Sodium Glucose Cotransporter Inhibitors for the Treatment of Diabetes
Timothy M. Dore
New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
University of Georgia, Athens, GA, USA
Search for more papers by this authorTimothy M. Dore
New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
University of Georgia, Athens, GA, USA
Search for more papers by this authorAbstract
Worldwide, the incidence of diabetes mellitus, a chronic metabolic disease that results in four million deaths from it and associated complications annually, is increasing and its treatment is an enormous public health concern. Type 1 diabetes is treated by insulin, but a variety of drugs are used to treat the more prevalent type 2 diabetes. Inhibitors of sodium glucose cotransporters (SGLTs) are the newest drugs to reach the market to achieve the blood-glucose control needed to treat type 2 diabetes. SGLT1 and 2 carry out renal reabsorption of more than 90% of glucose from urine against a concentration gradient using the electrochemical energy from the cotransport of sodium ions. Blocking SGLTs causes excess glucose to be excreted through the urine, reducing blood sugar. The first known SGLT inhibitor was the O-glycosylated flavonoid natural product phlorizin, which enabled the discovery of SGLTs and served as the initial lead compound for medicinal chemistry. O- and C-Glycosylated flavonoid and dihydrochalcone natural products also inhibit SGLTs. The drugs on the market today, dapagliflozin, canagliflozin, empagliflozin, ertugliflozin, and others, are all aryl C-glycosides. They are selective for SGLT2 over SGLT1 to avoid adverse side effects associated with SGLT1 inhibition. Studies have suggested that SGLT inhibitors have a renal and cardiovascular protective effect that is advantageous, although their use increases the risk of urinary tract and genital infections and ketoacidosis. SGLT inhibitors are in trials as an adjuvant to insulin for the treatment of type 1 diabetes.
References
- 1 International Diabetes Federation (2017). IDF diabetes atlas, 8.
- 2 World Health Organization (2016). Global report on diabetes.
- 3 American Diabetes Association (2004). Diagnosis and classification of diabetes mellitus. Diabetes Care 27 (Suppl 1): S5–S10. doi: 10.2337/diacare.27.2007.S5.
- 4Ahlqvist, E., Storm, P., Dorkhan, M., Vikman, P., Prasad Rashmi, B., Aly Dina, M., Almgren, P., Wessman, Y., Shaat, N., Mulder, H., Lindholm, E., Melander, O., Hansson, O., Lernmark, Ñ., Karajamaki, A., Lahti, K., Martinell, M., Carlsson, A., Spegel, P., Malmqvist, U., Forsen, T., Tuomi, T., Rosengren Anders, H., and Groop, L. (2018). Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6 (5): 361–369. doi: 10.1016/S2213-8587(18)30051-2.
- 5Atkinson, M.A., Eisenbarth, G.S., and Michels, A.W. (2014). Type 1 diabetes. Lancet 383 (9911): 69–82. doi: 10.1016/S0140-6736(13)60591-7.
- 6Chatterjee, S., Khunti, K., and Davies, M.J. (2017). Type 2 diabetes. Lancet 389 (10085): 2239–2251. doi: 10.1016/s0140-6736(17)30058-2.
- 7 American Diabetes Association (2015). Approaches to glycemic treatment. Diabetes Care (38 Suppl): S41–S48. doi: 10.2337/dc15-S010.
- 8Tilley, J., Grimsby, J., Erickson, S., and Berthel, S. (2010). Diabetes drugs: present and emerging. In: Burger's Medicinal Chemistry, Drug Discovery, and Development, 7e (ed. D.J. Abraham and D.P. Rotella). John Wiley & Sons. doi: 10.1002/0471266949.bmc198.
10.1002/0471266949.bmc198 Google Scholar
- 9Kinne, R.K.H. and Castaneda, F. (2011). SGLT inhibitors as new therapeutic tools in the treatment of diabetes. In: Diabetes: Perspectives in Drug Therapy (ed. M. Schwanstecher), 105–126. Springer. doi: 10.1007/793 978-3-642-17214-4_5.
