JAK Family Inhibitors for Autoimmune Diseases
Abstract
The JAK family of non-receptor tyrosine kinases mediates the signaling of proinflammatory cytokines that contribute to the pathogenesis of numerous autoimmune diseases. While cytokine-directed therapies are available to treat immune-driven diseases, oral small-molecule inhibitors of the JAK family (Jakinibs) have been approved as viable alternatives for the treatment of RA, PsA, and IBD. These first-generation pan-JAK inhibitors target the highly conserved catalytically active kinase domains in a reversible, ATP-competitive manner, albeit in a nonselective fashion. Novel approaches to target alternative binding modes through, for example irreversible or allosteric kinase inhibition, have led to the identification of the next generation of agents, which demonstrate improved JAK family selectivity. This improved selectivity offers the potential for greater and perhaps broader efficacy by allowing for higher dosing, while avoiding undesired side effects. This article provides an overview of the JAK-STAT signaling pathway and outlines the challenges associated with the discovery of selective JAK inhibitors while highlighting a unique allosteric TYK2 inhibitor. For each of the agents discussed, a synopsis of the medicinal chemistry efforts leading to a particular molecule is provided along with a brief summary of available preclinical and clinical efficacy and safety data.
References
- 1Wang, L., Wang, F.-S., and Gershwin, M.E. (2015). Human autoimmune diseases: a comprehensive update. J. Intern. Med. 278: 369–395. doi: 10.1111/joim.12395.
- 2 American Autoimmune Related Diseases Association, Inc. (AARA). Autoimmune disease statistics. https://www.aarda.org/news-information/statistics (accessed 6 May 2019).
- 3Lerner, A., Jeremias, P., and Matthias, T. (2015). The world incidence and prevalence of autoimmune diseases is increasing. Int. J. Celiac Dis. 3: 151–155. doi: 10.12691/ijcd-3-4-8.
10.12691/ijcd‐3‐4‐8 Google Scholar
- 4O'Shea, J.J., Ma, A., and Lipsky, P. (2002). Cytokines and autoimmunity. Nat. Rev. Immunol. 2: 37–45. doi: 10.1038/nri702.
- 5Turner, M.D., Nedjai, B., Hurst, T., and Pennington, D.J. (1843). Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 2014: 2563–2582. doi: 10.1016/j.bbamcr.2014.05.014.
- 6Lai, Y. and Dong, C. (2016). Therapeutic antibodies that target inflammatory cytokines in autoimmune diseases. Int. Immunol. 28: 181–188. doi: 10.1093/intimm/dxv063.
- 7Rider, P., Carmi, Y., and Cohen, I. (2016). Biologics for targeting inflammatory cytokines, clinical uses, and limitations. Int. J. Cell Biol. 1: doi: 10.1155/2016/9259646.
10.1155/2016/9259646 Google Scholar
- 8Li, P., Zheng, Y., and Chen, X. (2017). Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front. Pharmacol. 8: 1. doi: 10.3389/phar.2017.00460.
- 9Hammarén, H.M., Virtanen, A.T., Raivola, J., and Silvennoinen, O. (2018). The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine doi: 10.1016/j.cyto.2018.03.041.
- 10Morris, R., Kershaw, N.J., and Babon, J.J. (2018). The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 27: 1984–2009. doi: 10.1080/14712598.2018.1492545.
- 11Hirahara, K., Schwartz, D., Gadina, M., Kanno, Y., and O'Shea, J.J. (2016). Targeting cytokine signaling in autoimmunity: back to the future and beyond. Curr. Opin. Immunol. 43: 89–97. doi: 10.1016/j.coi.2016.10.001.
- 12Virtanen, A.T., Haikarainen, T., Raivola, J., and Silvennoinen, O. (2019). Selective JAKinibs: prospects in inflammatory and autoimmune diseases. BioDrugs 33: 15–32. doi: 10.1007/s40259-019-00333-w.
- 13Gadina, M., Gazaniga, N., Vian, L., and Furumoto, Y. (2017). Small molecules to the rescue: inhibition of cytokine signaling in immune-mediated diseases. J. Autoimmun. 85: 20–31. doi: 10.1016/j.jaut.2017.06.006.
- 14Cornez, I., Yajnanarayana, S.P., Wolf, A.M., and Wolf, D. (2017). JAK/STAT disruption induces immuno-deficiency: rationale for the development of JAK inhibitors as immunosuppressive drugs. Mol. Cell. Endocrinol. 451: 88–96. doi: 10.1016/j.mce.2017.01.035.
- 15Gadina, M., Johnson, C., Schwartz, D., Bonelli, M., Hasni, S., Kanno, Y., Changelian, P., Laurence, A., and O'Shea, J.J. (2018). Translational and clinical advances in JAK-STAT biology: the present and future of jakinibs. J. Leukoc. Biol. 104: 499–514. doi: 10.1002/JLB.5RI0218-084R.
- 16Schwartz, D.M., Kanno, Y., Villarino, A., Ward, M., Gadina, M., and O'Shea, J.J. (2017). JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 16: 843–862. doi: 10.1038/nrd.2017.201.
- 17Banerjee, S., Biehl, A., Gadina, M., Hasni, S., and Schwartz, D.M. (2017). JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77: 521–546. doi: 10.1007/s40265-017-0701-9.
- 18Gao, Q., Liang, X., Shaikh, A.S., Zang, J., Xu, W., and Zhang, Y. (2018). JAK/STAT signal transduction: promising attractive targets for immune, inflammatory and hematopoietic diseases. Curr. Drug Targets 19: 487–500. doi: 10.2174/1389450117666161207163054.
- 19Roskoski, R. Jr. (2016). Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol. Res. 111: 784–803. doi: 10.1016/j.phrs.2016.07.038.
- 20Soendergaard, C., Bergenheim, F.H., Bjerrum, J.T., and Nielsen, O.H. (2018). Targeting JAK-STAT signal transduction in IBD. Pharmacol. Ther. 192: 100–111. doi: 10.1016/j.pharmthera.2018.07.003.
- 21Villarino, A.V., Kanno, Y., and O'Shea, J.J. (2017). Mechanisms and consequences of Jak−STAT signaling in the immune system. Nat. Immunol. 18: 374–384. doi: 10.1038/ni.3691.
- 22Linossi, E.M., Calleja, D.J., and Nicholson, S.E. (2018). Understanding SOCS protein specificity. Growth Factors 36: 104–117. doi: 10.1080/08977194.2018.1518324.
- 23Keating, G.M. (2015). Mepolizumab: first global approval. Drugs 75: 2163–2169. doi: 10.1007/s40265-015-0513-8.
- 24Saco, T.V., Pepper, A.N., and Lockey, R.F. (2017). Benralizumab for the treatment of asthma. Expert Rev. Clin. Immunol. 13: 405–413. doi: 10.1080/1744666X.2017.1316194.
- 25Scott, L.J. (2017). Tocilizumab: a review in rheumatoid arthritis. Drugs 77: 1865–1879. doi: 10.1007/s40265-017-0829-7.
- 26Lamb, Y.N. and Deeks, E.D. (2018). Sarilumab: a review in moderate to severe rheumatoid arthritis. Drugs 789: 929–940. doi: 10.1007/s40265-018-0929-z.
10.1007/s40265‐018‐0929‐z Google Scholar
- 27Chen, Z., Gong, Y., and Shi, Y. (2017). Novel biologic agents targeting interleukin-23 and interleukin-17 for moderate-to-severe psoriasis. Clin. Drug Investig. 37: 891–899. doi: 10.1007/s40261-017-0550-z.
- 28Thibodaux, R.J., Triche, M.W., and Espinoza, L.R. (2018). Ustekinumab for the treatment of psoriasis and psoriatic arthritis: a drug evaluation and literature review. Expert Opin. Biol. Ther. 18: 821–827. doi: 10.1080/14712598.2018.1492545.
- 29Azevedo, A. and Torres, T. (2018). Guselkumab for the treatment of psoriasis. BioDrugs 32: 119–128. doi: 10.1007/s40259-018-0265-6.
- 30Al-Salama, Z.T. and Scott, L.J. (2018). Guselkumab: a review in moderate to severe plaque psoriasis. Am. J. Clin. Dermatol. 19: 907–918. doi: 10.1007/s40257-018-0406-1.
- 31Kolli, S.S., Gabros, S.D., Pona, A., Cline, A., and Feldman, S.R. (2019). Tildrakizumab: a review of Phase II and III clinical trials. Ann. Pharmacother. 53: 413–418. doi: 10.1177/1060028018809522.
- 32Moschen, A.R., Tilg, H., and Raine, T. (2019). IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat. Rev. Gastroeneterol. Hepatol. 16: 185–196. doi: 10.1038_s41575-018-0084-8.
- 33Lamb, Y.N. and Duggan, S.T. (2017). Ustekinumab: a review in moderate to severe Crohn's disease. Drugs 77: 1105–1114. doi: 10.1007/s40265-017-0765-6.
- 34Schwartz, D.M., Bonelli, M., Gadina, M., and O'Shea, J. (2016). Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol. 12: 25–36. doi: 10.1038/nrrheum.2015.167.
- 35Azevedo, A. and Torres, T. (2018). Tofacitinib: a new oral therapy for psoriasis. Clin. Drug Investig. 38: 101–112. doi: 10.1007/s40261-017-0596-y.
- 36 Pfizer (2017). Pfizer announces FDA approval of Xeljanz® (tofacitinib) and Xeljanz® XR for the treatment of active psoriatic arthritis. Pfizer press release. 14 December 2017. https://www.pfizer.com/news/press-release/press-release-detail/pfizer_announces_fda_approval_of_xeljanz_tofacitinib_and_xeljanz_xr_for_the_treatment_of_active_psoriatic_arthritis (accessed 26 March 2019).
- 37Dhillon, S. (2017). Tofacitinib: a review in rheumatoid arthritis. Drugs 77: 1987–2001. doi: 10.1007/s40265-017-0835-9.
- 38D'Amico, F., Fiorino, G., Furfaro, F., Allocca, M., and Danese, S. (2018). Janus kinase inhibitors for the treatment of inflammatory bowel diseases: developments from Phase I and Phase II clinical trials. Expert Opin. Investig. Drugs 27: 595–599. doi: 10.1080/13543784.2018.1492547.
- 39Fiorino, G., D'Amico, F., Italia, A., Gilardi, D., Furfaro, F., and Danese, S. (2018). JAK inhibitors: novel developments in management of ulcerative colitis. Best Pract. Res. Clin. Gastroenterol. 32−33: 89–93. doi: 10.1016/j.bpg.2018.05.015.
- 40Cotter, D.G., Schairer, D., and Eichenfield, L. (2018). Emerging therapies for atopic dermatitis: JAK inhibitors. J. Am. Acad. Dermatol. 78: S53–S62. doi: 10.1016/j.jaad.2017.12.019.
- 41Mok, C.C. (2019). The Jakinibs in systemic lupus erythematosus: progress and prospects. Expert Opin. Investig. Drugs 28: 85–92. doi: 10.1080/13543784.2019.1551358.
- 42Verden, A., Dimbil, M., Kyle, R., Overstreet, B., and Hoffman, K.B. (2018). Analysis of spontaneous postmarket case reports submitted to the FDA regarding thromboembolic adverse events and JAK inhibitors. Drug Saf. 41: 357–361. doi: 10.1007/s40264-017-0622-2.
- 43Curtis, J.R., Xie, F., Yun, H., Bernatsky, S., and Winthrop, K.L. (2016). Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann. Rheum. Dis. 75: 1843–1847. doi: 10.1136/annrheumdis-2016-209131.
- 44Scott, I.C., Hider, S.L., and Scott, D.L. (2018). Thromboembolism with Janus kinase (JAK) inhibitors for rheumatoid arthritis: how real is the risk? Drug Saf. 41: 645–653. doi: 10.1007/s40264-018-0651-5.
- 45Hilkens, C.M.U., Is'harc, H., Lillemeier, B.F., Strobl, B., Bates, P.A., Behrmann, I., and Kerr, I.M. (2001). A region encompassing the FERM domain of Jak1 is necessary for binding to the cytokine receptor gp130. FEBS Lett. 505: 87–91. doi: 10.1016/S0014-5793(01)02783-1.
- 46Ferrao, R. and Lupardus, P.J. (2017). The Janus kinase (JAK) FERM and SH2 domains: bringing specificity to JAK-receptor interactions. Front. Endocrinol. 8: 71. doi: 10.3389/fendo.2017.00071.
- 47Murphy, J.M., Zhang, Q., Young, S.N., Reese, M.L., Bailey, F.P., Eyers, P.A., Ungureanu, D., Hammaren, H., Silvennoinen, O., Varghese, L.N., Chen, K., Tripaydonis, A., Jura, N., Fukuda, K., Qin, J., Nimchuck, Z., Mudgett, M.B., Elowe, S., Gee, C.L., Liu, L., Daly, R.J., Manning, G., Babon, J.J., and Lucet, I.S. (2014). A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochem. J. 457: 323–334. doi: 10.1042/BJ20131174.
- 48Toms, A.V., Deshpande, A., McNally, R., Jeong, Y., Rogers, J.M., Kim, C.U., Gruner, S.M., Ficarro, S.B., Marto, J.A., Sattler, M., Griffen, J.D., and Eck, M.J. (2013). Structure of a pseudokinase domain switch that controls oncogenic activation of Jak kinases. Nat. Struct. Mol. Biol. 20: 1221–1223. doi: 10.1038/nsmb.2673.
- 49Bandaranayake, R.M., Ungureanu, D., Shan, Y., Shaw, D.E., Silvennoinen, O., and Hubbard, S.R. (2012). Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nat. Struct. Mol. Biol. 19: 754–759. doi: 10.1038/nsmb.2348.
- 50Lupardus, P.J., Ultsch, M., Wallweber, H., Kohli, P.B., Johnson, A.R., and Eigenbrot, C. (2014). Structure of the pseudokinase-kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proc. Natl. Acad. Sci. U.S.A. 111: 8025–8030. doi: 10.1073/pnas.140118011.
- 51Tokarski, J.S., Zupa-Fernandez, A., Tredup, J.A., Pike, K., Chang, C., Xie, D., Cheng, L., Pedicord, D., Muckelbauer, J., Johnson, S.R., Wu, S., Edavettal, S.C., Hong, Y., Witmer, M.R., Elkin, L.L., Blat, Y., Pitts, W.J., Weinstein, D.S., and Burke, J.R. (2015). Tyrosine kinase 2-mediated signal transduction in T lymphocytes is blocked by pharmacological stabilization of its pseudokinase domain. J. Biol. Chem. 290: 11061–11074. doi: 10.1074/jbc.M114.619502.
- 52Min, X., Ungureanu, D., Maxwell, S., Hammarén, H., Thibault, S., Hillert, E.-K., Ayres, M., Greenfield, B., Eksterowicz, J., Gabel, C., Walker, N., Silvennoinen, O., and Wang, Z. (2015). Structural and functional characterization of the JH2 pseudokinase domain of JAK family tyrosine kinase 2 (TYK2). J. Biol. Chem. 290: 27261–27270. doi: 10.1074/jbc.M115.672048.
