Cancer Targets Involving the Ubiquitin Proteasome System
Cancer
First published: 28 April 2021
Abstract
The ability to control the intracellular concentrations of proteins with small molecules has obvious implications for the treatment of cancer whose growth and spread is typically due to the dysregulation of just a small number of proteins. The ubiquitin proteasome system (UPS) is the tightly regulated machinery used by the cell to dispose of undesired proteins. We review herein how various components of the UPS can be targeted by small-molecule intervention to realize global or even specific control of protein levels. Building on the success that inhibitors of the proteasome have had in the clinic over the past decade, a growing number of clinical candidates directed at the UPS are currently being evaluated as cancer therapies.
References
- 1Powers, E.T., Morimoto, R.I., Dillin, A., Kelly, J.W., and Balch, W.E. (2009). Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78: 959–991. doi: 10.1146/annurev.biochem.052308.114844.
- 2Balch, W.E., Morimoto, R.L., Dillin, A., and Kelly, J.W. (2008). Adapting proteostasis for disease intervention. Science 319: 916–919. doi: 10.1126/science.1141448.
- 3Pickart, C.M. and Eddins, M.J. (2004). Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695: 55–72. doi: 10.1016/j.bbamcr.2004.09.019.
- 4Komander, D. and Rape, M. (2012). The ubiquitin code. Annu. Rev. Biochem. 81: 203–229. doi: 10.1146/annurev-biochem-060310-170328.
- 5Gallastegui, N. and Groll, M. (2010). The 26S proteasome: assembly and function of a destructive machine. Trends Biochem. Sci. 35: 634–642. doi: 10.1016/j.tibs.2010.05.005.
- 6Saeki, Y. (2017). Ubiquitin recognition by the proteasome. J. Biochem. 161: 113–124. doi: 10.1093/jb/mvw091.
- 7Haas, A.L., Warms, J.V., Hershko, A., and Rose, I.A. (1982). Ubiquitin-activating enzyme mechanism and role in protein-ubiquitin conjugation. J. Biol. Chem. 257: 2543–2548.
- 8Ardley, H.C. and Robinson, P.A. (2004). E3 ubiquitin ligases. Essays Biochem. 41: 15–30. doi: 10.1042/EB0410015.
- 9Metzger, M.B., Hristova, V.A., and Weissman, A.M. (2012). HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 125: 531–537. doi: 10.1242/jcs.091777.
- 10Burslem, G.M. and Crews, C.M. (2017). Small-molecule modulation of protein homeostasis. Chem. Rev. 117: 11269–11301. doi: 10.1021/acs.chemrev.7b00077.
- 11Nalepa, G., Rolfe, M., and Harper, J.W. (2006). Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug Discov. 5: 596–613. doi: 10.1038/nrd2056.
- 12Johnson, D.E. (2015). The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr. Relat. Cancer 22: T1–T17. doi: 10.1530/ERC-14-0005.
- 13Salami, J. and Crews, C.M. (2017). Waste disposal – an attractive strategy for cancer therapy. Science 355: 1163–1167. doi: 10.1126/science.aam7340.
- 14Mansour, M.A. (2018). Ubiquitination: friend and foe in cancer. Int. J. Biochem. Cell Biol. 101: 80–93. doi: 10.1016/j.biocel.2018.06.001.
- 15Huang, X. and Dixit, V.M. (2016). Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 26: 484–498. doi: 10.1038/cr.2016.31.
- 16Weathington, N.M. and Mallampalli, R.K. (2014). Emerging therapies targeting the ubiquitin proteasome system in cancer. J. Clin. Invest. 124: 6–12. doi: 10.1172/JCI71602.
- 17Deshaies, R.J. (2014). Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 12: 94. doi: 10.1186/s12915-014-0094-0.
- 18Adams, J. (2004). The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5: 417–421. doi: 10.1016/S1535-6108(04)00120-5.
- 19Kim, K.B. and Crews, C.M. (2013). From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes. Nat. Prod. Rep. 30: 600–604. doi: 10.1039/c3np20126k.
- 20Moureau, P., Richardson, P.G., Cavo, M., Orlowski, R.Z., San Miguel, J.F., Palumbo, A., and Harousseau, J. (2012). Proteasome inhibitors in multiple myeloma: 10 years later. Blood 120: 947–959. doi: 10.1182/blood-2012-04-403733.
- 21Lub, S., Maes, K., Menu, E., De Bruyne, E., Vanderkerken, K., and Van Valckenborgh, E. (2015). Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget 7: 6521–6537. doi: 10.18632/oncotarget.6658.
10.18632/oncotarget.6658 Google Scholar
- 22Teicher, B.A. and Tomaszewski, J.E. (2015). Proteasome inhibitors. Biochem. Pharmacol. 96: 1–9. doi: 10.1016/j.bcp.2015.04.008.
- 23Kisselev, A.F. and Goldberg, A.L. (2001). Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 8: 739–758. doi: 10.1016/S1074-5521(01)00056-4 and references cited therein.
- 24Goldberg, A.L. (2012). Development of proteasome inhibitors as research tools and cancer drugs. J. Cell Biol. 199: 583–588. doi: 10.1083/jcb.201210077.
- 25Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A.L. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC Class I molecules. Cell 78: 761–771. doi: 10.1016/S0092-8674(94)90462-6.
- 26Lee, D.H. and Goldberg, A.L. (1998). Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8: 397–403. doi: 10.1016/S0962-8924(98)01346-4.
- 27Voges, D., Zwickl, P., and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68: 1015–1068. doi: 10.1146/annurev.biochem.68.1.1015.
- 28Paramore, A. and Frantz, S. (2003). Bortezomib. Nat. Rev. Drug Discov. 2: 611–612. doi: 10.1038/nrd1159.
- 29Dick, L.R. and Fleming, P.E. (2010). Building on bortezomib: second-generation proteasome inhibitors as anti-cancer therapy. Drug Discov. Today 15: 243–249. doi: 10.1016/j.drudis.2010.01.008.
- 30Touzeau, C. and Moureau, P. (2018). Ixazomib in the management of relapsed multiple myeloma. Future Oncol. 14: 2013–2020. doi: 10.2217/fon-2017-0710.