10.1007/978-3-642-17214-4_5 Google Scholar
- 10Hediger, M.A. and Rhoads, D.B. (1994). Molecular physiology of sodium-glucose cotransporters. Physiol. Rev. 74 (4): 993–1026. doi: 10.1152/physrev.1994.74.4.993.
- 11Wright, E.M., Loo, D.D.F., and Hirayama, B.A. (2011). Biology of human sodium glucose transporters. Physiol. Rev. 91 (2): 733–794. doi: 10.1152/physrev.00055.2009.
- 12Raja, M., Puntheeranurak, T., Hinterdorfer, P., and Kinne, R. (2012). SLC5 and SLC2 transporters in epithelia-cellular role and molecular mechanisms. Curr. Top. Membr. 70 (Co-Transport Systems): 29–76. doi: 10.1016/B978-0-12-394316-3.00002-8.
- 13Wright, E.M. (2013). Glucose transport families SLC5 and SLC50. Mol. Asp. Med. 34 (2-3): 183–196. doi: 10.1016/j.mam.2012.11.002.
- 14Chen, L.-Q., Cheung, L.S., Feng, L., Tanner, W., and Frommer, W.B. (2015). Transport of sugars. Annu. Rev. Biochem. 84: 865–894. doi: 10.1146/annurev-biochem-060614-033904.
- 15Poulsen, S.B., Fenton, R.A., and Rieg, T. (2015). Sodium-glucose cotransport. Curr. Opin. Nephrol. Hypertens. 24 (5): 463–469. doi: 10.1097/MNH.0000000000000152.
- 16Deng, D. and Yan, N. (2016). GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci. 25 (3): 546–558. doi: 10.1002/pro.2858.
- 17Ghezzi, C., Loo, D.D.F., and Wright, E.M. (2018). Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 61 (10): 2087–2097. doi: 10.1007/s00125-018-4656-5.
- 18Alexander, S.P.H., Benson, H.E., Faccenda, E., Pawson, A.J., Sharman, J.L., Spedding, M., Peters, J.A., and Harmar, A.J. (2013). The concise guide to PHARMACOLOGY 2013/14: transporters. Br. J. Pharmacol. 170 (8): 1706–1796. doi: 10.1111/bph.12444.
- 19Diez-Sampedro, A., Hirayama, B.A., Osswald, C., Gorboulev, V., Baumgarten, K., Volk, C., Wright, E.M., and Koepsell, H. (2003). A glucose sensor hiding in a family of transporters. Proc. Natl. Acad. Sci. U.S.A. 100 (20): 11753–11758. doi: 10.1073pnas.1733027100.
- 20Hediger, M.A., Coady, M.J., Ikeda, T.S., and Wright, E.M. (1987). Expression cloning and cDNA sequencing of the sodium/glucose co-transporter. Nature 330 (6146): 379–381. doi: 10.1038/330379a0.
- 21Hediger, M.A., Turk, E., and Wright, E.M. (1989). Homology of the human intestinal sodium/glucose and Escherichia coli sodium/proline cotransporters. Proc. Natl. Acad. Sci. U.S.A. 86 (15): 5748–5752. doi: 10.1073/pnas.86.15.5748.
- 22Turk, E., Kerner, C.J., Lostao, M.P., and Wright, E.M. (1996). Membrane topology of the human Na+/glucose cotransporter SGLT1. J. Biol. Chem. 271 (4): 1925–1934. doi: 10.1074/jbc.271.4.1925.
- 23Turk, E. and Wright, E.M. (1997). Membrane topology motifs in the SGLT cotransporter family. J. Membr. Biol. 159 (1): 1–20. doi: 10.1007/s002329900264.
- 24Wells, R.G., Pajor, A.M., Kanai, Y., Turk, E., Wright, E.M., and Hediger, M.A. (1992). Cloning of a human kidney cDNA with similarity to the sodium-glucose cotransporter. Am. J. Physiol. 263 (3, Pt. 2): F459–F465.
- 25Vrhovac, I., Balen Eror, D., Klessen, D., Burger, C., Breljak, D., Kraus, O., Radovic, N., Jadrijevic, S., Aleksic, I., Walles, T., Sauvant, C., Sabolic, I., and Koepsell, H. (2015). Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 467 (9): 1881–1898. doi: 10.1007/s00424-014-1619-7.