- 53Saharinen, P., Takaluoma, K., and Silvennoinen, O. (2000). Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol. Cell. Biol. 20: 3387–3395. doi: 10.1128/mcb.20.10.3387-3895.2000.
- 54Saharinen, P. and Silvennoinen, O. (2002). The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J. Biol. Chem. 277: 47954–47963. doi: 10.1074/jbc.M205156200.
- 55Yeh, T.C., Dondi, E., Uze, G., and Pellegrini, S. (2000). A dual role for the kinase-like domain of the tyrosine kinase Tyk2 in interferon-alpha signaling. Proc. Natl. Acad. Sci. U.S.A. 97: 8991–8996. doi: 10.1073/pnas.160130297.
- 56Staerk, J., Kallin, A., Demoulin, J.-B., Vainchenker, W., and Constantinescu, S.N. (2005). JAK1 and Tyk2 activation by the homologous polycythemia vera JAK2 V617F mutation. Cross-talk with IGF1 receptor. J. Biol. Chem. 280: 41893–41899. doi: 10.1074/jbc.C500358200.
- 57Gakovic, M., Ragimbeau, J., Francois, V., Constantinescu, S.N., and Pellegrini, S. (2008). The Stat3-activating Tyk2 V678F mutant does not up-regulate signaling through the Type 1 interferon receptor but confers ligand hypersensitivity to a homodimeric receptor. J. Biol. Chem. 283: 18522–18529. doi: 10.1074/jbc.M801427200.
- 58Clark, J.D., Flanagan, M.E., and Telliez, J.-B. (2014). Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 57: 5023–5038. doi: 10.1021/jm401490p.
- 59Roskoski, R. Jr. (2016). Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 103: 26–48. doi: 10.1016/j.phrs.2015.10.021.
- 60Cowan-Jacob, S.W., Jahnke, W., and Knapp, S. (2014). Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med. Chem. 6: 541–561. doi: 10.4155/FMC.13.216.
- 61Dar, A.C. and Shokat, K.M. (2011). The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu. Rev. Biochem. 80: 769–795. doi: 10.1146/annurev-biochem-090308-173656.
- 62Traxler, P. and Furet, P. (1999). Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Pharmacol. Ther. 82: 195–206. doi: 10.1016/S0163-7258(98)00044-8.
- 63Liu, Y. and Gray, N.S. (2006). Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2: 358–364. doi: 10.1038/nchembio799.
- 64Williams, N.K., Bamert, R.S., Patel, O., Wang, C., Walden, P.M., Wilks, A.F., Fantino, E., Rossjohn, J., and Lucet, I.S. (2009). Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J. Mol. Biol. 387: 219–232. doi: 10.1016/j.jmb.2009.01.041.
- 65Andraos, R., Qian, Z., Bonenfant, D., Rubert, J., Vangrevelinghe, E., Scheufler, C., Marque, F., Régnier, C.H., De Pover, A., Ryckelynck, H., Bhagwat, N., Koppikar, P., Goel, A., Wyder, L., Tavares, G., Baffert, F., Pissot-Soldermann, C., Manley, P.W., Gaul, C., Voshol, H., Levine, R.L., Sellers, W.R., Hofmann, F., and Radimerski, T. (2012). Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov. 2: 512–523. doi: 10.1158/2159-8290.CD-11-0324.
- 66Wu, P., Nielsen, T.E., and Clausen, M.H. (2016). Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov. Today 21: 5–10. doi: 10.1016/j.drudis.2015.07.008.
- 67Zuccotto, F., Ardini, E., Casale, E., and Angiolini, M. (2010). Through the “gatekeeper door”: exploiting the active kinase conformation. J. Med. Chem. 53: 2681–2694. doi: 10.1021/jm901443h.
- 68Ohren, J.F., Chen, H., Pavlovsky, A., Whitehead, C., Zhang, E., Kuffa, P., Yan, C., McConnell, P., Spessard, C., Banotai, C., Mueller, W.T., Delaney, A., Omer, C., Sebolt-Leopold, J., Dudley, D.T., Leung, I.K., Flamme, C., Warmus, J., Kaufman, M., Barrett, S., Tecle, H., and Hasemann, C.A. (2004). Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol. Biol. 11: 1192–1197. doi: 10.1038/nsmb859.
- 69Zhang, J., Adrián, F.J., Jahnke, W., Cowan-Jacob, S.W., Li, A.G., Iacob, R.E., Sim, T., Powers, J., Dierks, C., Sun, F., Guo, G.-R., Ding, Q., Okram, B., Choi, Y., Wojciechowski, A., Deng, X., Liu, G., Fendrich, G., Strauss, A., Vajpai, N., Grzesiek, S., Tuntland, T., Liu, Y., Bursulaya, B., Azam, M., Manley, P.W., Engen, J.R., Daley, G.Q., Warmuth, M., and Gray, N.S. (2010). Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463: 501–507. doi: 10.1038/nature08675.
- 70Fang, Z., Simard, J.R., Plenker, D., Nguyen, H., Phan, T., Wolle, P., Baumeister, S., and Rauh, D. (2015). Discovery of inter-domain stabilizers – a novel assay system for allosteric Akt inhibitors. ACS Chem. Biol. 10: 279–288. doi: 10.1021/cb500355c.
- 71Liu, C., Lin, J., Moslin, R., Tokarski, J.S., Muckelbauer, J., Chang, C., Tredup, J., Xie, D., Park, H., Li, P., Wu, D.-R., Strnad, J., Zupa-Fernandez, A., Cheng, L., Chaudhry, C., Chen, J., Chen, C., Sun, H., Elzinga, P., D'Arienzo, C., Gillooly, K., Taylor, T.L., McIntyre, K.W., Salter-Cid, L., Lombardo, L.J., Carter, P.H., Aranibar, N., Burke, J.R., and Weinstein, D.S. (2019). Identification of imidazo[1,2-b]pyridazine derivatives as potent, selective, and orally active Tyk2 JH2 inhibitors. ACS Med. Chem. Lett. 10: 383–388. doi: 10.1021/acsmedchemlett.9b00035.
- 72Moslin, R., Gardner, D., Santella, J., Zhang, Y., Duncia, J.V., Liu, C., Lin, J., Tokarski, J.S., Strnad, J., Pedicord, D., Chen, J., Blat, Y., Zupa-Fernandez, A., Cheng, L., Sun, H., Chaudhry, C., Huang, C., D'Arienzo, C., Sack, J.S., Muckelbauer, J.K., Chang, C., Tredup, J., Xie, D., Aranibar, N., Burke, J.R., Carter, P.H., and Weinstein, D.S. (2017). Identification of imidazo[1,2-b]pyridazine TYK2 pseudokinase ligands as potent and selective allosteric inhibitors of TYK2 signalling. MedChemCommun 8: 700–712. doi: 10.1039/C6MD00560H.
- 73Wrobleski, S.T., Moslin, R., Lin, S., Zhang, Y., Spergel, S., Kempson, J., Tokarski, J., Strnad, J., Zupa-Fernandez, A., Cheng, L., Shuster, D., Gillooly, K., Yang, X., Heimrich, E., McIntyre, K.W., Chaudhry, C., Khan, J., Ruzanov, M., Tredup, J., Mulligan, D., Xie, D., Sun, H., Huang, C., D'Arienzo, C., Aranibar, N., Chiney, M., Chimalakonda, A., Pitts, W.J., Lombardo, L., Carter, P.H., Burke, J.R., and Weinstein, D.S. (2019). Highly selective inhibition of Tyrosine Kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J. Med. Chem. doi: 10.1021/acs.jmedchem.9b00444.
- 74Moslin, R., Zhang, Y., Wrobleski, S.T., Lin, S., Mertzman, M., Tokarski, J., Strnad, J., Gillooly, K., McIntyre, K.W., Zupa-Fernandez, A., Cheng, L., Sun, H., Chaudhry, C., Huang, C., D'Arienzo, C., Heimrich, E., Yang, X., Muckelbauer, J.K., Chang, C.-Y., Tredup, J., Mulligan, D., Xie, D., Aranibar, N., Burke, J.R., Lombardo, L., Carter, P.H., and Weinstein, D.S. (2019). Identification of N-methyl nicotinamide and N-methyl pyridazine-3-carboxamide pseudokinase domain ligands as highly selective inhibitors of Tyrosine Kinase 2 (TYK2). J. Med. Chem. doi: 10.1021/acs.jmedchem.9b00443.
- 75Shaw, A.S., Kornev, A.P., Hu, J., Ahuja, L.G., and Taylor, S.S. (2014). Kinases and pseudokinases: lessons from RAF. Mol. Cell. Biol. 34: 1538–1546. doi: 10.1128/MCB.00057-14.
- 76Gauzzi, M.C., Velazquez, L., McKendry, R., Mogensen, K.E., Fellous, M., and Pellegrini, S. (1996). Interferon-α-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J. Biol. Chem. 271: 20494–20500. doi: 10.1074/jbc.271.34.20494.
- 77Fang, Z., Grütter, C., and Rauh, D. (2013). Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem. Biol. 8: 58–70. doi: 10.1021/cb300663j.
- 78Gavrin, L.K. and Saiah, E. (2013). Approaches to discover non-ATP site kinase inhibitors. Med. Chem. Commun. 4: 41–51. doi: 10.1039/c2md20180a.
- 79Johnson, D.S., Weerapana, E., and Cravatt, B.F. (2010). Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med. Chem. 2: 949–964. doi: 10.4155/FMC.10.21.
- 80Barf, T. and Kaptein, A. (2012). Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem. 55: 6243–6262. doi: 10.1021/jm3003203.
- 81Zhao, Z. and Bourne, P.E. (2018). Progress with covalent small-molecule kinase inhibitors. Drug Discov. Today 23: 727–735. doi: 10.1016/j.drudis.2018.01.035.
- 82Thorarensen, A., Banker, M.E., Fensome, A., Telliez, J.-B., Juba, B., Vincent, F., Czerwinski, R.M., and Casimiro-Garcia, A. (2014). ATP mediated kinome selectivity–the missing link in understanding the contribution of individual JAK kinases isoforms to cellular signaling. ACS Chem. Biol. 9: 1552–1558. doi: 10.1021/cb5002125.
- 83Vazquez, M.L., Kaila, N., Strohbach, J.W., Trzupek, J.D., Brown, M.F., Flanagan, M.E., Mitton-Fry, M.J., Johnson, T.A., TenBrink, R.E., Arnold, E.P., Basak, A., Heasley, S.E., Kwon, S., Langille, J., Parikh, M.D., Griffin, S.H., Casavant, J.M., Duclos, B.A., Fenwick, A.E., Harris, T.M., Han, S., Caspers, N., Dowty, M.E., Yang, X., Banker, M.E., Hegen, M., Symanowicz, P.T., Li, L., Wang, L., Lin, T.H., Jussif, J., Clark, J.D., Telliez, J.-B., Robinson, R.P., and Unwalla, R. (2018). Identification of N-{cis-3-[methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutyl}propane-1-sulfonamide (PF-04965842): a selective JAK1 clinical candidate for the treatment of autoimmune diseases. J. Med. Chem. 61: 1130–1152. doi: 10.1021/acs.jmedchem.7b01598.
- 84Fensome, A., Ambler, C.M., Arnold, E., Banker, M.E., Brown, M.F., Chrencik, J., Clark, J.D., Dowty, M.E., Efremov, I.V., Flick, A., Gerstenberger, B.S., Gopalsamy, A., Hayward, M.M., Hegen, M., Hollingshead, B.D., Jussif, J., Knafels, J.D., Limburg, D.C., Lin, D., Lin, T.H., Pierce, B.S., Saiah, E., Sharma, R., Symanowicz, P.T., Telliez, J.-B., Trujillo, J.I., Vajdos, F.F., Vincent, F., Wan, Z.-K., Xing, L., Yang, X., Yang, X., and Zhang, L. (2018). Dual inhibition of TYK2 and JAK1 for the treatment of autoimmune diseases: discovery of ((S)-2,2-difluorocyclopropyl)((1R,5S)-3-(2-((1-methyl-1H-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)methanone (PF-06700841). J. Med. Chem. 61: 8597–8612. doi: 10.1021/acs.jmedchem.8b00917.
- 85Forster, M., Chaikuad, A., Dimitrov, T., Döring, E., Holstein, J., Berger, B.-T., Gehringer, M., Ghoreschi, K., Müller, S., Knapp, S., and Laufer, S.A. (2018). Development, optimization, and structure−activity relationships of covalent-reversible JAK3 inhibitors based on a tricyclic imidazo[5,4-d]pyrrolo[2,3-b]pyridine scaffold. J. Med. Chem. 61: 5350–5366. doi: 10.1021/acs.jmedchem.8b00571.
- 86Burke, J.R., Cheng, L., Gillooly, K.M., Strnad, J., Zupa-Fernandez, A., Catlett, I.M., Zhang, Y., Heimrich, E.M., McIntyre, K.W., Cunningham, M.D., Carman, J.A., Zhou, X., Banas, D., Chaudhry, C., Li, S., D'Arienzo, C., Chimalakonda, A., Yang, X., Xie, J.H., Pang, J., Zhao, Q., Hu, B., Rose, S.M., Sardaryan, G., Huang, J., Vitali, N.J., Eraslan, R.N., Moslin, R.M., Wrobleski, S.T., Weinstein, D.S., and Salter-Cid, L.M. (2019). Autoimmune pathways in mice and humans are blocked by inhibiting TYK2 activation through pharmacological stabilization of its pseudokinase domain. Sci. Transl. Med. 11: eaaw1736. doi: 10.1126/scitranslmed.aaw1736.
- 87Genovese, M.C., Greenwald, M., Codding, C., Zubrzycka-Sienkiewicz, A., Kivitz, A.J., Wang, A., Shay, K., Wang, X., Garg, J.P., and Cardiel, M.H. (2017). Peficitinib, a JAK inhibitor, in combination with limited conventional synthetic disease-modifying antirheumatic drugs in the treatment of moderate-to-severe rheumatoid arthritis. Arthritis Rheum. 69: 932–942. doi: 10.1002/art.40054.
- 88Parmentier, J.M., Voss, J., Graff, C., Schwartz, A., Argiriadi, M., Friedman, M., Camp, H.S., Padley, R.J., George, J.S., Hyland, D., Rosebraugh, M., Wishart, N., Olson, L., and Long, A.J. (2018). In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2: 23. doi: 10.1186/s41927-018-0031-x.
- 89 Astellas (2019). Oral JAK inhibitor Smyraf® tablets approved in Japan for the treatment of rheumatoid arthritis (including prevention of structural joint damage) in patients who have an inadequate response to conventional therapies. Astellas press release. 26 March 2019. https://www.astellas.com/en/news/14651 (accessed 11 April 2019).