- 31Kortuem, K.M. and Stewart, A.K. (2013). Carfilzomib. Blood 121: 893–897. doi: 10.1182/blood-2012-10-459883.
- 32Kisselev, A.F., van der Linden, W.A., and Overkleeft, H.S. (2012). Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 19: 99–115. doi: 10.1016/j.chembiol.2012.01.003.
- 33Ma, L. and Diao, A. (2015). Marizomib, a potent second generation inhibitor from natural origin. Anticancer Agents Med. Chem. 15: 298–306. doi: 10.2174/1871520614666141114202606.
- 34D'Arcy, P., Wang, X., and Linder, S. (2015). Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol. Ther. 147: 32–54. doi: 10.1016/j.pharmthera.2014.11.002.
- 35Harrigan, J.A., Jacq, X., Martin, N.M., and Jackson, S.P. (2018). Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat. Rev. Drug Discov. 17: 57–78. doi: 10.1038/nrd.2017.152.
- 36Komander, D., Clague, M.J., and Urbé, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 10: 550–562. doi: 10.1038/nrm2731.
- 37Kapuria, V., Peterson, L.F., Fang, D., Bornmann, W.G., Talpaz, M., and Donato, N.J. (2010). Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 70: 9265–9276. doi: 10.1158/0008-5472.CAN-10-1530.
- 38D'Arcy, P., Brnjic, S., Olofsson, M.H., Fryknäs, M., Lindsten, K., De Cesare, M., Perego, P., Sadeghi, B., Hassan, M., Larsson, R., and Linder, S. (2011). Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 17: 1636–1640. doi: 10.1038/nm.2536.
- 39Wang, X., Mazurkiewicz, M., Hillert, E.-K., Olofsson, M.H., Pierrou, S., Hillertz, P., Gulbo, J., Selvaraju, K., Paulus, A., Akhtar, S., Bossler, F., Khan, A.C., and D'Arcy, P. (2016). The proteasome deubiqutinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci. Rep. 6: 26979. doi: 10.1038/srep26979.
- 40Perez, C., Li, J., Parlati, F., Rouffet, M., Ma, Y., Mackinnon, A.L., Chou, T.-F., Deshaies, R.J., and Cohen, S.M. (2017). Discovery of an inhibitor of the proteasome subunit Rpn11. J. Med. Chem. 60: 1343–1361. doi: 10.1021/acs.jmedchem.6b01379.
- 41Li, J., Yakushi, T., Parlati, F., Mackinnon, A.L., Perez, C., Ma, Y., Carter, K.P., Colayco, S., Magnuson, G., Brown, B., Nguyen, K., Vasile, S., Suyama, E., Smith, L.H., Sergienko, E., Pinkerton, A.B., Chung, T.D.Y., Palmer, A.E., Pass, I., Hess, S., Cohen, S.M., and Deshaies, R.J. (2017). Capzimin is a potent and specific inhibitor of proteasome isopeptidase Rpn11. Nat. Chem. Biol. 13: 486–493. doi: 10.1038/nchembio.2326.
- 42Schulman, B.A. and Harper, J.W. (2009). Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signaling pathways. Nat. Rev. Mol. Cell Biol. 10: 319–331. doi: 10.1038/nrm2673.
- 43Yang, Y., Kitagaki, J., Dai, R.-M., Tsai, Y.C., Lorick, K.L., Ludwig, R.L., Pierre, S.A., Jensen, J.P., Davydov, I.V., Oberoi, P., Li, C.-C.H., Kenten, J.H., Beutler, J.A., Vousden, K.H., and Weissman, A.M. (2007). Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67: 9472–9481. doi: 10.1158/0008-5472.CAN-07-0568.
- 44Xu, G.W., Ali, M., Wood, T.E., Wong, D., Maclean, N., Wang, X., Gronda, M., Skrtic, M., Li, X., Hurren, R., Mao, X., Venkatesan, M., Zavareh, R.B., Ketela, T., Reed, J.C., Rose, D., Moffat, J., Batey, R.A., Dhe-Paganon, S., and Schimmer, A.D. (2010). The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood 115: 2251–2259. doi: 10.1182/blood-2009-07-231191.
- 45Misra, M., Kuhn, M., Löbel, M., An, H., Statsyuk, A.V., and Sotriffer, C. (2017). Dissecting the specificity of adenosyl sulfamate inhibitors targeting the ubiquitin-activating enzyme. Structure 25: 1120–1129. doi: 10.1016/j.str.2017.05.001.
- 46Zhuang, J., Lee, H., Kuiatse, I., Wang, H., Shirazi, F., Berger, A., Hyer, M., Chattopadhyay, N., Syed, S., Shi, J.Q., Yu, J., Shinde, V., Kreshock, A., Tirrell, S., Menon, S., Jones, R.J., and Orlowski, R.Z. (2016). The anti-tumor effect of the ubiquitin-activating enzyme (UAE) inhibitor TAK-243 on pre-clinical models of multiple myeloma. Blood 128: 3296.
- 47Hyer, M.L., Milhollen, M.A., Ciavarri, J., Fleming, P., Traore, T., Sappal, D., Huck, J., Shi, J., Gavin, J., Brownell, J., Yang, Y., Stringer, B., Griffin, R., Bruzzese, F., Soucy, T., Duffy, J., Rabino, C., Riceberg, J., Hoar, K., Lublinsky, A., Menon, S., Sintchak, M., Bump, N., Pulukuri, S.M., Langston, S., Tirrell, S., Kuranda, M., Veiby, P., Newcomb, J., Li, P., Wu, J.T., Powe, J., Dick, L.R., Greenspan, P., Galvin, K., Manfredi, M., Claiborne, C., Amidon, B.S., and Bence, N.F. (2018). A small molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat. Med. 24: 186–193. doi: 10.1038/nm.4474.
