J. Vet. Pharmacol. Ther. 40: 468–475. doi: 10.1111/jvp.12380.
- 261Nagahisa, A. and Okumura, T. (2017). Pharmacology of grapiprant, a novel EP4 antagonist: receptor binding, efficacy in a rodent postoperative pain model, and a dose estimation for controlling pain in dogs. J. Vet. Pharmacol. Ther. 40: 285–292. doi: 10.1111/jvp.12349.
- 262Knych, H.K.; Seminoff, K.; McKemie, D.S. Detection and pharmacokinetics of grapiprant following oral administration to exercised thoroughbred horses. Drug Test Anal. 2018, 10.1002/dta.2378, doi:10.1002/dta.2378.
- 263Rausch-Derra, L.C., Huebner, M., and Rhodes, L. (2015). Evaluation of the safety of long-term, daily oral administration of grapiprant, a novel drug for treatment of osteoarthritic pain and inflammation, in healthy dogs. Am. J. Vet. Res. 76: 853–859. doi: 10.2460/ajvr.76.10.853.
- 264Rausch-Derra, L., Huebner, M., Wofford, J., and Rhodes, L. (2016). A prospective, randomized, masked, placebo-controlled multisite clinical study of grapiprant, an EP4 prostaglandin receptor antagonist (PRA), in dogs with osteoarthritis. J. Vet. Intern. Med. 30: 756–763. doi: 10.1111/jvim.13948.
- 265Rausch-Derra, L.C., Rhodes, L., Freshwater, L., and Hawks, R. (2016). Pharmacokinetic comparison of oral tablet and suspension formulations of grapiprant, a novel therapeutic for the pain and inflammation of osteoarthritis in dogs. J. Vet. Pharmacol. Ther. 39: 566–571. doi: 10.1111/jvp.12306.
- 266Okumura, Y., Yamagishi, T., Nukui, S., and Nakao, K. (2017). Discovery of AAT-008, a novel, potent, and selective prostaglandin EP4 receptor antagonist. Bioorg. Med. Chem. Lett. 27: 1186–1192. doi: 10.1016/j.bmcl.2017.01.067.
- 267Jin, Y., Smith, C., Hu, L., Coutant, D.E., Whitehurst, K., Phipps, K., McNearney, T.A., Yang, X., Ackermann, B., Pottanat, T. et al. (2018). LY3127760, a selective prostaglandin E4 (EP4) receptor antagonist, and celecoxib: a comparison of pharmacological profiles. Clin. Transl. Sci. 11: 46–53. doi: 10.1111/cts.12497.
- 268Blanco, M.J., Vetman, T., Chandrasekhar, S., Fisher, M.J., Harvey, A., Chambers, M., Lin, C., Mudra, D., Oskins, J., Wang, X.S. et al. (2016). Discovery of potent aryl-substituted 3-[(3-methylpyridine-2-carbonyl) amino]-2,4-dimethyl-benzoic acid EP4 antagonists with improved pharmacokinetic profile. Bioorg. Med. Chem. Lett. 26: 931–935. doi: 10.1016/j.bmcl.2015.12.057.
- 269Sakata, D., Yao, C., and Narumiya, S. (2010). Emerging roles of prostanoids in T cell-mediated immunity. IUBMB Life 62: 591–596. doi: 10.1002/iub.356.
- 270Wherry, E.J., Ha, S.J., Kaech, S.M., Haining, W.N., Sarkar, S., Kalia, V., Subramaniam, S., Blattman, J.N., Barber, D.L., and Ahmed, R. (2007). Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27: 670–684. doi: 10.1016/j.immuni.2007.09.006.
- 271Chen, J.H., Perry, C.J., Tsui, Y.C., Staron, M.M., Parish, I.A., Dominguez, C.X., Rosenberg, D.W., and Kaech, S.M. (2015). Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21: 327–334. doi: 10.1038/nm.3831.
- 272Miao, J., Lu, X., Hu, Y., Piao, C., Wu, X., Liu, X., Huang, C., Wang, Y., Li, D., and Liu, J. (2017). Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget 8: 89802–89810. doi: 10.18632/oncotarget.21155.
- 273Shen, R.F. and Tai, H.H. (1998). Thromboxanes: synthase and receptors. J. Biomed. Sci. 5: 153–172. doi: 10.1007/bf02253465.
- 274Samara, E., Cao, G., Locke, C., Granneman, G.R., Dean, R., and Killian, A. (1997). Population analysis of the pharmacokinetics and pharmacodynamics of seratrodast in patients with mild to moderate asthma. Clin. Pharmacol. Ther. 62: 426–435. doi: 10.1016/S0009-9236(97)90121-1.