- 90 AbbVie (2019). AbbVie receives FDA approval of RINVOQTM (upadacitinib), an oral JAK inhibitor for the treatment of moderate to severe rheumatoid arthritis. AbbVie press release. 16 August 2019. https://news.abbvie.com/news/press-releases/abbvie-receives-fda-approval-rinvoq-upadacitinib-an-oral-jak-inhibitor-for-treatment-moderate-to-severe-rheumatoid-arthritis.htm (accessed 19 September 2019).
- 91Traynor, K. (2012). FDA approves tofacitinib for rheumatoid arthritis. Am. J. Health Syst. Pharm. 69: 2120–2122. doi: 10.2146/news120088.
- 92Flanagan, M.E., Blumenkopf, T.A., Brissette, W.H., Brown, M.F., Casavant, J.M., Shang-Poa, C., Doty, J.L., Elliott, E.A., Fisher, M.B., Hines, M., Kent, C., Kudlacz, E.M., Lillie, B.M., Magnuson, K.S., McCurdy, S.P., Munchhof, M.J., Perry, B.D., Sawyer, P.S., Strelevitz, T.J., Subramanyam, C., Sun, J., Whipple, D.A., and Changelian, P.S. (2010). Discovery of CP-690,550: a potent and selective Janus kinase (JAK) inhibitor for the treatment of autoimmune diseases and organ transplant rejection. J. Med. Chem. 53: 8468–8484. doi: 10.1021/jm1004286.
- 93Flanagan, M.E., Brown, M.F., Subramanyam, C., and Munchof, M.J. (2014). Case history: XeljanzTM (tofacitinib citrate), a first-in-class Janus kinase inhibitor for the treatment of rheumatoid arthritis. In: Annual Reports in Medicinal Chemistry, vol. 49 (ed. M.C. Desai), 399–416. London: Academic Press. doi: 10.1016/B978-0-12-8000167-7.00025-0.
10.1016/B978‐0‐12‐8000167‐7.00025‐0 Google Scholar
- 94 Pfizer. Xeljanz/Xeljanz XR (tofacitinib) boxed warning. Pfizer medical information. https://www.pfizermedicalinformation.com/en-us/xeljanz/boxed-warning (accessed 26 March 2019).
- 95Chrencik, J.E., Patny, A., Leung, I.K., Korniski, B., Emmons, T.L., Hall, T., Weinberg, R.A., Gormley, J.A., Williams, J.M., Day, J.E., Hirsch, J.L., Kiefer, J.R., Leone, J.W., Fischer, H.D., Sommers, C.D., Huang, H.-C., Jacobsen, E.J., Tenbrink, R.E., Tomasselli, A.G., and Benson, T.E. (2010). Structural and thermodynamic characterization of the TYK2 and JAK3 kinase domains in complex with CP-690550 and CMP-6. J. Mol. Biol. 400: 413–433. doi: 10.1016/j.jmb.2010.05.020.
- 96Gehringer, M., Forster, M., Pfaffenrot, E., Bauer, S.M., and Laufer, S.A. (2014). Novel hinge-binding motifs for Janus kinase 3 inhibitors: a comprehensive structure-activity relationship study on tofacitinib bioisosteres. ChemMedChem 9: 2516–2527. doi: 10.1002/cmdc.201402252.
- 97Jiang, J.-K., Ghoreschi, K., Deflorian, F., Chen, Z., Perreira, M., Pesu, M., Smith, J., Nguyen, D.-T., Liu, E.H., Leister, W., Costanzi, S., O'Shea, J.J., and Thomas, C.J. (2008). Examining the chirality, conformation and selective kinase inhibition of 3-((3R,4R)-4-methyl-3-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)piperidin-1-yl)-3-oxopropanenitrile (CP-690,550). J. Med. Chem. 51: 8012–8018. doi: 10.1021/jm801142b.
- 98Meyer, D.M., Jesson, M.I., Li, X., Elrick, M.M., Funckes-Shippy, C.L., Warner, J.D., Gross, C.J., Dowty, M.E., Ramaiah, S.K., Hirsch, J.L., Saabye, M.J., Barks, J.L., Kishore, N., and Morris, D.L. (2010). Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J. Inflamm. 7: 41–53. doi: 10.1186/1476-9255-7-41.
- 99Changelian, P.S., Flanagan, M.E., Ball, D.J., Kent, C.R., Magnuson, K.S., Martin, W.H., Rizzuti, B.J., Sawyer, P.S., Perry, B.D., Brissette, W.H., McCurdy, S.P., Kudlacz, E.M., Conklyn, M.J., Elliott, E.A., Koslov, E.R., Fisher, M.B., Strelevitz, T.J., Yoon, K., Whipple, D.A., Sun, J., Munchhof, M.J., Doty, J.L., Casavant, J.M., Blumenkopf, T.A., Hines, M., Brown, M.F., Lillie, B.M., Subramanyam, C., Shang-Poa, C., Milici, A.J., Beckius, G.E., Moyer, J.D., Su, C., Woodworth, T.G., Gaweco, A.S., Beals, C.R., Littman, B.H., Fisher, D.A., Smith, J.F., Zagouras, P., Magna, H.A., Saltarelli, M.J., Johnson, K.S., Nelms, L.F., Des Etages, S.G., Hayes, L.S., Kawabata, T.T., Finco-Kent, D., Baker, D.L., Larson, M., Si, M.-S., Paniagua, R., Higgins, J., Holm, B., Reitz, B., Zhou, Y.-J., Morris, R.E., O'Shea, J.J., and Borie, D.C. (2003). Prevention of organ allograft rejection by a specific Janus kinase 3 inhibitor. Science 302: 875–878. doi: 10.1126/science.1087061.
- 100Kudlacz, E., Perry, B., Sawyer, P., Conklyn, M., McCurdy, S., Brissette, W., Flanagan, M., and Changelian, P. (2004). The novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am. J. Transplant. 4: 51–57. doi: 10.1046/j.1600-6143.2003.00281.x.
- 101Borie, D.C., Changelian, P.S., Larson, M.J., Si, M.-S., Paniagua, R., Higgins, J.P., Holm, B., Campbell, A., Lau, M., Zhang, S., Flores, M.G., Rousvoal, G., Hawkins, J., Ball, D.A., Kudlacz, E.M., Brissette, W.H., Elliott, E.A., Reitz, B.A., and Morris, R.E. (2005). Immunosuppression by the JAK3 inhibitor CP-690,550 delays rejection and significantly prolongs kidney allograft survival in nonhuman primates. Transplantation 79: 791–801. doi: 10.1097/01.TP.0000157117.30290.6F.
- 102Park, H.-B., Oh, K., Garmaa, N., Seo, M.W., Byoun, O.-J., Lee, H.-Y., and Lee, D.-S. (2010). CP-690555, a Janus kinase inhibitor, suppresses CD4+ T-cell-mediated acute graft-versus-host-disease by inhibiting the interferon-γ pathway. Transplantation 90: 825–835. doi: 10.1097/01.TP.0b013e3181f24e59.
- 103Rovira, J., Ramírez-Bajo, M.J., Banon-Maneus, E., Lazo-Rodríguez, M., Moya-Rull, D., Hierro-Garcia, N., Tubita, V., Piñeiro, G.J., Revuelta, I., Ventura-Aguiar, P., Cucchiari, D., Oppenheimer, F., Brunet, M., Campistol, J.M., and Diekmann, F. (2018). Tofacitinib halts progression of graft dysfunction in a rat model of mixed cellular and humoral rejection. Transplantation 102: 1075–1084. doi: 10.1097/TP.0000000000002204.
- 104Milici, A.J., Kudlacz, E.M., Audoly, L., Zwillich, S., and Changelian, P. (2008). Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res. Ther. 10: R14–R25. doi: 10.1186/ar2365.
- 105Ma, H.-L., Masek-Hammerman, K., Fish, S., Napierata, L., Nagiec, E., Hegen, M., and Clark, J.D. (2013). Attenuating Janus kinase (JAK) by tofacitinib effectively prevented psoriasis pathology in various mouse skin inflammation models. J. Clin. Cell Immunol. 4: 176–184. doi: 10.4172/2155-9899.1000176.
10.4172/2155‐9899.1000176 Google Scholar
- 106Fujii, Y. and Sengoku, T. (2013). Effects of the Janus kinase inhibitor CP-690550 (tofacitinib) in a rat model of oxazolone-induced chronic dermatitis. Pharmacology 91: 207–213. doi: 10.1159/000347184.
- 107Kudlacz, E., Conklyn, M., Andresen, C., Whitney-Pickett, C., and Changelian, P. (2008). The JAK-3 inhibitor CP-690550 is a potent anti-inflammatory agent in a murine model of pulmonary eosinophilia. Eur. J. Pharmacol. 582: 154–161. doi: 10.1016/j.ejphar.2007.12.024.
- 108Calama, E., Ramis, I., Domènech, A., Carreño, C., De Alba, J., Prats, N., and Miralpeix, M. (2017). Tofacitinib ameliorates inflammation in a rat model of airway neutrophilia induced by inhaled LPS. Pulm. Pharmacol. Ther. 43: 60–67. doi: 10.1016/j.pupt.2017.01.002.
- 109Yokoyama, S., Perera, P.-Y., Waldmann, T.A., Hiroi, T., and Perera, L.P. (2013). Tofacitinib, a Janus kinase inhibitor demonstrates efficacy in an IL-15 transgenic mouse model that recapitulates pathologic manifestations of celiac disease. J. Clin. Immunol. 33: 586–594. doi: 10.1007/s10875-012-9849-y.
- 110Krishnaswami, S., Boy, M., Chow, V., and Chan, G. (2015). Safety, tolerability and pharmacokinetics of single oral doses of tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin. Pharmacol. Drug Dev. 4: 83–88. doi: 10.1002/cpdd.171.
- 111Lawendy, N., Krishnaswami, S., Wang, R., Gruben, D., Cannon, C., Swan, S., and Chan, G. (2009). Effect of CP-690,550, and orally active Janus kinase inhibitor, on renal function in healthy adult volunteers. J. Clin. Pharmacol. 49: 423–429. doi: 10.1177/0091270008330982.
- 112van Gurp, E., Weimar, W., Gaston, R., Brennan, D., Mendez, R., Pirsch, J., Swan, S., Pescovitz, M.D., Ni, G., Wang, C., Krishnaswami, S., Chow, V., and Chan, G. (2008). Phase 1 dose-escalation study of CP-690550 in stable renal allograft recipients: preliminary findings of safety, tolerability, effects on lymphocyte subsets and pharmacokinetics. Am. J. Transplant. 8: 1711–1718. doi: 10.1111/j.1600-6143.2008.02307.x.
- 113Cohen, S., Zwillich, S.H., Chow, V., LaBadie, R.R., and Wilkinson, B. (2010). Co-administration of the JAK inhibitor CP-690,550 and MTX is well tolerated in patients with rheumatoid arthritis without the need for dose adjustment. Br. J. Clin. Pharmacol. 69: 143–151. doi: 10.1111/j.1365-2125.2009.03570.x.
- 114Boy, M.G., Wang, C., Wilkinson, B.E., Chow, V.F.-C., Clucas, A.T., Krueger, J.G., Gaweco, A.S., Zwillich, S.H., Changelian, P.S., and Chan, G. (2009). Double-blind, placebo-controlled, dose-escalation study to evaluate the pharmacologic effect of CP-690,550 in patients with psoriasis. J. Invest. Dermatol. 129: 2299–2302. doi: 10.1038/jid.2009.25.
- 115Fleischmann, R., Kremer, J., Tanaka, Y., Gruben, D., Kanik, K., Koncz, T., Krishnaswami, S., Wallenstein, G., Wilkinson, B., Zwillich, S.H., and Keystone, E. (2016). Efficacy and safety of tofacitinib in patients with active rheumatoid arthritis: review of key Phase 2 studies. Int. J. Rheum. Dis. 19: 1216–1225. doi: 10.1111/1756-185X.12901.
- 116Kremer, J.M., Bloom, B.J., Breedveld, F.C., Coombs, J.H., Fletcher, M.P., Gruben, D., Krishnaswami, S., Burgos-Vargas, R., Wilkinson, B., Zerbini, C.A.F., and Zwillich, S.H. (2009). The safety and efficacy of a JAK inhibitor in patients with active rheumatoid arthritis. Arthritis Rheum. 60: 1895–1905. doi: 10.1002/art.24567.
- 117Fleischmann, R., Cutolo, M., Genovese, M.C., Lee, E.B., Kanik, K.S., Sadis, S., Connell, C.A., Gruben, D., Krishnaswami, S., Wallenstein, G., Wilkinson, B.E., and Zwillich, S.H. (2012). Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) or adalimumab monotherapy versus placebo in patients with active rheumatoid arthritis with an inadequate response to disease-modifying antirheumatic drugs. Arthritis Rheum. 64: 617–629. doi: 10.1002/art.33383.
- 118Kremer, J.M., Cohen, S., Wilkinson, B.E., Connell, C.A., French, J.L., Gomez-Reino, J., Gruben, D., Kanik, K.S., Krishnaswami, S., Pascual-Ramos, V., Wallenstein, G., and Zwillich, S.H. (2012). A Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib (CP-690,550) versus placebo in combination with background MTX in patients with active rheumatoid arthritis and an inadequate response to MTX alone. Arthritis Rheum. 64: 970–981. doi: 10.1002/art.33419.
- 119Salgado, E. and Gómez-Reino, J.J. (2013). The JAK inhibitor tofacitinib for active rheumatoid arthritis: results from Phase III trials. Int. J. Clin. Rheumatol. 8: 315–326. doi: 10.2217/ijr.13.26.
- 120Lee, E.B., Fleischmann, R., Hall, S., Wilkinson, B., Bradley, J.D., Gruben, D., Koncz, T., Krishnaswami, S., Wallenstein, G.V., Zang, C., Zwillich, S.H., and van Vollenhoven, R.F. (2014). ORAL Start Investigators. Tofacitinib versus MTX in rheumatoid arthritis. N. Engl. J. Med. 370: 2377–2386. doi: 10.1056/NEJMoa1310476.
- 121Fleischmann, R., Kremer, J., Cush, J., Schulze-Koops, H., Connell, C.A., Bradley, J.D., Gruben, D., Wallenstein, G.V., Zwillich, S.H., and Kanik, K.S. (2012). ORAL Solo Investigators. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367: 495–507. doi: 10.1056/NEJMoa1109071.
- 122Von Vollenhoven, R.F., Fleischmann, R., Cohen, S., Lee, E.B., Meijide, J.A.G., Wagner, S., Forejtova, S., Zwillich, S.H., Gruben, D., Koncz, T., Wallenstein, G.V., Krishnaswami, S., Bradley, J.D., Wilkinson, B., and ORAL Standard Investigators (2012). Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367: 508–519. doi: 10.1056/NEJMoa1112072.