- 48Soucy, T.A., Smith, P.G., Milhollen, M.A., Berger, A.J., Gavin, J.M., Adhikari, S., Brownell, J.E., Burke, K.E., Cardin, D.P., Critchley, S., Cullis, C.A., Doucette, A., Garnsey, J.J., Gaulin, J.L., Gershman, R.E., Lublinsky, A.R., McDonald, A., Mizutani, H., Narayanan, U., Olhava, E.J., Peluso, S., Rezaei, M., Sintchak, M.D., Talreja, T., Thomas, M.P., Traore, T., Vyskocil, S., Weatherhead, G.S., Yu, J., Zhang, J., Dick, L.R., Claiborne, C.F., Rolfe, M., Bolen, J.B., and Langston, S.P. (2009). An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458: 732–736. doi: 10.1038/nature07884.
- 49Soucy, T.A., Dick, L.R., Smith, P.G., Milhollen, M.A., and Brownell, J.E. (2010). The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer 1: 708–716. doi: 10.1177/1947601910382898.
- 50Brownell, J.E., Sintchak, M.D., Gavin, J.M., Liao, H., Bruzzese, F.J., Bump, N.J., Soucy, T.A., Milhollen, M.A., Yang, X., Burkhardt, A.L., Ma, J., Loke, H.-K., Lingaraj, T., Wu, D., Hamman, K.B., Spelman, J.J., Cullis, C.A., Langston, S.P., Vyskocil, S., Sells, T.B., Mallender, W.D., Visiers, I., Li, P., Claibornes, C.F., Rolfe, M., Bolen, J.B., and Dick, L.R. (2010). Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhbitor MLN4924 forms a NEDD8-AMP mimetic in situ. Molecular Cell 37: 102–111. doi: 10.1016/j.molcel.2009.12.024.
- 51Stewart, M.D., Ritterhoff, T., Klevit, R.E., and Brzovic, P.S. (2016). E2 enzymes: more than just middle men. Cell Res. 26: 423–440. doi: 10.1038/cr.2016.35.
- 52Ceccarelli, D.F., Tang, X., Pelletier, B., Orlicky, S., Xie, W., Plantevin, V., Neculai, D., Chou, Y.-C., Ogunjimi, A., Al-Hakim, A., Varelas, X., Koszela, J., Wasney, G.A., Vedadi, M., Dhe-Paganon, S., Cox, S., Xu, S., Lopez-Girona, A., Mercurio, F., Wrana, J., Durocher, D., Meloche, S., Webb, D.R., Tyers, M., and Sicheri, F. (2011). An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145: 1075–1087. doi: 10.1016/j.cell.2011.05.039.
- 53Huang, H., Ceccarelli, D.F., Orlicky, S., St-Cyr, D.J., Ziemba, A., Garg, P., Plamondon, S., Auer, M., Sidhu, S., Marinier, A., Kleiger, G., Tyers, M., and Sicheri, F. (2014). E2 enzyme inhibition of a low affinity interface with ubiquitin. Nat. Chem. Biol. 10: 156–163. doi: 10.1038/nchembio.1412.
- 54Berndsen, C.E. and Wolberger, C. (2014). New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol. 21: 301–307. doi: 10.1038/nsmb.2780.
- 55Lane, D.P. (1992). P53, guardian of the genome. Nature 358: 15–16. doi: 10.1038/358015a0.
- 56Toufektchan, E. and Toledo, F. (2018). The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers 10: 1–15. doi: 10.3390/cancers10050135.
- 57Toledo, F. and Wahl, G.M. (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer 6: 909–923. doi: 10.1038/nrc2012.
- 58Zhao, Y., Aguilar, A., Bernard, D., and Wang, S. (2014). Small-molecule inhibitors of the MDM2-p53 protein-protein interaction (MDM2 inhibitors) in clinical trials for the cancer treatment. J. Med. Chem. 58: 1038–1052. doi: 10.1021/jm501092z.
- 59Tisato, V., Voltan, R., Gonelli, A., Secchiero, P., and Zauli, G. (2017). MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J. Hematol. Oncol. 10: 133. doi: 10.1186/s13045-017-0500-5.
- 60Vu, B., Wovkulich, P., Pizzolato, G., Lovey, A., Ding, Q., Jiang, N., Liu, J.-J., Zhao, C., Glenn, K., Wen, Y., Tovar, K., Packman, K., Vassilev, L., and Graves, B. (2013). Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett. 4: 466–469. doi: 10.1021/ml4000657.
- 61Ding, Q., Zhang, Z., Liu, J.-J., Jiang, N., Zhang, J., Ross, T.M., Chu, X.-J., Bartkovitz, D., Podlaski, F., Janson, C., Tovar, C., Filipovic, Z.M., Higgins, B., Glenn, K., Packman, K., Vassilev, L.T., and Graves, B. (2013). Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J. Med. Chem. 56: 5979–5983. doi: 10.1021/jm400487c.
- 62Wang, S., Sun, W., Zhao, Y., McEachern, D., Meaux, I., Barrière, C., Stuckey, J., Meagher, J., Bai, L., Liu, L., Hoffman-Luca, C.G., Lu, J., Shangary, S., Yu, S., Bernard, D., Aguilar, A., Dos-Santos, O., Besret, L., Guerif, S., Pannier, P., Gorge-Bernat, D., and Debussche, L. (2014). SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res. 74: 5855–5865. doi: 10.1158/0008-5472.CAN-14-0799.
- 63Sun, D., Li, Z., Rew, Y., Gribble, M., Bartberger, M.D., Beck, H.P., Canon, J., Chen, A., Chen, X., Chow, D., Deignan, J., Duquette, J., Eksterowicz, J., Fisher, B., Fox, B.M., Fu, J., Gonzalez, A.Z., De Turiso, F.G.-L., Houze, J.B., Huang, X., Jiang, M., Jin, L., Kayser, F., Liu, J., Lo, M.-C., Long, A.M., Lucas, B., McGee, L.R., McIntosh, J., Mihalic, J., Oliner, J.D., Osgood, T., Peterson, M.L., Roveto, P., Saiki, A.Y., Shaffer, P., Toteva, M., Wang, Y., Wang, Y.C., Wortman, S., Yakowec, P., Yan, X., Ye, Q., Yu, D., Yu, M., Zhao, X., Zhou, J., Zhu, J., Olson, S.H., and Medina, J.C. (2014). Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development. J. Med. Chem. 57: 1454–1472. doi: 10.1021/jm401753e.