- 275Dockens, R.C., Santone, K.S., Mitroka, J.G., Morrison, R.A., Jemal, M., Greene, D.S., and Barbhaiya, R.H. (2000). Disposition of radiolabeled ifetroban in rats, dogs, monkeys, and humans. Drug Metab. Dispos. 28: 973–980.
- 276Misra, R.N., Brown, B.R., Sher, P.M., Patel, M.M., Hall, S.E., Han, W.C., Barrish, J.C., Kocy, O., Harris, D.N., Goldenberg, H.J. et al. (1993). Interphenylene 7-oxabicyclo[2.2.1]heptane oxazoles. Highly potent, selective, and long-acting thromboxane A2 receptor antagonists. J. Med. Chem. 36: 1401–1417.
- 277Ogletree, M.L., Harris, D.N., Schumacher, W.A., Webb, M.L., and Misra, R.N. (1993). Pharmacological profile of BMS 180,291: a potent, long-acting, orally active thromboxane A2/prostaglandin endoperoxide receptor antagonist. J. Pharmacol. Exp. Ther. 264: 570–578.
- 278Schumacher, W.A., Steinbacher, T.E., Youssef, S., and Ogletree, M.L. (1992). Antiplatelet activity of the long-acting thromboxane receptor antagonist BMS 180,291 in monkeys. Prostaglandins 44: 389–397.
- 279Gresele, P., Deckmyn, H., Arnout, J., Nenci, G.G., and Vermylen, J. (1989). Characterization of N,N′-bis(3-picolyl)-4-methoxy-isophtalamide (picotamide) as a dual thromboxane synthase inhibitor/thromboxane A2 receptor antagonist in human platelets. Thromb. Haemost. 61: 479–484.
- 280Hernandez, J.M. and Janssen, L.J. (2015). Revisiting the usefulness of thromboxane-A2 modulation in the treatment of bronchoconstriction in asthma. Can. J. Physiol. Pharmacol. 93: 111–117. doi: 10.1139/cjpp-2014-0364.
- 281Royer, J.F., Schratl, P., Carrillo, J.J., Jupp, R., Barker, J., Weyman-Jones, C., Beri, R., Sargent, C., Schmidt, J.A., Lang-Loidolt, D. et al. (2008). A novel antagonist of prostaglandin D2 blocks the locomotion of eosinophils and basophils. Eur. J. Clin. Invest. 38: 663–671. doi: 10.1111/j.1365-2362.2008.01989.x.
- 282Endo, S. and Akiyama, K. (1996). Thromboxane A2 receptor antagonist in asthma therapy. Nihon Rinsho 54: 3045–3048.
- 283Fiedler, V.B., Seuter, F., and Perzborn, E. (1990). Effects of the novel thromboxane antagonist Bay U 3405 on experimental coronary artery disease. Stroke 21: IV149–IV151.
- 284Melian, E.B. and Goa, K.L. (2002). Beraprost: a review of its pharmacology and therapeutic efficacy in the treatment of peripheral arterial disease and pulmonary arterial hypertension. Drugs 62: 107–133. doi: 10.2165/00003495-200262010-00005.
- 285Kuwano, K., Hashino, A., Asaki, T., Hamamoto, T., Yamada, T., Okubo, K., and Kuwabara, K. (2007). 2-[4-[(5,6-Diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetam ide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug. J. Pharmacol. Exp. Ther. 322: 1181–1188. doi: 10.1124/jpet.107.124248.
- 286Honorato Perez, J. (2017). Selexipag, a selective prostacyclin receptor agonist in pulmonary arterial hypertension: a pharmacology review. Exp. Rev. Clin. Pharmacol. 10: 753–762. doi: 10.1080/17512433.2017.1322900.
- 287Bruderer, S., Hurst, N., Remenova, T., and Dingemanse, J. (2017). Clinical pharmacology, efficacy, and safety of selexipag for the treatment of pulmonary arterial hypertension. Exp. Opin. Drug Saf. 16: 743–751. doi: 10.1080/14740338.2017.1328052.
- 288Kuwano, K., Hashino, A., Noda, K., Kosugi, K., and Kuwabara, K. (2008). A long-acting and highly selective prostacyclin receptor agonist prodrug, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetam ide (NS-304), ameliorates rat pulmonary hypertension with unique relaxant responses of its active form, {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (MRE-269), on rat pulmonary artery. J. Pharmacol. Exp. Ther. 326: 691–699. doi: 10.1124/jpet.108.138305.