- 123Kremer, J., Li, Z.-G., Hall, S., Fleischmann, R., Genovese, M., Martin-Mola, E., Isaacs, J.D., Gruben, D., Wallenstein, G., Krishnaswami, S., Zwillich, S.H., Koncz, T., Riese, R., and Bradley, J. (2013). Tofacitinib in combination with non-biologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis. Ann. Intern. Med. 159: 253–261. doi: 10.7326/0003-4819-159-4-201308200-00006.
- 124van der Heijde, D., Tanaka, Y., Fleischmann, R., Keystone, E., Kremer, J.M., Zerbini, C., Cardiel, M.H., Cohen, S.B., Nash, P.T., Song, Y., Tegzová, D., Wyman, B., Gruben, D., Benda, B., Wallenstein, G., Krishnaswami, S., Zwillich, S.H., Bradley, J., and Connell, C.A. (2013). Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving MTX. Arthritis Rheum. 65: 559–570. doi: 10.1002/art.37816.
- 125van der Heijde, D., Tanaka, Y., Fleischmann, R., Keystone, E., Kremer, J.M., Zerbini, C., Cardiel, M.H., Cohen, S.B., Nash, P.T., Song, Y., Tegzová, D., Wyman, B., Gruben, D., Benda, B., Wallenstein, G., Krishnaswami, S., Zwillich, S.H., Bradley, J., and Connell, C.A. (2012). Tofacitinib, an oral Janus kinase inhibitor, in combination with MTX reduced the progression of structural damage in patients with rheumatoid arthritis: year 2 efficacy and safety results from a 24-month Phase 3 study. Arthritis Rheum. 64 (Suppl. 10): 1277.
- 126Burmester, G.R., Blanco, R., Charles-Schoeman, C., Wollenhaupt, J., Zerbini, C., Benda, B., Gruben, D., Wallenstein, G., Krishnaswami, S., Zwillich, S.H., Koncz, T., Soma, K., Bradley, J., and Mebus, C. (2013). Tofacitinib (CP-690,550) in combination with MTX in patients with active rheumatoid arthritis with an inadequate response to tumor necrosis factor inhibitors: a randomised Phase 3 trial. Lancet 381: 451–460. doi: 10.1016/50140-6736(12)61424-x.
- 127Fleischmann, R., Mysler, E., Hall, S., Kivitz, A.J., Moots, R.J., Luo, Z., DeMasi, R., Soma, K., Zhang, R., Takiya, L., Tatulych, S., Mojcik, C., Krishnaswami, S., Menon, S., and Smolen, J.S. (2017). Efficacy and safety of tofacitinib monotherapy, tofacitinib with MTX, and adalimumab with MTX in patients with rheumatoid arthritis (ORAL Strategy): a Phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 390: 457–468. doi: 10.1016/S0140-6736(17)31638-5.
- 128Bird, P., Bensen, W., El-Zorkany, B., Kaine, J., Manapat-Reyes, B.H., Pascual-Ramos, V., Witcombe, D., Soma, K., Zhang, R., and Thirunavukkarasu, K. (2019). Tofacitinib 5 mg twice daily in patients with rheumatoid arthritis and inadequate response to disease-modifying antirheumatic drugs. J. Clin. Rheumatol. 25: 115–126. doi: 10.1097/RHU.000000000000786.
- 129Cohen, S., Radominski, S.C., Gomez-Reino, J.J., Wang, L., Krishnaswami, S., Wood, S.P., Soma, K., Nduaka, C.I., Kwok, K., Valdez, H., Benda, B., and Riese, R. (2014). Analysis of infections and all-cause mortality in Phase II, Phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthritis Rheumatol. 66: 2924–2937. doi: 10.1002/art.38779.
- 130 FDA (2018). FDA approves new treatment for moderately to severely active ulcerative colitis. FDA news release. 30 May 2018. https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-moderately-severely-active-ulcerative-colitis (accessed 19 May 2019).
- 131Gladman, D., Rigby, W., Azevedo, V.F., Behrens, F., Blanco, R., Kaszuba, A., Kudlacz, E., Wang, C., Menon, S., Hendrikx, T., and Kanik, K.S. (2017). Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N. Engl. J. Med. 377: 1525–1536. doi: 10.1056/NEJMoa1615977.
- 132Mease, P., Hall, S., Fitzgerald, O., van der Heijde, D., Merola, J.F., Avila-Zapata, F., Cieślak, D., Graham, D., Wang, C., Menon, S., Hendrikx, T., and Kanik, K.S. (2017). Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 377: 1537–1550. doi: 10.1056/NEJMoa1615975.
- 133Sandborn, W.J., Su, C., Sands, B.E., D'Haens, G.R., Vermeire, S., Schreiber, S., Danese, S., Feagan, B.G., Reinisch, W., Niezychowski, W., Friedman, G., Lawendy, N., Yu, D., Woodworth, D., Mukherjee, A., Zhang, H., Healey, P., and Panés, J. (2017). OCTAVE Induction 1; OCTAVE Induction 2; OCTAVE Sustain Investigators. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376: 1723–1736. doi: 10.1056/NEJMoa1606910.
- 134Papp, K.A., Menter, M.A., Abe, M., Elewski, B., Feldman, S.R., Gottlieb, A.B., Langley, R., Luger, T., Thaci, D., Buonanno, M., Gupta, P., Proulx, J., Lan, S., and Wolk, R. (2015). Tofacitinib, an oral Janus kinase inhibitor, for the treatment of chronic plaque psoriasis: results from two randomized, placebo-controlled, Phase III trials. Br. J. Dermatol. 173: 949–961. doi: 10.1111/bjd.14018.
- 135Bachelez, H., van de Kerkhof, P.C.M., Strohal, R., Kubanov, A., Valenzuela, F., Lee, J.-H., Yakusevich, V., Chimenti, S., Papacharalambous, J., Proulx, J., Gupta, P., Tan, H., Tawadrous, M., Valdez, H., and Wolk, R. (2015). Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a Phase 3 non-inferiority trial. Lancet 386: 552–561. doi: 10.1016/S0140-6736(14)62113-9.
- 136 Pfizer (2015). Pfizer receives complete response letter from FDA for oral Xeljanz® (tofacitinib citrate) supplemental new drug application for moderate to severe chronic plaque psoriasis. Pfizer press release. 14 October 2015. https://www.pfizer.com/news/press-release/press-release-detail/pfizer_receives_complete_response_letter_from_fda_for_oral_xeljanz_tofacitinib_citrate_supplemental_new_drug_application_for_moderate_to_severe_chronic_plaque_psoriasis (accessed 26 March 2019).
- 137van der Heijde, D., Deodhar, A., Wei, J.C., Drescher, E., Fleishaker, D., Hendrikx, T., Li, D., Menon, S., and Kanik, K.S. (2017). Tofacitinib in patients with ankylosing spondylitis: a Phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 76: 1340–1347. doi: 10.1136/annrheumdis-2016-210322.
- 138Crispin, M.K., Ko, J.M., Craiglow, B.G., Li, S., Shankar, G., Urban, J.R., Chen, J.C., Cerise, J.E., Jabbari, A., Winge, M.C.G., Marinkovich, M.P., Christiano, A.M., Oro, A.E., and King, B.A. (2016). Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight 1: e89776. doi: 10.1172/jci.insight.89776.
- 139Panés, J., Sandborn, W.J., Schreiber, S., Sands, B.E., Vermeire, S., D'Haens, G., Panaccione, R., Higgins, P.D.R., Colombel, J.-F., Feagan, B.G., Chan, G., Moscariello, M., Wang, W., Niezychowski, W., Marren, A., Healey, P., and Maller, E. (2017). Tofacitinib for induction and maintenance therapy of Crohn's disease: results of two Phase IIb randomised placebo-controlled trials. Gut 66: 1049–1059. doi: 10.1136/gutjnl-2016-312735.
- 140Panés, J., D'Haens, G., Higgins, P.D.R., Mele, L., Moscariello, M., Chan, G., Wang, W., Niezychowski, W., Su, C., and Maller, E. (2019). Long-term safety and tolerability of oral tofacitinib in patients with Crohn's disease: results from a Phase 2, open-label, 48-week extension study. Ailment. Pharmacol. Ther. 49: 265–276. doi: 10.1111/apt.15072.
- 141Vincenti, F., Silva, H.T., Busque, S., O'Connell, P., Friedewald, J., Cibrik, D., Budde, K., Yoshida, A., Cohney, S., Weimar, W., Kim, Y.S., Lawendy, N., Lan, S.-P., Kudlacz, E., Krishnaswami, S., and Chan, G. (2012). Randomized Phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am. J. Transplant. 12: 2446–2456. doi: 10.1111/j.1600-6143.2012.04127.x.
- 142Busque, S., Vincenti, F.G., Silva, H.T., O'Connell, P.J., Yoshida, A., Friedewald, J.J., Steinberg, S.M., Budde, K., Broeders, E.N., Kim, Y.S., Hahn, C.M., Li, H., and Chan, G. (2018). Efficacy and safety of a tofacitinib-based immunosuppressive regimen after kidney transplantation: results from a long-term extension trial. Transplant. Direct 4: e380. doi: 10.1097/TXD.000000000000819.
- 143Liew, S.H., Nichols, K.K., Klamerus, K.J., Li, J.Z., Zhang, M., and Foulks, G.N. (2012). Tofacitinib (CP-690,550), a Janus kinase inhibitor for dry eye disease. Ophthalmology 119: 1328–1335. doi: 10.1016/j.optha.2012.01.028.
- 144Bissonnette, R., Papp, K.A., Poulin, Y., Gooderham, M., Raman, M., Mallbris, L., Wang, C., Purohit, V., Mamolo, C., Papacharalambous, J., and Ports, W.C. (2016). Topical tofacitinib for atopic dermatitis: a Phase IIa randomized trial. Br. J. Dermatol. 175: 902–911. doi: 10.1111/bjd.14871.
- 145Papp, K.A., Bissonnette, R., Gooderham, M., Feldman, S.R., Iversen, L., Soung, J., Draelos, Z., Mamolo, C., Purohit, V., Wang, C., and Ports, W.C. (2016). Treatment of plaque psoriasis with an ointment formulation of the Janus kinase inhibitor, tofacitinib: a Phase 2b randomized clinical trial. BMC Dermatol. 16: 15–27. doi: 10.1186/s12895-016-0051-4.
- 146Cohen, S.B., Tanaka, Y., Mariette, X., Curtis, J.R., Lee, E.B., Nash, P., Winthrop, K.L., Charles-Schoeman, C., Thirunavukkarasu, K., DeMasi, R., Geier, J., Kwok, K., Wang, L., Riese, R., and Wollenhaupt, J. (2017). Long-term safety of tofacitinib for the treatment of rheumatoid arthritis up to 8.5 years: integrated analysis of data from the global clinical trials. Ann. Rheum. Dis. 76: 1253–1262. doi: 10.1136/annrheumdis-2016-210457.
- 147Xie, F., Yun, H., Bernatsky, S., and Curtis, J.R. (2016). Risk of gastrointestinal perforation among rheumatoid arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis Rheum. 68: 2612–2617. doi: 10.1002/art.39761.
- 148Charles-Schoeman, C., Fleischmann, R., Davignon, J., Schwartz, H., Turner, S.M., Beysen, C., Milad, M., Hellerstein, M.K., Luo, Z., Kaplan, I.V., Riese, R., Zuckerman, A., and McInnes, I.B. (2015). Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol. 67: 616–625. doi: 10.1002/art.38794.
- 149Robertson, J., Porter, D., Sattar, N., Packard, C.J., Caslake, M., McInnes, I., and McCarey, D. (2017). Interleukin-6 blockade raises LDL via reduced catabolism rather than via increased synthesis: a cytokine-specific mechanism for cholesterol changes in rheumatoid arthritis. Ann. Rheum. Dis. 76: 1949–1952. doi: 10.1136/annrheumdis-2017-211708.
- 150Charles-Schoeman, C., Wicker, P., Gonzalez-Gay, M., Boy, M., Zuckerman, A., Soma, K., Geier, J., Kwok, K., and Riese, R. (2016). Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin. Arthritis Rheum. 46: 261–271. doi: 10.1016/j.semarthrit.2016.05.014.
- 151 Pfizer (2019). Pfizer announces modification to ongoing tofacitinib FDA post-marketing requirement study in patients with rheumatoid arthritis. Pfizer press release. 19 Febuary 2019. https://investors.pfizer.com/investor-news/press-release-details/2019/Pfizer-Announces-Modification-to-Ongoing-Tofacitnib-FDA-Post-Marketing-Requirement-Study-in-Patients-with-Rheumatoid-Arthritis/default.aspx (accessed 26 March 2019).
- 152 FDA (2019). FDA approves boxed warning about increased risk of blood clots and death with higher dose of arthritis and ulcerative colitis medicine tofacitinib (Xeljanz, Xeljanz XR). FDA drug safety communication. 26 July 2019. https://www.fda.gov/drugs/drug-safety-and-availability/fda-approves-boxed-warning-about-increased-risk-blood-clots-and-death-higher-dose-arthritis-and (accessed 14 October 2019).
- 153 FDA (2011). FDA approves Incyte's Jakafi™ (ruxolitinib) for patients with myelofibrosis. Incyte press release. 16 November 2011. https://investor.incyte.com/news-releases/news-release-details/fda-approves-incytes-jakafitm-ruxolitinib-patients-myelofibrosis (accessed 2 April 2019).
- 154 FDA (2014). FDA approves Jakafi® (ruxolitinib) for the treatment of patients with uncontrolled polycythemia vera. Incyte press release. 4 December 2014. https://investor.incyte.com/news-releases/news-release-details/fda-approves-jakafir-ruxolitinib-treatment-patients-uncontrolled (accessed 2 April 2019).
- 155Curto-Garcia, N. and Harrison, C.N. (2018). An updated review of the JAK1/2 inhibitor (ruxolitinib) in the Philadelphia-negative myeloproliferative neoplasms. Future Oncol. 14: 137–150. doi: 10.2217/fon-2017-0298.
- 156 FDA (2019). FDA approves ruxolitinib for acute graft-versus-host disease. FDA press release. 24 May 2019. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ruxolitinib-acute-graft-versus-host-disease (accessed 14 October 2019).
- 157Lin, Q., Meloni, D., Pan, Y., Xia, M., Rodgers, J., Shepard, S., Li, M., Galya, L., Metcalf, B., Yue, T.-Y., Liu, P., and Zhou, J. (2009). Enantioselective synthesis of Janus kinase inhibitor INCB018424 via an organocatalytic aza-Michael reaction. Org. Lett. 11: 1999–2002. doi: 10.1021/ol9000350k.
- 158Quintás-Cardama, A., Vaddi, K., Liu, P., Manshouri, T., Li, J., Scherle, P.A., Caulder, E., Wen, Z., Li, Y., Waeltz, P., Rupar, M., Burn, T., Lo, Y., Kelley, J., Covington, M., Shepard, S., Rodgers, J.D., Haley, P., Kantarjian, H., Fridman, J.S., and Verstovsek, S. (2010). Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115: 3109–3117. doi: 10.1182/blood-2009-04-214957.