- 64Holzer, P., Masuya, K., Furet, P., Kallen, J., Valat-Stachyra, T., Ferretti, S., Berghausen, J., Bouisset-Leonard, M., Buschmann, N., Pissot-Solderman, C., Rynn, C., Ruetz, S., Stutz, S., Chène, P., Jeay, S., and Gessier, F. (2015). Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): a highly potent and selective MDM2 inhibitor undergoing phase I clinical trials in p53wt tumors. J. Med. Chem. 58: 6348–6358. doi: 10.1021/acs.jmedchem.5b00810.
- 65Silke, J. and Meier, P. (2013). Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb. Perspect. Biol. 5: a008730. doi: 10.1101/cshperspect.a008730.
- 66Dubrez, L., Berthelet, J., and Glorian, V. (2013). IAP proteins as targets for drug development in oncology. Onco Targets Ther. 16: 1285–1304. doi: 10.2147/OTT/S33375.
10.2147/OTT/S33375 Google Scholar
- 67Bai, L., Smith, D.C., and Wang, S. (2014). Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol. Ther. 144: 82–95. doi: 10.1016/j.pharmthera.2014.05.007.
- 68Fulda, S. (2015). Promises and challenges of Smac mimetics as cancer therapeutics. Clin. Cancer Res. 21: 5030–5036. doi: 10.1158/1078-0432.CCR-15-0365.
- 69Infante, J.R., Dees, E.C., Olszanski, A.J., Dhuria, S.V., Sen, S., Cameron, S., and Cohen, R.B. (2014). Phase 1 dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patient with advanced solid tumors. J. Clin. Oncol. 32: 3103–3110. doi: 10.1200/JCO.2013.52.3993.
- 70Cai, Q., Sun, H., Peng, Y., Lu, J., Nikolovska-Coleska, Z., McEachern, D., Liu, L., Qiu, S., Yang, C.-Y., Miller, R., Yi, H., Zhang, T., Sun, D., Kang, S., Guo, M., Leopold, L., Yang, D., and Wang, S. (2011). A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J. Med. Chem. 54: 2714–2726. doi: 10.1021/jm101505d.
- 71Tamanini, E., Buck, I.M., Chessari, G., Chiarparin, E., Day, J.E.H., Frederickson, M., Griffiths-Jones, C.M., Hearn, K., Heightman, T.D., Iqbal, A., Johnson, C.N., Lewis, E.J., Martins, V., Peakman, T., Reader, M., Rich, S.J., Ward, G.A., Williams, P.A., and Wilsher, N.E. (2017). Discovery of a potent nonpeptidomimetic, small-molecule antagonist of cellular inhibitor of apoptosis protein I (cIAP1) and X-linked inhibitor of apoptosis protein (XIAP). J. Med. Chem. 60: 4611–4625. doi: 10.1021/acs.jmedchem.6b01877.
- 72Condon, S.M., Mitsuuchi, M.Y., Deng, Y., LaPorte, M.G., Rippin, S.R., Haimowitz, T., Alexander, M.D., Kumar, P.T., Hendi, M.S., Lee, Y.H., Benetatos, C.A., Yu, G., Kapoor, G.S., Neiman, E., Seipel, M.E., Burns, J.M., Graham, M.A., McKinlay, M.A., Li, X., Shi, Y., Feltham, R., Bettjeman, B., Cumming, M.H., Vince, J.E., Khan, N., Silke, J., Day, C.L., and Chunduru, S.K. (2014). Birinapant, a smac-mimetic with improved tolerability for the treatment of solid tumors and hematological malignancies. J. Med. Chem. 57: 3666–3677. doi: 10.1021/jm500176w.
- 73Dueber, E.C., Schoeffler, A.J., Lingel, A., Elliott, J.M., Federova, A.V., Giannetti, A.M., Zobel, K., Maurer, B., Varfolomeev, E., Wu, P., Wallweber, H.J.A., Hymowitz, S.G., Deshayes, K., Vucic, D., and Fairbrother, W.J. (2011). Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination. Science 334: 376–380. doi: 10.1126/science.1207862.
- 74Nikkhoo, A., Rostami, N., Hojjat-Farsangi, M., Azizi, G., Yousefi, B., Ghalamfarsa, G., and Jadidi-Niaragh, F. (2019). Smac mimetics as novel promising modulators of apoptosis in the treatment of breast cancer. J. Cell Biochem. 120: 9300–9314. doi: 10.1002/jcb.28205.
- 75Buckley, D.L., Gustafdon, J.L., Van Molle, I., Roth, A.G., Tae, H.S., Gareiss, P.C., Jorgensen, W.L., Ciulli, A., and Crews, C.M. (2012). Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew. Chem. Int. Ed. 51: 11463–11467. doi: 10.1002/anie.201206231.
- 76Galdeano, C., Gadd, M.S., Soares, P., Scaffidi, S., Van Molle, I., Birced, P., Hewitt, S., Dias, D.M., and Ciulli, A. (2014). Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem. 57: 8657–8663. doi: 10.1021/jm5011258.
- 77Skaar, J.R., Pagan, J.K., and Pagano, M. (2014). SCF ubiquitin ligase targeted therapies. Nat. Rev. Drug Discov. 13: 889–903. doi: 10.1038/nrd4432.
- 78van den Boom, J. and Meyer, H. (2018). VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Mol. Cell 69: 182–194. doi: 10.1016.j.molcel.2017.10.028.
- 79Anderson, D.J., Le Moigne, R., Djakovic, S., Kumar, B., Rice, J., Wong, S., Wang, J., Yao, B., Valle, E., and Kiss Von Soly, S. (2015). Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell 28: 653–665. doi: 10.1016/j.ccell.2015.10.002.
- 80Woodman, P.G. (2003). p97, a protein coping with multiple identities. J. Cell Sci. 116: 4283–4290. doi: 10.1242/jcs.00817.
- 81Li, G., Huang, C., Zhao, G., and Lennarz, W.J. (2012). Interprotomer motion-transmission mechanism for the hexameric AAA ATPase p97. Proc. Natl. Acad. Sci. 10: 3737–3741. doi: 10.1073/pnas.1200255109.