- 26Gallo, L.A., Wright, E.M., and Vallon, V. (2015). Probing SGLT2 as a therapeutic target for diabetes. Diabetes Vasc. Dis. Res. 12 (2): 78–89. doi: 10.1177/1479164114561992.
- 27Vallon, V. (2015). The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 66: 255–270. doi: 10.1146/annurev-med-051013-110046.
- 28Hummel, C.S., Lu, C., Loo, D.D.F., Hirayama, B.A., Voss, A.A., and Wright, E.M. (2011). Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2. Am. J. Physiol. 300 (1, Pt. 1): C14–C21. doi: 10.1152/ajpcell.00388.2010.
- 29Faham, S., Watanabe, A., Besserer, G.M., Cascio, D., Specht, A., Hirayama, B.A., Wright, E.M., and Abramson, J. (2008). The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321 (5890): 810–814. doi: 10.1126/science.1160406.
- 30Watanabe, A., Choe, S.-H., Chaptal, V., Rosenberg, J.M., Wright, E.M., Grabe, M., and Abramson, J. (2010). The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 468 (7326): 988–991. doi: 10.1038/nature09580.
- 31Sala-Rabanal, M., Hirayama Bruce, A., Loo Donald, D.F., Chaptal, V., Abramson, J., and Wright Ernest, M. (2012). Bridging the gap between structure and kinetics of human SGLT1. Am. J. Physiol. Cell Physiol. 302 (9): C1293–C1305. doi: 10.1152/ajpcell.00397.2011.
- 32Nakka, S. and Guruprasad, L. (2012). Structural insights into the active site of human sodium dependent glucose co-transporter 2: homology modelling, molecular docking, and 3D-QSAR studies. Aust. J. Chem. 65 (9): 1314–1324. doi: 10.1071/CH12051.
- 33Bisignano, P., Ghezzi, C., Jo, H., Polizzi, N.F., Althoff, T., Kalyanaraman, C., Friemann, R., Jacobson, M.P., Wright, E.M., and Grabe, M. (2018). Inhibitor binding mode and allosteric regulation of Na+-glucose symporters. Nat. Commun. 9 (1): 1–10. doi: 10.1038/s41467-018-07700-1.
- 34Liu, W., Wang, H., and Meng, F. (2015). In silico modeling of aspalathin and nothofagin against SGLT2. J. Theor. Comput. Chem. 14 (8): 1550056. doi: 10.1142/S021963361550056X.
- 35Vigneshwaran, L.V. and Lalitha, K.G. (2016). In silico evaluation of antidiabetic molecules of the seeds of Swietenia mahagoni Jacq. Int. J. Pharm. Phytopharm. Res. 6 (1): 41–49. doi: 10.24896/eijppr.2016617.
- 36Loo, D.D.F., Jiang, X., Gorraitz, E., Hirayama Bruce, A., and Wright Ernest, M. (2013). Functional identification and characterization of sodium binding sites in Na symporters. Proc. Natl. Acad. Sci. U.S.A. 110 (47): E4557–E4566. doi: 10.1073/pnas.1319218110.
- 37Adelman, J.L., Ghezzi, C., Bisignano, P., Loo, D.D.F., Choe, S., Abramson, J., Rosenberg, J.M., Wright, E.M., and Grabe, M. (2016). Stochastic steps in secondary active sugar transport. Proc. Natl. Acad. Sci. U.S.A. 113 (27): E3960–E3966. doi: 10.1073/pnas.1525378113.
- 38Paz, A., Claxton, D.P., Kumar, J.P., Kazmier, K., Bisignano, P., Sharma, S., Nolte, S.A., Liwag, T.M., Nayak, V., Wright, E.M., Grabe, M., McHaourab, H.S., and Abramson, J. (2018). Conformational transitions of the sodium-dependent sugar transporter, vSGLT. Proc. Natl. Acad. Sci. U.S.A. 115 (12): E2742–E2751. doi: 10.1073/pnas.1718451115.
- 39van den Heuvel, L.P., Assink, K., Willemsen, M., and Monnens, L. (2002). Autosomal recessive renal glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum. Genet. 111 (6): 544–547. doi: 10.1007/s00439-002-0820-5.