- 159Zhou, T., Georgeon, S., Moser, R., Moore, D.J., Caflisch, A., and Hantschel, O. (2014). Specificity and mechanism-of-action of the JAK2 tyrosine kinase inhibitors ruxolitinib and SAR302503 (TG101348). Leukemia 28: 404–407. doi: 10.1038/leu.2013.205.
- 160Duan, Y., Chen, L., Chen, Y., and Fan, X.-G. (2014). c-Src binds to the cancer drug ruxolitinib with an active conformation. PloS ONE 9: e106225. doi: 10.1371/journal.pone.0106225.
- 161Fridman, J., Scherle, P., Collins, R., Li, Y., Shepard, S., Sparks, R., Arvanitis, A., Shi, G., Combs, A., Rodgers, J., Neilan, C., Contel, N., Haley, P., Yeleswaram, S., Newton, R., Friedman, S., Vaddi, K. (2007). Efficacy and tolerability of novel JAK inhibitors in animal models of rheumatoid arthritis. ACR Ann Meeting, poster abstract 1771.
- 162Spoerl, S., Mathew, N.R., Bscheider, M., Schmitt-Graeff, A., Chen, S., Mueller, T., Verbeek, M., Fischer, J., Otten, V., Schmickl, M., Maas-Bauer, K., Finke, J., Peschel, C., Duyster, J., Poeck, H., Zeiser, R., and von Bubnoff, N. (2014). Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood 123: 3832–3842. doi: 10.1182/blood-2013-12-543736.
- 163Choi, J., Cooper, M.L., Alahmari, B., Ritchey, J., Collins, L., Holt, M., and DiPersio, J.F. (2014). Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PloS ONE 9: e109799. doi: 10.1371/journal.pone.0109799.
- 164Carniti, C., Gimondi, S., Vendramin, A., Recordati, C., Confalonieri, D., Bermema, A., Corradini, P., and Mariotti, J. (2015). Pharmacologic inhibition of JAK1/JAK2 signaling reduces experimental murine acute GVHD while preserving GVT effects. Clin. Cancer Res. 21: 3740–3749. doi: 10.1158/1078-0432.CCR-14-2758.
- 165Takahashi, S., Hashimoto, D., Hayase, E., Ogasawara, R., Ohigashi, H., Ara, T., Yokoyama, E., Ebata, K., Matsuoka, S., Hill, G.R., Sugita, J., Onozawa, M., and Teshima, T. (2018). Ruxolitinib protects skin stem cells and maintains skin homeostasis in murine graft-versus-host disease. Blood 131: 2074–2085. doi: 10.1182/blood-2017-06-792614.
- 166Fridman, J.S., Scherle, P.A., Collins, R., Burn, T., Neilan, C.L., Hertel, D., Contel, N., Haley, P., Thomas, B., Shi, J., Collier, P., Rodgers, J.D., Shepard, S., Metcalf, B., Hollis, G., Newton, R.C., Yeleswaram, S., Friedman, S.M., and Vaddi, K. (2011). Preclinical evaluation of local JAK1 and JAK2 inhibition in cutaneous inflammation. J. Invest. Dermatol. 131: 1838–1844. doi: 10.1038/jid.2011.140.
- 167Chan, E.S., Herlitz, L.C., and Jabbari, A. (2015). Ruxolitinib attenuates cutaneous lupus development in a mouse lupus model. J. Invest. Dermatol. 135: 1912–1915. doi: 10.1038/jid.2015.107.
- 168Shi, J.G., Chen, X., McGee, R.F., Landman, R.R., Emm, T., Lo, Y., Scherle, P.A., Punwani, N.G., Williams, W.V., and Yeleswaram, S. (2011). The pharmacokinetics, pharmacodynamics, and safety of orally dosed INCB018424 phosphate in healthy volunteers. J. Clin. Pharmacol. 51: 1644–1654. doi: 10.1177/0091270010389469.
- 169Shilling, A.D., Nedza, F.M., Emm, T., Diamond, S., McKeever, E., Punwami, N., Williams, W., Arvanitis, A., Galya, L.G., Li, M., Shepard, S., Rodgers, J., Yue, T.-Y., and Yeleswaram, S. (2010). Metabolism, excretion, and pharmacokinetics of [14C]INCB018424, a selective Janus tyrosine kinase 1/2 inhibitor, in humans. Drug Metab. Dispos. 38: 2023–2031. doi: 10.1124/dmd.110.033787.
- 170Chen, X., Shi, J.G., Emm, T., Scherle, P.A., McGee, R.F., Lo, Y., Landman, R.R., Punwami, N.G., Williams, W.V., and Yeleswaram, S. (2013). Pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in renal and hepatic impairment patients. Clin. Pharmacol. Drug Dev. 3: 34–42. doi: 10.1002/cpdd.77.
- 171Shi, J.G., Chen, X., Emm, T., Scherle, P.A., McGee, R.F., Lo, Y., Landman, R.R., McKeever, E.G. Jr., Punwami, N.G., Williams, W.V., and Yeleswaram, S. (2012). The effect of Cyp3A4 inhibition or induction on the pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in healthy volunteers. J. Clin. Pharmacol. 52: 809–818. doi: 10.1177/0091270011405663.
- 172Punwani, N., Yeleswaram, S., Chen, X., Bowman, J., Soloviev, M., and Williams, W. (2014). Evaluation of the effect of ruxolitinib on cardiac repolarization: a thorough QT study. Clin. Pharmacol. Drug Dev. 3: 207–214. doi: 10.1002/cpdd.90.
- 173Zeiser, R., Burchert, A., Lengerke, C., Verbeek, M., Maas-Bauer, K., Metzelder, S.K., Spoerl, S., Ditschkowski, M., Escedi, M., Sockel, K., Ayuk, F., Ajib, S., de Fontbrune, F.S., Na, I.-K., Penter, L., Holtick, U., Wolf, D., Schuler, E., Meyer, E., Apostolova, P., Bertz, H., Marks, R., Lübbert, M., Wäsch, R., Scheid, C., Stölzel, F., Ordemann, R., Bug, G., Kobbe, G., Negrin, R., Brune, M., Spyridonidis, A., Schmitt-Graf, A., van der Velden, W., Huls, G., Mielke, S., Grigoleit, G.U., Kuball, J., Flynn, R., Ihorst, G., Du, J., Blazar, B.R., Arnold, R., Kröger, N., Passweg, J., Halter, J., Socié, G., Beelen, D., Peschel, C., Neubauer, A., Finke, J., Duyster, J., and von Bubnoff, N. (2015). Ruxolitinib in corticosteroid-refractory graft-versus-host disease after allogenic stem cell transplantation: a multicenter survey. Leukemia 29: 2062–2068. doi: 10.1038/leu.2015.212.
- 174Khoury, H.J., Langston, A.A., Kota, V.K., Wilkinson, J.A., Pusic, I., Jillella, A., Bauer, S., Kim, A.S., Roberts, D., Al-Kadhimi, Z., Bodo, I., Winton, E., Arellano, M., and DiPersio, J.F. (2018). Ruxolitinib: a steroid sparing agent in chronic graft-versus-host disease. Bone Marrow Transplant. 53: 826–831. doi: 10.1038/s41409-017-0081-5.
- 175Khandelwal, P., Teusink-Cross, A., Davies, S.M., Nelson, A.S., Dandoy, C.E., El-Bietar, J., Marsh, R.A., Kumar, A.R., Grimley, M.S., Jodele, S., and Myers, K.C. (2017). Ruxolitinib as salvage therapy in steroid-refractory acute graft-versus-host disease in pediatric hematopoietic stem cell transplant patients. Biol. Blood Marrow Transplant. 23: 1122–1127. doi: 10.1016/j.bbmt.2017.03.029.
- 176Punwani, N., Scherle, P., Flores, R., Shi, J., Liang, J., Yeleswaram, S., Levy, R., Williams, W., and Gottlieb, A. (2012). Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J. Am. Acad. Dermatol. 67: 658–664. doi: 10.1016/j.jaad.2011.12.018.
- 177Mackay-Wiggan, J., Jabbari, A., Nguyen, N., Cerise, J.E., Clark, C., Ulerio, G., Furniss, M., Vaughan, R., Christiano, A.M., and Clynes, R. (2016). Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight 1: e89790. doi: 10.1172/jci.insight.89790.
- 178Bokhari, L. and Sinclair, R. (2018). Treatment of alopecia universalis with topical Janus kinase inhibitors – a double blind, placebo, and active controlled pilot study. Int. J. Dermatol. 57: 1464–1470. doi: 10.1111/ijd.14192.
- 179von Bubnoff, N., Ihorst, G., Grishina, O., Röthling, N., Bertz, H., Duyster, J., Finke, J., and Zeiser, R. (2018). Ruxolitinib in GvHD (RIG) study: a multicenter, randomized Phase 2 trial to determine the response rate of ruxolitinib and best available treatment (BAT) versus BAT in steroid-refractory graft-versus-host disease (aGvHD) (NCT02396628). BMC Cancer 18: 1132–1140. doi: 10.1186/s12885-018-5045-7.
- 180Jagasia, M., Zeiser, R., Arbushites, M., Delaite, P., Gadbaw, B., and von Bubnoff, N. (2018). Ruxolitinib for the treatment of patients with steroid-refractory GVHD: an introduction to the REACH trials. Immunotherapy 10: 391–402. doi: 10.2217/imt-2017-0156.
- 181Punwani, N., Burn, T., Scherle, P., Flores, R., Shi, J., Collier, P., Hertel, D., Haley, P., Lo, Y., Waeltz, P., Rodgers, J., Shepard, S., Vaddi, K., Yeleswaram, S., Levy, R., Williams, W., and Gottlieb, A.B. (2015). Down modulation of key inflammatory cell markers with a topical Janus kinase 1/2 inhibitor. Br. J. Dermatol. 172: 989–997. doi: 10.1111/bjd.13994.
- 182 Incyte (2018). Incyte announce first patient treated in Phase 3 clinical trial program for ruxolitinib cream in atopic dermatitis. Incyte press release. 20 December 2018. https://investor.incyte.com/news-releases/news-release-details/incyte-announces-first-patient-treated-Phase-3-clinical-trial-0 (accessed 2 April 2019).
- 183 Incyte (2018). Incyte announces positive data from Phase 2b trial of ruxolitinib cream in patients with atopic dermatitis. Incyte press release. 13 September 2018. https://investor.incyte.com/news-releases/news-release-details/incyte-announces-positive-data-Phase-2b-trial-ruxolitinib-cream (accessed 2 April 2019).
- 184Verstovsek, S., Kantarjian, H., Mesa, R.A., Pardanani, A., Cortes-Franco, J., Thomas, D.A., Estrov, Z., Fridman, J.S., Bradley, E.C., Erickson-Viitanen, S., Vaddi, K., Levy, R., and Tefferi, A. (2010). Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N. Engl. J. Med. 363: 1117–1127. doi: 10.1056/NEJMoa1002028.
- 185 Eli Lilly (2018). FDA approves Olumiant® (baricitinib) 2-mg tablets for the treatment of adults with moderately-to-severely active rheumatoid arthritis. Eli Lilly press release. 1 June 2018. https://investor.lilly.com/news-releases/news-release-details/fda-approves-olumiantr-baricitinib-2-mg-tablets-treatment-adults (accessed 9 April 2019).
- 186Markham, A. (2017). Baricitinib: first global approval. Drugs 77: 697–704. doi: 10.1007/s40265-017-0723-3.
- 187 FDA (2018). Highlights of prescribing information. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/207924s000lbl.pdf (accessed 9 April 2019).
- 188Fridman, J.S., Scherle, P.A., Collins, R., Burn, T.C., Li, Y., Li, J., Covington, M.B., Thomas, B., Collier, P., Favata, M.F., Wen, X., Shi, J., McGee, R., Haley, P.J., Shepard, S., Rodgers, J.D., Yeleswaram, S., Hollis, G., Newton, R.C., Metcalf, B., Friedman, S.M., and Vaddi, K. (2010). Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J. Immunol. 184: 5298–5307. doi: 10.4049/jimmunol.0902819.
- 189Rodgers, J.D., Shepard, S., Maduskuie, T.P., Wang, H., Falahatpisheh, N., Rafalski, M., Arvanitis, A.G., Sorace, L., Jalluri, R.K., Fridman, J.S., and Vaddi, K. (2007). Heteroaryl substituted pyrrolo[2,3-b]pyridines and pyrrolo[2,3-b]pyrimidines as Janus kinase inhibitors. U.S. Patent 7,598,257.
- 190Xu, J., Cai, J., Chen, J., Zong, X., Wu, X., Ji, M., and Wang, P. (2016). An efficient synthesis of baricitinib. J. Chem. Res. 40: 205–208. doi: 10.3184/174751916X14569294811333.
- 191Sorrell, F.J., Szklarz, M., Azeez, K.R.A., Elkins, J.M., and Knapp, S. (2016). Family-wide structural analysis of human numb-associated protein kinases. Structure 24: 401–411. doi: 10.1016/j.str.2015.12.015.
- 192Shi, J.G., Chen, X., Lee, F., Emm, T., Scherle, P.A., Lo, Y., Punwani, N., Williams, W.V., and Yeleswaram, S. (2014). The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J. Clin. Pharmacol. 54: 1354–1361. doi: 10.1002/jcph.354.
- 193Posada, M.M., Cannady, E.A., Payne, C.D., Zhang, X., Bacon, J.A., Pak, Y.A., Higgins, J.W., Shahri, N., Hall, S.D., and Hillgren, K.M. (2017). Prediction of transporter-mediated drug-drug interactions for baricitinib. Clin. Transl. Sci. 10: 509–519. doi: 10.1111/cts.12486.
- 194Payne, C., Zhang, X., Shahri, N., Williams, W., and Cannady, E. (2015). AB0492: evaluation of potential drug-drug interactions with baricitinib. Ann. Rheum. Dis. 74 (suppl 2): 1063. doi: 10.1136/annrheumdis-2015-eular.1627.
- 195Keystone, E.C., Taylor, P.C., Drescher, E., Schlichting, D.E., Beattie, S.D., Berclaz, P.-Y., Lee, C.H., Fidelus-Gort, R.K., Luchi, M.E., Rooney, T.P., Macias, W.L., and Genovese, M.C. (2014). Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to MTX. Ann. Rheum. Dis. 74: 333–340. doi: 10.1136/annrehumdis-2014-206478.
- 196Zhang, X., Chua, L., Emest, C. II, Macias, W., Rooney, T., and Tham, L.S. (2017). Dose/exposure-response modeling to support dosing recommendation for Phase III development of baricitinib in patients with rheumatoid arthritis. CPT Pharmacometrics Syst. Pharmacol. 6: 804–813. doi: 10.1002/psp4.12251.