- 82Rabinovich, E., Kerem, A., Fröhlich, K.-U., Diamant, N., and Bar-Nun, S. (2002). AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22: 626–634. doi: 10.1128/MCB.22.2.626-634.2002.
- 83Haines, D.S. (2010). p97-Containing complexes in proliferation control and cancer: emerging culprits of guilt by association? GenesCancer 1: 753–763. doi: 10.1177/1947601910381381.
- 84Zhou, H.J., Wang, J., Yao, B., Wong, S., Djakovic, S., Kumar, B., Rice, J., Valle, E., Soriano, F., Menon, M.-K., Madriaga, A., Kiss von Soly, S., Kumar, A., Parlati, F., Yakes, F.M., Shawver, L., Le Moigne, R., Anderson, D.J., Rolfe, M., and Wustrow, D. (2015). Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083). J. Med. Chem. 58: 9480–9497.
- 85Le Moigne, R., Aftab, B.T., Djakovic, S., Dhimolea, E., Valle, E., Murnane, M., King, E.M., Soriano, H., Menon, M.-K., Wu, Z.Y., Wong, S.T., Lee, G.J., Yao, B., Wiita, A.P., Lam, C., Rice, J., Wang, J., Chesi, M., Bergsagel, P.L., Kraus, M., Driessen, C., von Soly, S.K., Yakes, F.M., Wustrow, D., Shawver, L., Zhou, H.-J., Martin, T.G. III, Wolf, J.L., Mitsiades, C.S., Anderson, D.J., and Rolfe, M. (2017). The p97 inhibitor CB-5083 is a unique disrupter of protein homeostasis in models of multiple myeloma. Mol. Cancer. Ther. 16: 2375–2386. doi: 10.1158/1535-7163.MCT-17-0233.
- 86Tang, W.K., Odzorig, T., Jin, W., and Xia, D. (2019). Structural basis of p97 inhibition by the site-selective anti-cancer compound CB-5083. Mol. Pharmacol. 3: 286–293. doi: 10.1124/mol.118.114256.
- 87Chapman, E., Maksim, N., De la Cruz, F., and La Clair, J.J. (2015). Inhibitors of the AAA+ chaperone p97. Molecules 20: 3027–3049. doi: 10.3390/molecules20023027.
- 88Chou, T.-F., Li, K., Frankowski, K.J., Schoenen, F.J., and Deshaies, R.J. (2013). Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 8: 297–312. doi: 10.1002/cmdc.201200520.
- 89LaPorte, M.G., Burnett, J.C., Colombo, R., Bulfer, S.L., Alverez, C., Chou, T.-F., Neitz, R.J., Moore, W.J., Yue, Z., Li, S., Arkin, M.R., Wipf, P., and Huryn, D.M. (2018). Optimization of phenyl indole inhibitors of the AAA+ ATPase p97. ACS Med. Chem. Lett. 9: 1075–1081. doi: 10.1021/acsmedchemlett.8b00372.
- 90Bartlett, J.B., Dredge, K., and Dalgleish, A.G. (2004). The evolution of thalidomide and its IMiD derivatives as anticancer drugs. Nat. Rev. Cancer 4: 314–322. doi: 10.1038/nrc1323.
- 91Quach, H., Ritchie, D., Stewart, A.K., Neeson, P., Harrison, S., Smyth, M.J., and Prince, H.M. (2010). Mechanism of action of immunomodulatory drugs (Imids) in multiple myeloma. Leukemia 24: 22–32. doi: 10.1038/leu.2009.236.
- 92Ito, T., Ando, H., Suzuki, T., Ogura, T., Hotta, K., Imamura, Y., Yamaguchi, Y., and Handa, H. (2010). Identification of a primary target of thalidomide teratogenicity. Science 327: 1345–1350. doi: 10.1126/science.1177319.
- 93Krönke, J., Udeshi, N.D., Narla, A., Grauman, P., Hurst, S.N., McConkey, M., Svinkina, T., Heckl, D., Comer, E., Li, X., Ciarlo, C., Hartman, E., Munshi, N., Schenone, M., Schreiber, S.L., Carr, S.A., and Ebert, B.L. (2014). Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343: 301–305. doi: 10.1126/science.1244851.
- 94Lu, G., Middleton, R.E., Sun, H., Naniong, M., Ott, C.J., Mitsiades, C.S., Wong, K.K., Bradner, J.E., and Kaelin, W.G. Jr. (2014). The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343: 305–309. doi: 10.1126/science.1244917.
- 95Sievers, Q.L., Petzold, G., Bunker, R.D., Renneville, A., Słabicki, M., Liddicoat, B.J., Abdulrahman, W., Mikkelsen, T., Ebert, B.L., and Thoma, N.H. (2018). Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362: doi: 10.1126/science.aat0572.
- 96Che, Y., Gilbert, A.M., Shanmugasundaram, V., and Noe, M.C. (2018). Inducing protein-protein interaction with molecular glues. Bioorg. Med. Chem. Lett. 28: 2585–2592. doi: 10.1016/j.bmcl.2018.04.046.
- 97Hagner, P.R., Man, H.-W., Fontanillo, C., Wang, M., Couto, S., Breider, M., Bjorklund, C., Havens, C.G., Lu, G., Rychak, E., Raymon, H., Narla, R.K., Barnes, L., Khambatta, C., Chiu, H., Kosek, J., Kang, J., Amantangelo, M.D., Waldman, M., Lopez-Girona, A., Cai, T., Pourdehnad, M., Trotter, M., Daniel, T.O., Schafer, P.H., Klippel, A., Thakurta, A., Chopra, R., and Gandhi, A.K. (2015). CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126: 779–789. doi: 10.1182/blood-2015-02-628669.
- 98Matyskiela, M.E., Zhang, W., Man, H.-W., Muller, G., Khambatta, G., Baculi, F., Hickman, M., Lebrun, L., Pagarigan, B., Carmel, G., Lu, C.-C., Lu, G., Riley, M., Satoh, Y., Schafer, P., Daniel, T.O., Carmichael, J., Cathers, B.E., and Chamberlain, P.P. (2018). A cereblon modulator (CC-220) with improved degradation of ikaros and aiolos. J. Med. Chem. 61: 535–542. doi: 10.1021/acs.jmedchem.6b01921.