- 289Morrison, K., Ernst, R., Hess, P., Studer, R., and Clozel, M. (2010). Selexipag: a selective prostacyclin receptor agonist that does not affect rat gastric function. J. Pharmacol. Exp. Ther. 335: 249–255. doi: 10.1124/jpet.110.169748.
- 290Sitbon, O., Channick, R., Chin, K.M., Frey, A., Gaine, S., Galie, N., Ghofrani, H.A., Hoeper, M.M., Lang, I.M., Preiss, R. et al. (2015). Selexipag for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 373: 2522–2533. doi: 10.1056/NEJMoa1503184.
- 291Pettipher, R., Vinall, S.L., Xue, L., Speight, G., Townsend, E.R., Gazi, L., Whelan, C.J., Armer, R.E., Payton, M.A., and Hunter, M.G. (2012). Pharmacologic profile of OC000459, a potent, selective, and orally active D prostanoid receptor 2 antagonist that inhibits mast cell-dependent activation of T helper 2 lymphocytes and eosinophils. J. Pharmacol. Exp. Ther. 340: 473–482. doi: 10.1124/jpet.111.187203.
- 292Kupczyk, M. and Kuna, P. (2017). Targeting the PGD2/CRTH2/DP1 signaling pathway in asthma and allergic disease: current status and future perspectives. Drugs 77: 1281–1294. doi: 10.1007/s40265-017-0777-2.
- 293Krug, N., Gupta, A., Badorrek, P., Koenen, R., Mueller, M., Pivovarova, A., Hilbert, J., Wetzel, K., Hohlfeld, J.M., and Wood, C. (2014). Efficacy of the oral chemoattractant receptor homologous molecule on TH2 cells antagonist BI 671800 in patients with seasonal allergic rhinitis. J. Allergy Clin. Immunol. 133: 414–419. doi: 10.1016/j.jaci.2013.10.013.
- 294Miller, D., Wood, C., Bateman, E., LaForce, C., Blatchford, J., Hilbert, J., Gupta, A., and Fowler, A. (2017). A randomized study of BI 671800, a CRTH2 antagonist, as add-on therapy in poorly controlled asthma. Allergy Asthma Proc. 38: 157–164. doi: 10.2500/aap.2017.38.4034.
- 295Hall, I.P., Fowler, A.V., Gupta, A., Tetzlaff, K., Nivens, M.C., Sarno, M., Finnigan, H.A., Bateman, E.D., and Rand Sutherland, E. (2015). Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm. Pharmacol. Ther. 32: 37–44. doi: 10.1016/j.pupt.2015.03.003.
- 296Fretz, H., Valdenaire, A., Pothier, J., Hilpert, K., Gnerre, C., Peter, O., Leroy, X., and Riederer, M.A. (2013). Identification of 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid (setipiprant/ACT-129968), a potent, selective, and orally bioavailable chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonist. J. Med. Chem. 56: 4899–4911. doi: 10.1021/jm400122f.
- 297Diamant, Z., Sidharta, P.N., Singh, D., O'Connor, B.J., Zuiker, R., Leaker, B.R., Silkey, M., and Dingemanse, J. (2014). Setipiprant, a selective CRTH2 antagonist, reduces allergen-induced airway responses in allergic asthmatics. Clin. Exp. Allergy 44: 1044–1052. doi: 10.1111/cea.12357.
- 298Ratner, P., Andrews, C.P., Hampel, F.C., Martin, B., Mohar, D.E., Bourrelly, D., Danaietash, P., Mangialaio, S., Dingemanse, J., Hmissi, A. et al. (2017). Efficacy and safety of setipiprant in seasonal allergic rhinitis: results from Phase 2 and Phase 3 randomized, double-blind, placebo- and active-referenced studies. Allergy Asthma Clin. Immunol. 13: 18. doi: 10.1186/s13223-017-0183-z.
- 299Liu, J., Li, A.R., Wang, Y., Johnson, M.G., Su, Y., Shen, W., Wang, X., Lively, S., Brown, M., Lai, S. et al. (2011). Discovery of AMG 853, a CRTH2 and DP Dual Antagonist. ACS Med. Chem. Lett. 2: 326–330. doi: 10.1021/ml1002234.
- 300Busse, W.W., Wenzel, S.E., Meltzer, E.O., Kerwin, E.M., Liu, M.C., Zhang, N., Chon, Y., Budelsky, A.L., Lin, J., and Lin, S.L. (2013). Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients. J. Allergy Clin. Immunol. 131: 339–345. doi: 10.1016/j.jaci.2012.10.013.