- 197Peterfy, C., DiCarlo, J., Emery, P., Genovese, M.C., Keystone, E.C., Taylor, P.C., Schlichting, D.E., Beattie, S.D., Luchi, M., and Macias, W. (2019). MRI and dose selection in a Phase II trial of baricitinib with conventional synthetic disease-modifying antirheumatic drugs in rheumatoid arthritis. J. Rheumatol. 46: 887–895. doi: 10.3899/jrheum.171469.
- 198Keystone, E.C., Genovese, M.C., Schlichting, D.E., de la Torre, I., Beattie, S.D., Rooney, T.P., and Taylor, P.C. (2018). Safety and efficacy of baricitinib through 128 weeks in an open-label, long term extension study in patients with rheumatoid arthritis. J. Rheumatol. 45: 14–21. doi: 10.3899/jrheum.161161.
- 199Al-Salama, Z.T. and Scott, L.J. (2018). Baricitinib: a review in rheumatoid arthritis. Drugs 78: 761–772. doi: 10.1007/s40265-018-0908-4.
- 200Genovese, M.C., Kremer, J., Zamani, O., Ludivico, C., Krogulec, M., Xie, L., Beattie, S.D., Koch, A.E., Cardillo, T.E., Rooney, T.P., Macias, W.L., de Bono, S., Schlichting, D.E., and Smolen, J.S. (2016). Baricitinib in patients with refractory rheumatoid arthritis. N. Engl. J. Med. 374: 1243–1252. doi: 10.1056/NEJMoa1507247.
- 201Dougados, M., van der Heijde, D., Chen, Y.-C., Greenwald, M., Drescher, E., Liu, J., Beattie, S., Witt, S., de la Torre, I., Gaich, C., Rooney, T., Schlichting, D., de Bono, S., and Emery, P. (2017). Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann. Rheum. Dis. 76: 88–95. doi: 10.1136/annrheumdis-2016-210094.
- 202Fleischmann, R., Schiff, M., van der Heijde, D., Ramos-Remus, C., Spindler, A., Stanislav, M., Zerbini, C.A.F., Gurbuz, S., Dickson, C., de Bono, S., Schlichting, D., Beattie, S., Kuo, W.-L., Rooney, T., Macias, W., and Takeuchi, T. (2017). Baricitinib, MTX, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheumatol. 69: 506–517. doi: 10.1002/art.39953.
- 203Taylor, P.C., Keystone, E.C., van der Heijde, D., Weinblatt, M.E., del Carmen Morales, L., Gonzaga, J.R., Yakushin, S., Ishii, T., Emoto, K., Beattie, S., Arora, V., Gaich, C., Rooney, T., Schlichting, D., Macias, W.L., de Bono, S., and Tanaka, Y. (2017). Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 376: 652–662. doi: 10.1056/NEJMoa1608345.
- 204van der Heijde, D., Durez, P., Schett, G., Naredo, E., Østergaard, M., Meszaros, G., De Leonardis, F., de la Torre, I., López-Romero, P., Schlichting, D., Nantz, E., and Fleischmann, R. (2018). Structural damage progression in patients with early rheumatoid arthritis treated with MTX, baricitinib, or baricitinib plus MTX based on clinical response I the Phase 3 RA-BEGIN study. Clin. Rheumatol. 37: 2381–2390. doi: 10.1007/s10067-018-4221-0.
- 205van der Heijde, D., Dougados, M., Chen, Y.-C., Greenwald, M., Drescher, E., Klar, R., Xie, L., de la Torre, I., Rooney, T.P., Witt, S.L., Schlichting, D.E., de Bono, S., and Emery, P. (2018). Effects of baricitinib on radiographic progression of structural joint damage at 1 year in patients with rheumatoid arthritis and an inadequate response to conventional synthetic disease-modifying antirheumatic drugs. RMD Open 4: e000662. doi: 10.1136/rmdopen-2018-000662.
- 206Takeuchi, T., Genovese, M.C., Haraoui, B., Li, Z., Xie, L., Klar, R., Pinto-Correia, A., Otawa, S., Lopez-Romero, P., de la Torre, I., Macias, W., Rooney, T.P., and Smolen, J.S. (2019). Dose reduction of baricitinib in patients with rheumatoid arthritis achieving sustained disease control: results of a prospective study. Ann. Rheum. Dis. 78: 171–178. doi: 10.1136/annrheumdis-2018-213694.
- 207 Incyte (2017). European commission approves once-daily olumiant tablets for treatment of adults with moderate-to-severe active rheumatoid arthritis. Incyte press release. 13 February 2017. https://investor.incyte.com/news-releases/news-release-details/european-commission-approves-once-daily-olumiant-tablets (accessed 9 April 2019).
- 208 Eli Lilly (2017). U.S. FDA issues complete response letter for baricitinib. Eli Lilly press release. 14 April 2017. https://investor.lilly.com/news-releases/news-release-details/us-fda-issues-complete-response-letter-baricitinib (accessed 9 April 2019).
- 209Papp, K., Menter, M.A., Raman, M., Disch, D., Schlichting, D.E., Gaich, C., Macias, W., Zhang, X., and Janes, J.M. (2016). A randomized Phase 2b trial of baricitinib, an oral JAK1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br. J. Dermatol. 174: 1266–1276. doi: 10.1111/bjd.14403.
- 210Tuttle, K.R., Brosius, F.C. III, Adler, S.G., Kretzler, M., Mehta, R.L., Tumlin, J.A., Tanaka, Y., Haneda, M., Liu, J., Silk, M.E., Cardillo, T.E., Duffin, K.L., Haas, J.V., Macias, W.L., Nunes, F.P., and Janes, J.M. (2018). JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 33: 1950–1959. doi: 10.1093/ndt/gfx377.
- 211Guttman-Yassky, E., Silverberg, J.I., Nemoto, O., Forman, S.B., Wilke, A., Prescilla, R., de la Peña, A., Nunes, F.P., Janes, J., Gamalo, M., Donley, D., Paik, J., DeLozier, A.M., Nickoloff, B.J., and Simpson, E.L. (2019). Baricitinib in adult patients with moderate-to-severe atopic dermatitis: a Phase 2 parallel, double-blinded, randomized placebo-controlled multiple-dose study. J. Am. Acad. Dermatol. 80: 913–921. doi: 10.1016/j.jaad.2018.01.018.
- 212Wallace, D.J., Furie, R.A., Tanaka, Y., Kalunian, K.C., Mosca, M., Petri, M.A., Dörner, T., Cardiel, M.H., Bruce, I.N., Gomez, E., Carmack, T., DeLozier, A.M., Janes, J.M., Linnik, M.D., de Bono, S., Silk, M.E., and Hoffman, R.W. (2018). Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, Phase 2 trial. Lancet 392: 222–231. doi: 10.1016/S0140-6736(18)31363-1.
- 213Choy, E.H.S., Miceli-Richard, C., González-Gay, M.A., Sinigaglia, L., Schlichting, D.E., Meszaros, G., de la Torre, I., and Schulze-Koops, H. (2019). The effect of JAK1/JAK2 inhibition in rheumatoid arthritis: efficacy and safety of baricitinib. Clin. Exp. Rheumatol. 4: 694–704.
- 214Harigai, M. (2019). Growing evidence of the safety of JAK inhibitors in patients with rheumatoid arthritis. Rheumatology 58: i34–i42. doi: 10.1093/rheumatology/key287.
- 215Smolen, J.S., Genovese, M.C., Takeuchi, T., Hyslop, D.L., Macias, W.L., Rooney, T., Chen, L., Dickson, C.L., Camp, J.R., Cardillo, T.E., Ishii, T., and Winthrop, K.L. (2019). Safety profile of baricitinib in patients with active rheumatoid arthritis with over 2 years median time in treatment. J. Rheumatol. 46: 7–18. doi: 10.3899/jrheum.171361.
- 216Huang, F. and Luo, Z.-C. (2018). Risk of adverse drug events observed with baricitinib 2 mg versus baricitinib 4 mg once daily for the treatment of rheumatoid arthritis: a systemic review and meta-analysis of randomized controlled trials. BioDrugs 32: 415–423. doi: 10.1007/s40259-018-0304-3.
- 217Kremer, J.M., Genovese, M.C., Keystone, E., Taylor, P.C., Zuckerman, S.H., Ruotolo, G., Schlichting, D.E., Crotzer, V.L., Nantz, E., Beattie, S.D., and Macias, W.L. (2017). Effects of baricitinib on lipid, apolipoprotein, and lipoprotein particle profiles in a Phase IIb study of patients with active rheumatoid arthritis. Arthritis Rheumatol. 69: 943–952. doi: 10.1002/art.40036.
- 218Qiu, C., Zhao, X., She, L., Shi, Z., Deng, Z., Tan, L., Tu, X., Jiang, S., and Tang, B. (2019). Baricitinib induces LDL-C and HDL-C increases in rheumatoid arthritis: a meta-analysis of randomized controlled trials. Lipids Health Dis. 18: 54–65. doi: 10.1186/s12944-019-0994-7.
- 219Taylor, P.C., Weinblatt, M.E., Burmester, G.R., Rooney, T.P., Witt, S., Walls, C.D., Issa, M., Salinas, C.A., Saifan, C., Zhang, X., Cardoso, A., González-Gay, M.A., and Takeuchi, T. (2019). Cardiovascular safety during treatment with baricitinib in rheumatoid arthritis. Arthritis Rheumatol. 71: 1042–1055. doi: 10.1002/art.40841.
- 220 Astellas (2014). Astellas announces end of license agreement with Janssen to develop and commercialize ASP015K. Astellas press release. 2 December 2014. https://www.astellas.com/en/news/10881 (accessed 11 April 2019).
- 221 Astellas (2014). Maruho and Astellas enter license agreement for the development and commercialization of a topical formulation of JAK inhibitor peficitinib (ASP015K) for treatment in the skin disease area. Astellas press release. 28 September 2016. https://www.astellas.com/en/news/7941 (accessed 11 April 2019).
- 222Nakajima, Y., Tojo, T., Morita, M., Hatanaka, K., Shirakami, S., Tanaka, A., Sasaki, H., Nakai, K., Mukoyoshi, K., Hamaguchi, H., Takahashi, F., Moritomo, A., Higashi, Y., and Inoue, T. (2015). Synthesis and evaluation of 1H-pyrrolo[2,3-b]pyridine derivatives as novel immunomodulators targeting Janus kinase 3. Chem. Pharm. Bull. 63: 341–353. doi: 10.1248/cpb.c15-00036.
- 223Hamaguchi, H., Amano, Y., Moritomo, A., Shirakami, S., Nakajima, Y., Nakai, K., Nomura, N., Ito, M., Higashi, Y., and Inoue, T. (2018). Bioorg. Med. Chem. 26: 4971–4983. doi: 10.1016/j.bmc.2018.08.005.
- 224Ito, M., Yamazaki, S., Yamagami, K., Kuno, M., Morita, Y., Okuma, K., Nakamura, K., Chida, N., Inami, M., Inoue, T., Shirakami, S., and Higashi, Y. (2017). A novel JAK inhibitor, peficitinib, demonstrates potent efficacy in a rat adjuvant-induced arthritis model. J. Pharmacol. Sci. 133: 25–33. doi: 10.1016/j.jphs.2016.12.001.
- 225Cao, Y.J., Sawamoto, T., Valluri, U., Cho, K., Lewand, M., Swan, S., Lasseter, K., Matson, M., Holman, J. Jr., Keirns, J., and Zhu, T. (2016). Pharmacokinetics, pharmacodynamics, and safety of ASP015K (peficitinib), a new Janus kinase inhibitor, in healthy subjects. Clin. Pharmacol. Drug Dev. 5: 435–449. doi: 10.1002/cpdd.273.
- 226Oda, K., Cao, Y.J., Sawamoto, T., Nakada, N., Fisniku, O., Nagasaka, Y., and Sohda, K. (2015). Human mass balance, metabolite profile and identification of metabolic enzymes of [14C]ASP015K, a novel oral janus kinase inhibitor. Xenobiotica 45: 887–902. doi: 10.3109/00498254.2015.1026864.
- 227Zhu, T., Howieson, C., Wojtkowski, T., Garg, J.P., Han, D., Fisniku, O., and Keirns, J. (2017). The effect of verapamil, a P-glycoprotein inhibitor, on the pharmacokinetics of peficitinib, and orally administered, once-daily JAK inhibitor. Clin. Pharmacol. Drug Dev. 6: 548–555. doi: 10.1002/cpdd.344.
- 228Zhu, T., Parker, B., Wojtkowski, T., Nishimura, T., Garg, J.P., Han, D., Fisniku, O., and Keirns, J. (2017). Drug interactions between peficitinib, an orally administered, once-daily Janus kinase inhibitor, and rosuvastatin in healthy subjects. Clin. Pharmacokinet. 56: 747–757. doi: 10.1007/s40262-016-0474-4.
- 229Kivitz, A.J., Gutierrez-Ureña, R., Poiley, J., Genovese, M.C., Kristy, R., Shay, K., Wang, X., Garg, P.J., and Zubrzycka-Sienkiewicz, A. (2017). Peficitinib, a JAK inhibitor, in the treatment of moderate-to-severe rheumatoid arthritis in patients with an inadequate response to MTX. Arthritis Rheumatol. 69: 709–717. doi: 10.1002/art.39955.
- 230Tanaka, Y., Takeuchi, T., Tanaka, S., Kawakami, A., Iwasaki, M., Song, Y.W., Chen, Y.H., Rokuda, M., Izutsu, H., Ushijima, S., Kaneko, Y., Shiomi, T., and Yamada, E. (2018). Efficacy and safety of the novel oral Janus kinase (JAK) inhibitor, peficitinib (ASP015K), in a Phase 3, double-blind, placebo-controlled, randomized study of patients with RA who had an inadequate response to DMARDs. Arthritis Rheumatol. 70 (suppl 10): [abstract 887].
- 231Takeuchi, T., Tanaka, Y., Tanaka, S., Kawakami, A., Iwasaki, M., Rokuda, M., Izutsu, H., Ushijima, S., Kaneko, Y., Shiomi, T., and Yamada, E. (2018). Efficacy and safety of the novel oral Janus kinase (JAK) inhibitor, peficitinib (ASP015K), in a Phase 3, double-blind, placebo-controlled, randomized study of patients with RA who had an inadequate response to MTX. Arthritis Rheumatol. 70 (suppl 10): [abstract 888].
- 232Papp, K., Pariser, D., Catlin, M., Wierz, G., Ball, G., Akinlade, B., Zeiher, B., and Krueger, J.G. (2015). A Phase 2a randomized, double-blind, placebo-controlled, sequential dose-escalation study to evaluate the efficacy and safety of ASP015K, a novel Janus kinase inhibitor, in patients with moderate-to-severe psoriasis. Br. J. Dermatol. 173: 767–776. doi: 10.1111/bjd.13745.