- 99Matyskiela, M.E., Lu, G., Ito, T., Pargarin, B., Lu, C.-C., Miller, K., Fang, W., Wang, N.-Y., Nguyen, D., Houston, J., Carmel, G., Tran, T., Riley, M., Nosaka, L., Lander, G.C., Gaidarova, S., Xu, S., Ruchelman, A.L., Handa, H., Carmichael, J., Daniel, T.O., Cathers, B.E., Lopez-Girona, A., and Chamberlain, P.P. (2016). A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535: 252–257. doi: 10.1038/nature18611.
- 100Han, T., Gorlaski, M., Gaskill, N., Capota, E., Kim, J., Ting, T.C., Xie, Y., Williams, N.S., and Nijhawan, D. (2017). Anticancer sulfonamides target splicing by inducting RBM39 degradation via recruitment to DCAF15. Science 356. doi: 10.1126/science.aal3755.
- 101Uehara, T., Minoshima, Y., Sagane, K., Sugi, N.H., Mitsuhashi, K.O., Yamamoto, N., Kamiyama, H., Takahashi, K., Kotake, Y., Uesugi, M., Yokoi, A., Inoue, A., Yoshida, T., Mabuchi, M., Tanaka, A., and Owa, T. (2017). Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13: 675–680. doi: 10.1038/nchembio.2363.
- 102Pace, C.N., Scholtz, J.M., and Grimsley, G.R. (2014). Forces stabilizing proteins. FEBS Lett. 588: 2177–2184. doi: 10.1016/feslet.2014.05.006.
- 103Amm, I., Sommer, T., and Wolf, D.H. (2014). Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843: 182–196. doi: 10.1016/j/bbamcr/2013/06.031.
- 104Lin, S.X., Chen, J., Mazumdar, M., Poirier, D., Wang, C., Azzi, A., and Zhou, M. (2010). Molecular therapy of breast cancer: progress and future directions. Nat. Rev. Endocrinol. 6: 485–493. doi: 10.1038/nrendo.2010.92.
- 105Pike, A.C., Brzozowski, A.M., Walton, J., Hubbard, R.E., Thorsell, A.G., Li, Y.L., Gustafsson, J.A., and Carlquist, M. (2001). Structural insights into the mode of action of a pure antiestrogen. Structure 7: 145–153. doi: 10.1016/S)969-2126(01)00568-8.
10.1016/S)969‐2126(01)00568‐8 Google Scholar
- 106Wijayaratne, A.L. and McDonnell, D.P. (2001). The human estrogen receptor-alpha is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J. Biol. Chem. 276: 35684–35692. doi: 10.1074/jbc.M101097200.
- 107Shafaee, M.N. and Ellis, M.J. (2018). Fulvestrant in management of hormone receptor-positive metastatic breast cancer. Future Oncol. 14: 1789–1800. doi: 10.2217/fon-2017-0489 and references cited therein.
- 108Wang, X. and Liang, J. (2016). Estrogen receptor degraders for the treatment of ER-positive breast cancer. Med. Chem. Rev. 51: 149–164. doi: 10.29200/acsmedchemrev-v51.ch10.
- 109Lai, A., Kahraman, M., Govek, S., Nagasawa, J., Bonnefous, C., Julien, J., Douglas, K., Sensintaffar, J., Lu, N., Lee, K.J., Aparicio, A., Kaufman, J., Qian, J., Shao, G., Prudente, R., Moon, M.J., Joseph, J.D., Darimont, B., Brigham, D., Grillot, K., Heyman, R., Rix, P.J., Hager, J.H., and Smith, N.D. (2015). Identification of GDC-0810 (ARN-810), an orally bioavailable selective estrogen receptor degrader (SERD) that demonstrates robust activity in tamoxifen-resistant breast cancer xenografts. J. Med. Chem. 58: 4888–4904. doi: 10.1021/acs.jmedchem.5b00054.
- 110Nardone, A., Weir, H., Delpuech, O., Brown, H., De Angelis, C., Cataldo, C., Letizia, M., Fu, X., Shea, M.J., Mitchell, T., Veeraraghavan, J., Nagi, C., Pilling, M., Rimwami, M., Mothaffar, F., Trivedi, M., Hilsenbeck, S.G., Chamness, G.C., Jeselsohn, R., Osborne, C.K., and Schiff, R. (2019). The oral selective oestrogen receptor degrader (SERD) AZD9496 is comparable to fulvestrant in antagonizing ER and circumventing endrocrine resistance. Br. J. Cancer 120: 331–339. doi: 10.1038/s41416-018-0354-9.
- 111Tria, G.S., Abrams, T., Baird, J., Burks, H.E., Firestone, B., Gaither, L.A., Hamman, L.G., He, G., Kirby, C.A., Kim, S., Lombardo, F., Macchi, K.J., McDonnell, D.P., Mishina, Y., Norris, J.D., Nunez, J., Springer, C., Sun, Y., Thomsen, N.M., Wang, C., Wang, J., Yu, B., Tiong-Yip, C.L., and Peukert, S. (2018). Discovery of LSZ102, a potent, orally bioavailable selective estrogen receptor degrader (SERD) for the treatment of estrogen receptor positive breast cancer. J. Med. Chem. 61: doi: 10.1021/acs.jmedchem.7b01682.
- 112Nagasawa, J., Govek, S., Kahraman, M., Lai, A., Bonnefous, C., Douglas, K., Sensintaffar, J., Lu, N., Lee, K., Aparicio, A., Kaufman, J., Qian, J., Shao, G., Prudente, R., Joseph, J.D., Darimont, B., Brigham, D., Maheu, K., Heyman, R., Rix, P.J., Hager, J.H., and Smith, N.D. (2018). Identification of an orally bioavailable chromene-based selective estrogen receptor degrader (SERD) that demonstrates robust activity in a model of tamoxifen-resistant breast cancer. J. Med. Chem. 61: 7917–7928. doi: 10.1021/acs.jmedchem.8b00921.
- 113Patel, H.K. and Bihani, T. (2018). Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther. 186: 1–24. doi: 10.1016/pharmthera.2017.12.012.