- 40Calado, J., Soto, K., Clemente, C., Correia, P., and Rueff, J. (2004). Novel compound heterozygous mutations in SLC5A2 are responsible for autosomal recessive renal glucosuria. Hum. Genet. 314–316. doi: 10.1007/s00439-003-1054-x.
- 41Powell David, R., Smith Melinda, G., Doree Deon, D., Harris Angela, L., Xiong Wendy, W., Mseeh, F., Wilson, A., Gopinathan, S., Diaz, D., Zambrowicz, B., Ding, Z.-M., Goodwin Nicole, C., Harrison, B., Strobel, E., Rawlins David, B., and Carson, K. (2015). LP-925219 maximizes urinary glucose excretion in mice by inhibiting both renal SGLT1 and SGLT2. Pharmacol. Res. Perspect. 3 (2): e00129. doi: 10.1002/prp2.129.
- 42Martin, M.C., Turk, E., Lostao, M.P., Kerner, C., and Wright, E.M. (1996). Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption. Nat. Genet. 12 (2): 216–220. doi: 10.1038/ng0296-216.
- 43Turk, E., Zabel, B., Mundlos, S., Dyer, J., and Wright, E.M. (1991). Glucose/galactose malabsorption caused by a defect in the sodium/glucose cotransporter. Nature 350 (6316): 354–356. doi: 10.1038/350354a0.
- 44Choi, C.-I. (2016). Sodium-glucose cotransporter 2 (SGLT2) inhibitors from natural products: discovery of next-generation antihyperglycemic agents. Molecules 21 (9): 1136/1131–1136/1112. doi: 10.3390/molecules21091136.
- 45Blaschek, W. (2017). Natural products as lead compounds for sodium glucose cotransporter (SGLT) inhibitors. Planta Med. 83 (12/13): 985–993. doi: 10.1016/B978-0-12-394316-3.00002-8.
- 46Zhang, Y., Ban, H., Yu, R., Wang, Z., and Zhang, D. (2018). Recent progress of sodium-glucose transporter 2 inhibitors as potential antidiabetic agents. Future Med. Chem. 10 (10): 1261–1276. doi: 10.4155/fmc-2017-0241.
- 47Ehrenkranz, J.R.L., Lewis, N.G., Kahn, C.R., and Roth, J. (2005). Phlorizin: a review. Diabetes Metab. Res. Rev. 21 (1): 31–38.
- 48De Koninck, L. (1835). Ueber das phloridzin (phlorrhizin). Ann. Pharm. 15 (1): 75–77.
10.1002/jlac.18350150105 Google Scholar
- 49Petersen, C. (1835). Analyse des phloridzins. Ann. Pharm. 15 (2): 178. doi: 10.1002/jlac.18350150210.
10.1002/jlac.18350150210 Google Scholar
- 50Gosch, C., Halbwirth, H., and Stich, K. (2010). Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71 (8-9): 838–843. doi: 10.1016/j.phytochem.2010.03.003.
- 51Zemplen, G. and Bognar, R. (1942). Synthese des natürlichen phlorrhizins. Ber. Dtsch. Chem. Ges. 75B: 1040–1043. doi: 10.1002/cber.19420750903.
- 52von Mering, J.F. (1886). Über künstlichen diabetes. Centralbl. Med. Wiss. 22: 531.
- 53Stiles, P.G. and Lusk, G. (1903). On the action of phlorhizin. Am. J. Physiol. 10: 67–79. doi: 10.1152/ajplegacy.1903.10.1.67.
- 54Chasis, H., Jolliffe, N., and Smith, H.W. (1933). The action of phlorizin on the excretion of glucose, xylose, sucrose, creatinine and urea by man. J. Clin. Invest. 12: 1083–1090. doi: 10.1172/jci100559.
- 55Crane, R.K., Miller, D., and Bihler, I. (1961). Restrictions on possible mechanisms of intestinal active transport of sugars. In: Membrane Transport and Metabolism, Proceedings of a Symposium, Prague (August 1960) (ed. A. Kleinzeller and A. Kotyk), 439–449. Czechoslovak Academy of Sciences.