- 233Sands, B.E., Sandborn, W.J., Feagan, B.G., Lichtenstein, G.R., Zhang, H., Strauss, R., Szapary, P., Johanns, J., Panes, J., Vermeire, S., O'Brien, C.D., Yang, Z., Bertelsen, K., Marano, C., and Peficitinib-UC study group (2018). Peficitinib, an oral Janus kinase inhibitor, in moderate-to-severe ulcerative colitis: results from a randomised, Phase 2 study. J. Crohn's Colitis 1158–1169. doi: 10.1093/ecco-jcc/jjy085.
- 234 Galapagos (2006). Galapagos initiates Phase I study for JAK inhibitor GLPG0634, acquires full rights to compound from GSK. Galapagos press release. 6 August 2006. https://www.fiercebiotech.com/biotech/galapagos-initiates-phase-i-study-for-jak-inhibitor-glpg0634-acquires-full-rights-to (accessed 17 February 2019).
- 235Vanhoutte, F., Mazur, M., Van Der Aa, A., Wigerinck, P., and Van't Klooster, G. (2012). Selective JAK1 inhibition in the treatment of rheumatoid arthritis: proof of concept with GLPG0634. ACR/ARHP Annual Meeting, Abstract number 2489, 9-14 November, Washington, DC.
- 236 Abbott (2012). Abbott and Galapagos announce global collaboration for novel oral therapy, GLPG0634, in Phase II to treat autoimmune diseases. Abbott press release. 29 February 2012. https://abbott.mediaroom.com (accessed 15 February 2019).
- 237 Abbvie (2015). AbbVie to advance once-daily ABT-494 to Phase 3 in rheumatoid arthritis by year-end – AbbVie to opt-out of collaboration with Galapagos on filgotinib. Abbvie news release. 25 September 2015. www.abbvie.com (accessed 15 February 2019).
- 238 Galapagos (2015). Galapagos NV & Gilead Sciences Inc announce global partnership to develop filgotinib for the treatment of rheumatoid arthritis and other inflammatory diseases. Edited transcript from conference call. 17 December 2015. www.glpg.com (accessed 17 February 2019).
- 239Menet, C.J., Fletcher, S.R., Van Lommen, G., Geney, R., Blanc, J., Smits, K., Jouannigot, N., Deprez, P., van der Aar, E.M., Clement-Lacroix, P., Lepescheux, L., Galien, R., Vayssiere, B., Nelles, L., Christophe, T., Brys, R., Uhring, M., Ciesielski, F., and Van Rompaey, L. (2014). Triazolopyridines as selective JAK1 inhibitors: from hit identification to GLPG0634. J. Med. Chem. 57: 9323–9342. doi: 10.1021/jm501262q.
- 240Siu, M., Pastor, R., Liu, W., Barrett, K., Berry, M., Blair, W.S., Chang, C., Chen, J.Z., Eigenbrot, C., Ghilardi, N., Gibbons, P., He, H., Hurley, C.A., Kenny, J.R., Khojasteh, S.C., Le, H., Lee, L., Lyssikatos, J.P., Magnuson, S., Pulk, R., Tsui, V., Ultsch, M., Xiao, Y., Zhu, B.-Y., and Sampath, D. (2013). 2-Amino-[1,2,4]triazolo[1,5-a]pyridines as JAK2 inhibitors. Bioorg. Med. Chem. Lett. 23: 5014–5021. doi: 10.1016/j.bmcl.2013.06.008.
- 241Alkorta, I., Campillo, N., Rozas, I., and Elguero, J. (1998). Ring strain and hydrogen bond acidity. J. Org. Chem. 63: 7759–7763. doi: 10.1021/jo980804l.
- 242Namour, F., Diderichsen, P.M., Cox, E., Vayssière, B., Van der Aa, A., Tasset, C., and Van't Klooster, G. (2015). Pharmacokinetics and pharmacokinetic/pharmacodynamic modeling of filgotinib (GLPG0634), a selective JAK1 inhibitor in support of Phase IIB dose selection. Clin. Pharmacokinet. 54: 859–874. doi: 10.1007/s40262-015-0240-z.
- 243Vanhoutte, F., Mazur, M., Van der Aa, A., Wigerinck, P., and Van't Klooster, G. (2012). Selective JAK1 inhibition in the treatment of rheumatoid arthritis: proof of concept with GLPG0634. Arthritis Rheum. 64 (Suppl. 10): 2489.
- 244Westhovens, R., Taylor, P.C., Alten, R., Pavlova, D., Enríquez-Sosa, F., Mazur, M., Greenwald, M., Van der Aa, A., Vanhoutte, F., Tasset, C., and Harrison, P. (2017). Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (MTX) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (DARWIN 1). Ann. Rheum. Dis. 76: 998–1008. doi: 10.1136/annrheumdis-2016-210104.
- 245Kavanaugh, A., Kremer, J., Ponce, L., Cseuz, R., Reshetko, O.V., Stanislavchuk, M., Greenwald, M., Van der Aa, A., Vanhoutte, F., Tasset, C., and Harrison, P. (2017). Filgotinib (GLPG0634/GS-6034), an oral JAK1 selective inhibitor, is effective in combination as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (DARWIN 2). Ann. Rheum. Dis. 76: 1009–1019. doi: 10.1136/annrheumdis-2016-210105.
- 246Genovese, M.C., Kavanaugh, A., Winthrop, K., Greenwald, M., Ponce, L., Sosa, F.E., Stanislavchuk, M., Mazur, M., Spindler, A., Cseuz, R., Nikulenkova, N., Glowacka-Kulesz, M., Szombati, I., Dudek, A., Mozaffarian, N., Greer, J., Ding, X., Harrison, P., Van der Aa, A., Westhovens, R., and Alten, R. (2017). Long term safety of filgotinib in the treatment of rheumatoid arthritis: week 84 data from a Phase 2b open-label extension study. Abstract Number 1909. ACR/ARHP Annual Meeting, November 3–8, 2017, San Diego, CA.
- 247 Galapagos (2018). Risks related to product development, regulatory approval and commercialization. Galapagos 2017 annual report. 23 March 2018.
- 248 Gilead (2018). Gilead and Galapagos announce filgotinib meets primary and all key secondary endpoints in first Phase 3 study in rheumatoid arthritis. Gilead press release. 11 September 2018. www.gilead.com (accessed 18 February 2019).
- 249Vermeire, S., Schreiber, S., Petryka, R., Kuehbacher, T., Hebuterne, X., Roblin, X., Klopocka, M., Goldis, A., Wisniewska-Jarosinska, M., Baranovsky, A., Sike, R., Stoyanova, K., Tasset, C., Van der Aa, A., and Harrison, P. (2017). Clinical remission in patients with moderate-to-severe Crohn's disease treated with filgotinib (the FITZROY study): results from a Phase 2, double-blind, randomised, placebo-controlled trial. Lancet 389: 266–275. doi: 10.1016/S0140-6736(16)32537-5.
- 250Mease, P., Coates, L.C., Helliwell, P.S., Stanislavchuk, M., Rychlewska-Hanczewska, A., Dudek, A., Abi-Saab, W., Tasset, C., Meuleners, L., Harrison, P., Besuyen, R., Van der Aa, A., Mozaffarian, N., Greer, J.M., Kunder, R., Van den Bosch, F., and Gladman, D.D. (2018). Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, Phase 2 trial. Lancet 392: 2367–2377. doi: 10.1016/S0140-6736(18)32483-8.
- 251Van der Heijde, D., Baraliakos, X., Gensler, L.S., Maksymowych, W.P., Tseluyko, V., Nadashkevich, O., Abi-Saab, W., Tasset, C., Meuleners, L., Besuyen, R., Hendrikx, T., Mozaffarian, N., Liu, K., Greer, J.M., Deodhar, A., and Landewé, R. (2018). Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, Phase 2 trial. Lancet 392: 2378–2387. doi: 10.1016/S0140-6736(18)32463-2.
- 252 Abbvie (2019). AbbVie announces new drug application accepted for priority review by U.S. FDA for upadacitinib for treatment of moderate to severe rheumatoid arthritis. Abbvie press release. 19 February 2019. https://news.abbvie.com (accessed 23 February 2019).
- 253Graff, C., Schwartz, A., Voss, J., Wishart, N., Olson, L., George, J., Hyland, D., and Camp, H. (2014). Characterization of ABT-494, a second generation Jak1 selective inhibitor. Abstract number 1499. 2014 ACR/ARHP Annual Meeting, 14–19 November 2014, Boston, Mass.
- 254Van Epps, S., Fiamengo, B., Edmunds, J., Ericsson, A., Frank, K., Friedman, M., George, D., George, J., Goedken, E., Kotecki, B., Martinez, G., Merta, P., Morytko, M., Shekhar, S., Skinner, B., Stewart, K., Voss, J., Wallace, G., Wang, L., and Wishart, N. (2013). Design and synthesis of tricyclic cores for kinase inhibition. Bioorg. Med. Chem. Lett. 23: 693–698. doi: 10.1016/j.bmcl.2012.11.108.
- 255Friedman, M., Frank, K.E., Aguirre, A., Argiriadi, M.A., Davis, H., Edmunds, J.J., George, D.M., George, J.S., Goedken, E., Fiamengo, B., Hyland, D., Li, B., Murtaza, A., Morytko, M., Somal, G., Stewart, K., Tarcsa, E., Van Epps, S., Voss, J., Wang, L., Woller, K., and Wishart, N. (2015). Structure activity optimization of 6H-pyrrolo[2,3-e][1,2,4]triazolo[4,3-a]pyrazines as Jak1 kinase inhibitors. Bioorg. Med. Chem. Lett. 25: 4399–4404. doi: 10.1016/j.bmcl.2015.09.020.
- 256Mohamed, M.-E.F., Camp, H.S., Jiang, P., Padley, R.J., Asatryan, A., and Othman, A.A. (2016). Pharmacokinetics, safety and tolerability of ABT-494, a novel selective JAK 1 inhibitor, in healthy volunteers and subjects with rheumatoid arthritis. Clin. Pharmacokinet. 55: 1547–1558. doi: 10.1007/s40262-016-0419-y.
- 257Mohamed, M.-E.F., Jungerwirth, S., Asatryan, A., Jiang, P., and Othman, A.A. (2017). Assessment of effect of CYP3A inhibition, CYP induction, OATP1B inhibition, and high-fat meal on pharmacokinetics of the JAK1 inhibitor upadacitinib. Br. J. Clin. Pharmacol. 83: 2242–2248. doi: 10.1111/bcp.13329.
- 258Mohamed, M.-E.F., Zeng, J., Jiang, P., Hosmane, B., and Othman, A.A. (2018). Use of early clinical trial data to support thorough QT study waiver for upadacitinib and utility of food effect to demonstrate ECG assay sensitivity. Clin. Pharmacol. Ther. 103: 836–842. doi: 10.1002/cpt.804.
- 259Genovese, M.C., Smolen, J.S., Weinblatt, M.E., Burmester, G.R., Meerwein, S., Camp, H.S., Wang, L., Othman, A.A., Khan, N., Pangan, A.L., and Jungerwirth, S. (2016). Efficacy and safety of ABT-494, a selective JAK-1 inhibitor, in a Phase IIb study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Rheumatol. 68: 2857–2866. doi: 10.1002/art.39808.
- 260Kremer, J.M., Emery, P., Camp, H.S., Friedman, A., Wang, L., Othman, A.A., Khan, N., Pangan, A.L., Jungerwirth, S., and Keystone, E.C. (2016). A Phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy. Arthritis Rheumatol. 68: 2867–2877. doi: 10.1002/art.39801.
- 261Mohamed, M.-E.F., Zeng, J., Marroum, P.J., Song, I.-H., and Othman, A.A. (2019). Pharmacokinetics of upadacitinib with the clinical regimens of the extended-release formulation utilized in rheumatoid arthritis Phase 3 trials. Clin. Pharmacol. Drug. Dev. 8: 208–216. doi: 10.1002/cpdd.462.
- 262 Abbvie (2018). AbbVie announces new drug application accepted for priority review by U.S. FDA for upadacitinib for treatment of moderate to severe rheumatoid arthritis. Abbvie press release. 19 February 2018. https://news.abbvie.com (accessed 31 March 2019).
- 263 Abbvie (2018). Upadacitinib meets all primary and ranked secondary endpoints including superiority versus adalimumab in Phase 3 study in rheumatoid arthritis. Abbvie press release. 9 April 2018. https://news.abbvie.com (accessed 31 March 2019).
- 264 Abbvie (2018). Upadacitinib monotherapy meets all primary and ranked secondary endpoints versus methotrexate in a Phase 3 study in rheumatoid arthritis. Abbvie press release. 5 June 2018. https://news.abbvie.com (accessed 31 March 2019).
- 265Burmester, G.R., Kremer, J.M., Van den Bosch, F., Kivitz, A., Bessette, L., Li, Y., Zhou, Y., Othman, A.A., Pangan, A.L., and Camp, H.S. (2018). Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled Phase 3 trial. Lancet 391: 2503–2512. doi: 10.1016/S0140-6736(18)31115-2.
- 266Genovese, M.C., Fleischmann, R., Combe, B., Hall, S., Rubbert-Roth, A., Zhang, Y., Zhou, Y., Mohamed, M.-E.F., Meerwein, S., and Pangan, A.L. (2018). Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled Phase 3 trial. Lancet 391: 2513–2524. doi: 10.1016/S0140-6736(18)31116-4.
- 267 Abbvie (2018). AbbVie announces new Phase 2 data for upadacitinib showing clinical and endoscopic outcomes in Crohn's disease at 52 weeks. Abbvie press release. 16 February 2018. https://news.abbvie.com (accessed 31 March 2019).
- 268 Abbvie (2018). Positive Phase 2b data for AbbVie's upadacitinib show significant induction of clinical remission and response in patients with ulcerative colitis. Abbvie press release. 22 October 2018. https://news.abbvie.com (accessed 31 March 2019).
- 269Beck, L., Hong, C., Hu, X., Chen, S., Calimlim, B., Teixeira, H., and Guttman-Yassky, E. (2018). Upadacitinib effect on pruritus in moderate-to-severe atopic dermatitis: from a Phase 2B randomized, placebo-controlled trial. Ann. Allergy Asthma Immunol. 121: S21. doi: 10.1016/j.anai.2018.09.063.
- 270 Pfizer (2015). Pfizer pipeline. 27 October 2015. https://www.pfizer.com/sites/default/files/product-pipeline/PfizerPipeline_0.pdf (accessed 10 April 2019).