- 114Hwang, D.-J., He, Y., Ponnusamy, S., Mohler, M.L., Thiyagarajan, T., McEwan, I.J., Narayanan, R., and Miller, D.D. (2018). New generation of selective androgen receptor degraders: our initial design, synthesis, and biological evaluation of new compounds with enzalutamide-resistant prostate cancer activity. J. Med. Chem. 62: 491–511. doi: 10.1021/acs.jmedchem.8b00973.
- 115Ponnusamy, S., Coss, C.C., Thiyagarajan, T., Watts, K., Hwang, D.-J., He, Y., Selth, L.A., McEwan, I.J., Duke, C.B., Pagadala, J., Singh, G., Wake, R.W., Ledbetter, C., Tilley, W.D., Moldoveanu, T., Dalton, J.T., Miller, D.D., and Narayanan, R. (2017). Novel selective agents for the degradation of androgen receptor variants to treat castration-resistant prostate cancer. Cancer Res. 77: 6282–6298. doi: 10.1158/0008-5472.CAN-17-0976.
- 116Bradbury, R.H., Acton, D.G., Broadbent, N.L., Brooks, A.N., Carr, G.R., Hatter, G., Hayter, B.R., Hill, K.J., Howe, N.J., Jones, R.D., Jude, D., Lamont, S.G., Loddick, S.A., McFarland, H.L., Parveen, Z., Rabow, A.A., Sharma-Singh, G., Stratton, N.C., Thomason, A.G., Trueman, D., Walker, G.E., Wells, S.L., Wilson, J., and Wood, J.M. (2013). Discovery of AZD3514, a small-molecule androgen receptor downregulator for treatment of advanced prostate cancer. Bioorg. Med. Chem. Lett. 23: 1945–1948. doi: 10.1016/j.bmcl.2013.02.056.
- 117Neklesa, T.K. and Crews, C.M. (2012). Chemical biology: greasy tags for protein removal. Nature 487: 308–309. doi: 10.1038/487308a.
- 118Lim, S.M., Xie, T., Westover, K.D., Ficarro, S.B., Tae, H.S., Gurbani, D., Sim, T., Marto, J.A., Jänne, P.A., Crews, C.M., and Gray, N.S. (2015). Development of small molecules targeting the pseudokinase Her3. Bioorg. Med. Chem. Lett. 25: 3382–3389. doi: 10.1016/j.bmcl.2015.04.103.
- 119Xie, T., Lim, S.M., Westover, K.D., Dodge, M.E., Ercan, D., Ficarro, S.B., Udayakumar, D., Gurbani, D., Tae, H.S., Riddle, S.M., Sim, T., Marto, J.A., Jänne, P.A., Crews, C.M., and Gray, N.S. (2014). Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 10: 1006–1012. doi: 10.1038/nchembio.1658.
- 120Teutsch, G., Goubet, F., Battmann, T., Bonfils, A., Bouchoux, F., Cerede, E., Gofflo, D., Gaillard-Kelly, M., and Philibert, D. (1994). Non-steroidal antiandrogens: synthesis and biological profile of high-affinity ligands for the androgen receptor. J. Steroid Biochem. Mol. Biol. 48: 111–119.
- 121Gustafson, J.L., Neklesa, T.K., Cox, C.S., Roth, A.G., Buckley, D.L., Tae, H.S., Sundberg, T.B., Stagg, D.B., Hines, J., McDonnell, D.P., Noris, J.D., and Crews, C.M. (2015). Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew. Chem. Int. Ed. 54: 9659–9662. doi: 10.1002/anie.201503720.
- 122Long, M.J.C., Gollapalli, D.R., and Hedstrom, L. (2012). Inhibitor mediated protein degradation. Chem. Biol. 19: 629–637. doi: 10.1016/j.chembiol.2012.04.008.
- 123Shi, Y., Long, M.J.C., Rosenberg, M.M., Li, S., Kobjack, A., Lessans, P., Coffey, R.T., and Hedstrom, L. (2016). Boc3Arg-linked ligands induce degradation by localizing target proteins to the 20S proteasome. ACS Chem. Biol. 11: 3328–3337. doi: 10.1021/acschembio.6b00656.
- 124Toure, M. and Crews, C.M. (2016). Small molecule PROTACS: new approaches to protein degradation. Angew. Chem. Int. Ed. 55: 1966–1973. doi: 10.1002/anie.201507978.
- 125Lai, A.C. and Crews, C.M. (2017). Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16: 101–114. doi: 10.1038/nrd.2016.211.
- 126Collins, I., Wang, H., Caldwell, J.J., and Chopra, R. (2017). Chemical approaches to targeted protein degradation through modulation of the ubiquitin-proteasome pathway. Biochem. J. 474: 1127–1147. doi: 10.1042/BCJ20160762.
- 127Fisher, S.L. and Phillips, A.J. (2018). Targeted degradation and the enzymology of degraders. Curr. Opin. Chem. Biol. 44: 47–55. doi: 10.1016/j.cbpa.2018.05.004.
- 128Churcher, I. (2018). Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J. Med. Chem. 16: 444–452. doi: 10.1021/acs.jmedchem.7b01272.
- 129Neklesa, T.K., Winkler, J.D., and Crews, C.M. (2017). Targeted protein degradation by PROTACs. Pharmacol. Ther. 174: 138–144. doi: 10.1016/j.pharmthera.2017.02.027.
- 130Raina, K. and Crews, C.M. (2017). Targeted protein knockdown using small molecule degraders. Curr. Opin. Chem. Biol. 39: 46–53. doi: 10.1016/j.cbpa.2017.05.016.
- 131Gu, S., Cui, D., Chen, X., Xiong, X., and Zhao, Y. (2018). PROTACs: an emerging targeting technique for protein degradation in drug discovery. BioEssays 40: 1700247. doi: 10.1002/bies.201700247.
- 132Mainolfi, N. and Rasmusson, T. (2017). Targeted protein degradation. Annu. Rep. Med. Chem. 50: 301–334. doi: 10.1016/bs.armc.2017.08.005.
- 133Mayor-Ruiz, C. and Winter, G.E. (2019). Identification and characterization of cancer vulnerabilities via targeted protein degradation. Drug Discov. Today Technol. 31: 81–90. doi: 10.1016/j.ddtec.2018.12.003.