- 271Zak, M., Hurley, C.A., Ward, S.I., Bergeron, P., Barrett, K., Balazs, M., Blair, W.S., Bull, R., Chakravarty, P., Chang, C., Crackett, P., Deshmukh, G., DeVoss, J., Dragovich, P.S., Eigenbrot, C., Ellwood, C., Gaines, S., Ghilardi, N., Gibbons, P., Gradl, S., Gribling, P., Hamman, C., Harstad, E., Hewitt, P., Johnson, A., Johnson, T., Kenny, J.R., Koehler, M.F.T., Bir Kohli, P., Labadie, S., Lee, W.P., Liao, J., Liimatta, M., Mendonca, R., Narukulla, R., Pulk, R., Reeve, A., Savage, S., Shia, S., Steffek, M., Ubhayakar, S., van Abbema, A., Aliagas, I., Avitabile-Woo, B., Xiao, Y., Yang, J., and Kulagowski, J.J. (2013). Identification of C-2 hydroxyethyl imidazopyrrolopyridines as potent JAK1 inhibitors with favorable physicochemical properties and high selectivity over JAK2. J. Med. Chem. 56: 4764–4785. doi: 10.1021/jm4004895.
- 272Labadie, S., Dragovich, P.S., Barrett, K., Blair, W.S., Bergeron, P., Chang, C., Deshmukh, G., Eigenbrot, C., Ghilardi, N., Gibbons, P., Hurley, C.A., Johnson, A., Kenny, J.R., Bir Kohli, P., Kulagowski, J.J., Liimatta, M., Lupardus, P.L., Mendonca, R., Murray, J.M., Pulk, R., Shia, S., Steffek, M., Ubhayakar, S., Ultsch, M., van Abbema, A., Ward, S., and Zak, M. (2012). Structure-based discovery of C-2 substituted imidazo-pyrrolopyridine JAK1 inhibitors with improved selectivity over JAK2. Bioorg. Med. Chem. Lett. 22: 7627–7633. doi: 10.1016/j.bmcl.2012.10.008.
- 273Vasbinder, M.M., Alimzhanov, M., Augustin, M., Bebernitz, G., Bell, K., Chuaqui, C., Deegan, T., Ferguson, A.D., Goodwin, K., Huszar, D., Kawatkar, A., Kawatkar, S., Read, J., Shi, J., Steinbacher, S., Steuber, H., Su, Q., Toader, D., Wang, H., Woessner, R., Wu, A., Ye, M., and Zinda, M. (2016). Identification of azabenzimidazoles as potent JAK1 selective inhibitors. Bioorg. Med. Chem. Lett. 26: 60–67. doi: 10.1016/j.bmcl.2015.11.031.
- 274Simov, V., Deshmukh, S.V., Dinsmore, C.J., Elwood, F., Fernandez, R.B., Garcia, Y., Gibeau, C., Gunaydin, H., Jung, J., Katz, J.D., Kraybill, B., Lapointe, B., Patel, S.B., Siu, T., Su, H., and Young, J.R. (2016). Structure-based design and development of (benz)imidazole pyridones as JAK1-selective kinase inhibitors. Bioorg. Med. Chem. Lett. 26: 1803–1808. doi: 10.1016/j.bmcl.2016.02.035.
- 275Peeva, E., Hodge, M.R., Kieras, E., Vazquez, M.L., Goteti, K., Tarabar, S.G., Alvey, C.W., and Banfield, C. (2018). Evaluation of a Janus kinase 1 inhibitor, PF-04965842, in healthy subjects: a Phase 1, randomized, placebo-controlled, dose-escalation study. Br. J. Clin. Pharmacol. 84: 1776–1788. doi: 10.1111/bcp.13612.
- 276Gooderham, M., Forman, S., Bissonnette, R., and Gooderham, M. (2017). The 26th European Academy of Dermatology and Venereology, Geneva, Switzerland, 13-17 September 2017. PF-04965842, a JAK1 inhibitor, for treatment of atopic dermatitis: a 12 week, randomized, double blind, placebo controlled phase 2 clinical trial. Abstract D3T01.1A.
- 277Schmieder, G.J., Draelos, Z.D., Pariser, D.M., Banfield, C., Cox, L., Hodge, M., Kieras, E., Parsons-Rich, D., Menon, S., Salganik, M., Page, K., and Peeva, E. (2018). Efficacy and safety of the Janus kinase 1 inhibitor PF-04965842 in patients with moderate-to-severe psoriasis: Phase II, randomized, double-blind, placebo-controlled study. Br. J. Dermatol. 179: 54–62. doi: 10.1111/bjd.16004.
- 278Russell, S.M., Tayebi, N., Nakajima, H., Riedy, M.C., Roberts, J.L., Aman, M.J., Migone, T.S., Noguchi, M., Markert, M.L., Buckley, R.H., O'Shea, J.J., and Leonard, W.J. (1995). Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270: 797–800. doi: 10.1126/science.270.5237.797.
- 279Thorarensen, A., Dowty, M.E., Banker, M.E., Juba, B., Jussif, J., Lin, T., Vincent, F., Czerwinski, R.M., Casimiro-Garcia, A., Unwalla, R., Trujillo, J.I., Liang, S., Balbo, P., Che, Y., Gilbert, A.M., Brown, M.F., Hayward, M., Montgomery, J., Leung, L., Yang, X., Soucy, S., Hegen, M., Coe, J., Langille, J., Vajdos, F., Chrencik, J., and Telliez, J.-B. (2017). Design of a Janus kinase 3 (JAK3) specific inhibitor 1-((2S,5R)-5-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-2-methylpiperidin-1-yl)prop-2-en-1-one (PF-06651600) allowing for the interrogation of JAK3 signaling in humans. J. Med. Chem. 60: 1971–1993. doi: 10.1021/acs.jmedchem.6b01694.
- 280Telliez, J.-B., Dowty, M.E., Wang, L., Jussif, J., Lin, T., Li, L., Moy, E., Balbo, P., Li, W., Zhao, Y., Crouse, K., Dickinson, C., Symanowicz, P., Hegen, M., Banker, M.E., Vincent, F., Unwalla, R., Liang, S., Gilbert, A.M., Brown, M.F., Hayward, M., Montgomery, J., Yang, X., Bauman, J., Trujillo, J.I., Casimiro-Garcia, A., Vajdos, F.F., Leung, L., Geoghegan, K.F., Quazi, A., Xuan, D., Jones, L., Hett, E., Wright, K., Clark, J.D., and Thorarensen, A. (2016). Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol. 11: 3442–3451. doi: 10.1021/acschembio.6b00677.
- 281Xu, H., Jesson, M.I., Seneviratne, U.I., Lin, T.H., Sharif, M.N., Xue, L., Nguyen, C., Everley, R.A., Trujillo, J.I., Johnson, D.S., Point, G.R., Thorarensen, A., Kilty, I., and Telliez, J.-B. (2019). PF-06651600, a dual JAK3/TEC family kinase inhibitor. ACS Chem. Biol. 14: 1235–1242. doi: 10.1021/acschembio.9b00188.
- 282Goedken, E.R., Argiriadi, M.A., Banach, D.L., Fiamengo, B.A., Foley, S.E., Frank, K.E., George, J.S., Harris, C.M., Hobson, A.D., Ihle, D.C., Marcotte, D., Merta, P.J., Michalak, M.E., Murdock, S.E., Tomlinson, M.J., and Voss, J.W. (2015). Tricyclic covalent inhibitors selectively target Jak3 through an active-site thiol. J. Biol. Chem. 290: 4573–4589. doi: 10.1074/jbc.M114.595181.
- 283Tan, L., Akahane, K., McNally, R., Reyskens, K.M., Ficarro, S.B., Liu, S., Herter-Sprie, G.S., Koyama, S., Pattison, M.J., Labella, K.M., Johannessen, L., Akbay, E.A., Wong, K.K., Frank, D.A., Marto, J.A., Look, A.T., Arthur, S., Eck, M.J., and Gray, N.S. (2015). Development of selective covalent JAK3 inhibitors. J. Med. Chem. 58: 6589–6606. doi: 10.1021/acs.jmedchem.5b00710.
- 284Kempson, J., Ovalle, D., Guo, J., Wrobleski, S.T., Lin, S., Spergel, S.H., Duan, J.J.-W., Jiang, B., Lu, Z., Das, J., Yang, B.V., Hynes, J. Jr., Wu, H., Tokarski, J., Sack, J.S., Khan, J., Schieven, G., Blatt, Y., Chaudhry, C., Salter-Cid, L.M., Fura, A., Barrish, J.C., Carter, P.H., and Pitts, W.J. (2017). Discovery of highly potent, selective, covalent inhibitors of JAK3. Bioorg. Med. Chem. Lett. 27: 4622–4625. doi: 10.1016/j.bmcl.2017.09.023.
- 285 Pfizer (2018). Pfizer receives breakthrough therapy designation from FDA for PF-06651600, an oral JAK inhibitor, for the treatment of patients with alopecia areata. Pfizer press release. 5 September 2018. https://www.pfizer.com/news/press-release (accessed 11 April 2019).
- 286 Pfizer (2018). Pfizer presents positive Phase 2 data in alopecia areata during late-breaker session at the 27th European Academy of Dermatology and Venereology (EADV) Congress. Pfizer press release. 5 September 2018. https://www.pfizer.com/news/press-release (accessed 11 April 2019).
- 287He, X.-I., Chen, X., Zhang, H., Xie, T., and Ye, X.-Y. Selective TYK2 inhibitors as potential therapeutic agents: a patent review (2015-2018), Expert Opin. Ther. Pat. 2019 (29): 137–149. doi: 10.1080/13543776.2019.1567713.
- 288 Vantage (2018). TYK2 reaches a tipping point. Vantage article. 17 September 2018. https://www.evaluate.com/vantage/articles/analysis/tyk2-reaches-tipping-point (accessed 14 April 2019).
- 289Ryan, E., Morrow, B.J., Hemley, C.F., Pinson, J.-A., Charman, S.A., Chiu, F.C.K., and Foitzik, R.C. (2015). Evidence for the in vitro bioactivation of aminopyrazole derivatives: trapping reactive aminopyrazole intermediates using glutathione ethyl ester in human liver microsomes. Chem. Res. Toxicol. 28: 1747–1752. doi: 10.1021/acs.chemrestox.5b00202.
- 290Banfield, C., Scaramozza, M., Zhang, W., Kieras, E., Page, K.M., Fensome, A., Vincent, M., Dowty, M.E., Goteti, K., Winkle, P.J., and Peeva, E. (2018). The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J. Clin. Pharmacol. 58: 434–437. doi: 10.1002/jcph.1046.
- 291Gerstenberger, B.S., Arnold, E., Banker, M.E., Brown, M., Clark, J., Dermenci, A., Dowty, M., Fensome, A., Hayward, M., Hegen, M., Hollingshead, B., Knafels, J., Lin, D., Lin, T., Owen, D., Saiah, E., Sharma, R., Vajdos, F., Vincent, F., Wright, S., Xing, L., Yang, X., Yang, X., and Zhang, L. (2018). Discovery of the TYK2 selective inhibitor PF-6826647 for the treatment of Crohn's disease, and other autoimmune conditions. 256th Am. Chem. Soc. (ACS) Natl. Meeting (19–23 August, Boston), Abst. MEDI 319.
- 292Papp, K., Gordon, K., Thaçi, D., Morita, A., Gooderham, M., Foley, P., Girgis, I.G., Kundu, S., and Banerjee, S. (2018). Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N. Engl. J. Med. 379: 1313–1321. doi: 10.1056/NEJMoa1806382.
- 293Weinstein, D.S. and Moslin, R.M. (2018). Advances in the discovery and development of selective tyrosine kinase 2 (TYK2) inhibitors. Med. Chem. Rev. 53: 177–200. doi: 10.29200/acsmedchemrev-v53.ch10.
- 294Winthrop, K.L. (2017). The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 13: 234–243. doi: 10.1038/nrrheum.2017.23.
- 295Dendrou, C.A., Cortes, A., Shipman, L., Evans, H.G., Attfield, K.E., Jostins, L., Barber, T., Kaur, G., Kuttikkatte, S.B., Leach, O.A., Desel, C., Faergeman, S.L., Cheeseman, J., Neville, M.J., Sawcer, S., Compston, A., Johnson, A.R., Everett, C., Bell, J.I., Karpe, F., Ultsch, M., Eigenbrot, C., McVean, G., and Fugger, L. (2016). Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 363: 363ra149. doi: 10.1126/scitranslmed.aag1974.
- 296Yao, Y., Higgs, B.W., Morehouse, C., de los Reyes, M., Trigona, W., Brohawn, P., White, W., Zhang, J., White, B., Coyle, A.J., Kiener, P.A., and Jallal, B. (2009). Development of potential pharmacodynamic and diagnostic markers for anti-IFN-α monoclonal antibody trials in systemic lupus erythematosus. Hum. Genomics Proteomics 374312. doi: 10.4061/2009/374312.
- 297Dominguez-Gutierrez, P.R., Ceribelli, A., Satoh, M., Sobel, E.S., Reeves, W.H., and Chan, E.K.L. (2014). Elevated signal transducers and activators of transcription 1 correlates with increased C-C motif chemokine ligand 2 and C-X-C motif chemokine 10 levels in peripheral blood of patients with systemic lupus erythematosus. Arthritis Res. Ther. 16: R20. doi: 10.1186/ar4448.
- 298Tan, F.K., Zhou, X., Mayes, M.D., Gourh, P., Guo, X., Jin, M.L., and Arnett, F.C. Jr. (2006). Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology 45: 694–702. doi: 10.1093/rheumatology/kei244.
- 299Nguyen, C.Q. and Peck, A.B. (2013). The interferon-signature of Sjögren's syndrome: how unique biomarkers can identify underlying inflammatory and immunopathological mechanisms of specific diseases. Front. Immunol. 4: 142. doi: 10.3389/fimmu.2013.00142.
- 300Mahil, S.K., Capon, F., and Barker, J.N. (2016). Update on psoriasis immunopathogenesis and targeted immunotherapy. Semin. Immunopathol. 38: 11–27. doi: 10.1007/s00281-015-0539-8.
- 301Harden, J.L., Krueger, J.G., and Bowcock, A.M. (2015). The immunogenetics of psoriasis: a comprehensive review. J. Autoimmun. 64: 66–73. doi: 10.1016/j.jaut.2015.07.008.
- 302Sbidian, E., Chaimani, A., Garcia-Doval, I., Do, G., Hua, C., Mazaud, C., Droitcourt, C., Hughes, C., Ingram, J.R., Naldi, L., Chosidow, O., and Le Chleach, L. (2017). Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis. Cochrane Database Syst. Rev. 12: CD011535. doi: 10.1002/14651858.CD011535.pub2.
- 303 Janssen (2017). Stelara prescribing information. http://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/STELARA-pi.pdf (accessed 23 April 2019).
- 304 Janssen (2017). Tremfya prescribing information. http://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/TREMFYA-pi.pdf (accessed 23 April 2019).
- 305Papp, K.A., Menter, A., Strober, B., Langley, R.G., Buonanno, M., Wolk, R., Gupta, P., Krishnaswami, S., Tan, H., and Harness, J.A. (2012). Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a Phase 2b randomized placebo-controlled dose-ranging study. Br. J. Dermatol. 167: 668–677. doi: 10.1111/j.1365-2133.2012.11168.x.