- 134Scheepstra, M., Hekking, K.F.W., van Hijfte, L., and Folmer, R.H.A. (2019). Bivalent ligands for protein degradation in drug discovery. Comput. Struct. Biotechnol. J. 17: 160–176. doi: 10.1016/j.csbj.2019.01.006.
- 135Sakamoto, K.M., Kim, K.B., Kumagai, A., Mercurio, F., Crews, C.M., and Deshaies, R.J. (2001). Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. U.S.A. 98: 8554–8559. doi: 10.1073/pnas.141230798.
- 136Sakamoto, K.M., Kim, K.B., Verma, R., Ransick, A., Stein, B., Crews, C.M., and Deshaies, R.J. (2003). Development of protacs to target cancer-promoting proteins for ubiqutination and degradation. Mol. Cell. Proteomics 12: 1350–1358. doi: 10.1074/mcp.T300009-MCP200.
10.1074/mcp.T300009‐MCP200 Google Scholar
- 137Schneekloth, J.S. Jr., Fonseca, F.N., Koldobskiy, M., Mandal, A., Deshaies, R., Sakamoto, K., and Crews, C.M. (2004). Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126: 3748–3754. doi: 10.1021/ja039025z.
- 138Schneekloth, A.R., Pucheault, M., Tae, H.S., and Crews, C.M. (2008). Targeted intracellular protein degradation induced by a small molecule: en route to chemical proteomics. Bioorg. Med. Chem. Lett. 18: 5904–5908. doi: 10.1016/j.bmcl.2008.07.114.
- 139Itoh, Y., Ishikawa, M., Naito, M., and Hashimoto, Y. (2010). Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc. 132: 5820–5826. doi: 10.1021/ja100691p.
- 140Itoh, Y., Kitaguchi, R., Ishikawa, M., Naito, M., and Hashimoto, Y. (2011). Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg. Med. Chem. 19: 6768–6778. doi: 10.1016/j.bmc.2011.09.041.
- 141Okuhira, K., Shoda, T., Omura, R., Ohoka, N., Hattori, T., Shibata, N., Demizu, Y., Sugihara, R., Ichino, A., Kawahara, H., Itoh, Y., Ishikawa, M., Hashimoto, Y., Kurihara, M., Itoh, S., Saito, H., and Naito, M. (2017). Targeted degradation of proteins localized in subcellular compartments by hybrid small molecules. Mol. Pharmacol. 91: 159–166. doi: 10.1124/mol.116.105569.
- 142Shibata, N., Nagai, K., Morita, Y., Ujikawa, O., Ohoka, N., Hattori, T., Koyama, R., Sano, O., Imaeda, Y., Nara, H., Cho, N., and Naito, M. (2018). Development of protein degradation inducers of androgen receptor ligands and inhibitor of apoptosis protein ligands. J. Med. Chem. 61: 543–575. doi: 10.1021/acs.jmedchem.7b00168.
- 143Ohoka, N., Okuhira, K., Ito, M., Nagai, K., Shibata, N., Hattori, T., Ujikawa, O., Shimokawa, K., Sano, O., Koyama, R., Fujita, H., Teratani, M., Matsumoto, H., Imaeda, Y., Nara, H., Cho, N., and Naito, M. (2017). In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J. Biol. Chem. 11: 4556–4570. doi: 10.1074/jbc.M116.768853.
- 144Bondeson, D.P., Mares, A., Smith, I.E.D., Ko, E., Campos, S., Miah, A.H., Mulholland, K.E., Routly, N., Buckley, D.L., Gustafson, J.L., Zinn, N., Grandi, P., Shimamura, S., Bergamini, G., Faelth-Savitski, M., Bantscheff, M., Cox, C., Gordon, D.A., Willard, R.R., Flanagan, J.J., Casillas, L.N., Votta, B.J., den Besten, W., Famm, K., Kruidenier, L., Carter, P.S., Harling, J.D., Churcher, I., and Crews, C.M. (2015). Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11: 611–617. doi: 10.1038/nchembio.1858.
- 145Nowak, R.P., De Angelo, S.L., Buckley, D., He, Z., Donovan, K.A., An, J., Safaee, N., Jedrychowski, M.P., Ponthier, C.M., Ishoey, M., Zhang, T., Mancias, J.D., Gray, N.S., Bradner, J.E., and Fischer, E.S. (2018). Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14: 706–714. doi: 10.1038/s41589-018-0055-y.
- 146Winter, G.E., Buckley, D.L., Paulk, J., Roberts, J.M., Souza, A., Dhe-Paganon, S., and Bradner, J.E. (2015). Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348: 1376–1381. doi: 10.1126/science.aab1433.
- 147Lu, J., Qian, Y., Altieri, M., Dong, H., Wang, J., Raina, K., Hines, J., Winkler, J.D., Crew, A.P., Coleman, K., and Crews, C.M. (2015). Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22: 755–763. doi: 10.1016/j.chembiol.2015.05.009.
- 148Smith, B.E., Wang, S.L., Jaime-Figueroa, S., Harbin, A., Wang, J., Hamman, B.D., and Crews, C.M. (2019). Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 131: doi: 10.1038/s41467-018-08027-7.
10.1038/s41467‐018‐08027‐7 Google Scholar
- 149Chan, K.-H., Zengerle, M., Testa, A., and Ciulli, A. (2018). Impact of target warhead and linkage vector on inducing protein degradation: comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J. Med. Chem. 61: 504–513. doi: 10.1021/acs.jmedchem.6b01912.
- 150Hughes, S.J. and Ciulli, A. (2017). Molecular recognition of ternary complexes: a new dimension in the structure-guided design of chemical degraders. Essays Biochem. 61: 505–516. doi: 10.1042/EBC20170041.
- 151Bondeson, D.P., Smith, B.E., Burslem, G.M., Buhimschi, A.D., Hines, J., Jaime-Figueroa, S., Wang, J., Hamman, B.D., Ischenko, A., and Crews, C.M. (2018). Lessons in PROTAC design from selective degradation with a promiscuous warhead. J. Chem. Biol. 25: 78–87. doi: 10.1016/j.chembiol.2017.09.010.