- 56Alvarado, F. and Crane, R.K. (1962). Phlorizin as a competitive inhibitor of the active transport of sugars by hamster small intestine in vitro. Biochim. Biophys. Acta 56: 170–172. doi: 10.1016/0006-3002(62)90543-7.
- 57Alvarado, F. and Crane, R.K. (1964). The mechanism of intestinal absorption of sugars. VII. Phenylglycoside transport and its possible relation to phlorizin inhibition of the active transport of sugars by the small intestine. Biochim. Biophys. Acta. Gen. Subj. 93 (1): 116–135. doi: 10.1016/0304-4165(64)90266-1.
- 58Vick, H., Diedrich, D.F., and Baumann, K. (1973). Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs. Am. J. Phys. 224 (3): 552–557. doi: 10.1152/ajplegacy.1973.224.3.552.
- 59Amsler, K. and Cook, J.S. (1982). Development of sodium ion-dependent hexose transport in a cultured line of porcine kidney cells. Am. J. Phys. 242 (1): C94–C101. doi: 10.1152/ajpcell.1982.242.1.C94.
- 60Lee, W.S., Kanai, Y., Wells, R.G., and Hediger, M.A. (1994). The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. J. Biol. Chem. 269 (16): 12032–12039.
- 61Kanai, Y., Lee, W.-S., You, G., Brown, D., and Hediger, M.A. (1994). The human kidney low affinity Na+/glucose cotransporter SGLT2: delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest. 93 (1): 397–404. doi: 10.1172/jci116972.
- 62Panayotova-Heiermann, M., Loo, D.D.F., and Wright, E.M. (1995). Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. J. Biol. Chem. 270 (45): 27099–27105. doi: 10.1074/jbc.270.45.27099.
- 63Jesus, A.R., Vila-Viçosa, D., Machuqueiro, M., Marques, A.P., Dore, T.M., and Rauter, A.P. (2017). Targeting type 2 diabetes with C-glucosyl dihydrochalcones as selective sodium glucose co-transporter 2 (SGLT2) inhibitors: synthesis and biological evaluation. J. Med. Chem. 60 (2): 568–579. doi: 10.1021/acs.jmedchem.6b01134.
- 64Kasahara, T. and Kasahara, M. (1996). Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae. Biochem. J. 315 (1): 177–182. doi: 10.1042/bj3150177.
- 65Iancu, C.V., Zamoon, J., Woo, S.B., Aleshin, A., and Choe, J.-y. (2013). Crystal structure of a glucose/H+ symporter and its mechanism of action. Proc. Natl. Acad. Sci. U.S.A. 110 (44): 17862–17867.
- 66Oku, A., Ueta, K., Arakawa, K., Ishihara, T., Nawano, M., Kuronuma, Y., Matsumoto, M., Saito, A., Tsujihara, K., Anai, M., Asano, T., Kanai, Y., and Endou, H. (1999). T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 48 (9): 1794–1800.
- 67Katsuno, K., Fujimori, Y., Takemura, Y., Hiratochi, M., Itoh, F., Komatsu, Y., Fujikura, H., and Isaji, M. (2007). Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J. Pharm. Exp. Ther. 320 (1): 323–330.
- 68Fujimori, Y., Katsuno, K., Ojima, K., Nakashima, I., Nakano, S., Ishikawa-Takemura, Y., Kusama, H., and Isaji, M. (2009). Sergliflozin etabonate, a selective SGLT2 inhibitor, improves glycemic control in streptozotocin-induced diabetic rats and zucker fatty rats. Eur. J. Pharmacol. 609 (1-3): 148–154. doi: 10.1016/j.ejphar.2009.03.007.
- 69Hussey, E.K., Dobbins, R.L., Stoltz, R.R., Stockman, N.L., O'Connor-Semmes, R.L., Kapur, A., Murray, S.C., Layko, D., and Nunez, D.J.R. (2010). Multiple-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy overweight and obese subjects: a randomized double-blind study. J. Clin. Pharmacol. 50 (6): 636–646. doi: 10.1177/0091270009352185.
- 70Hussey, E.K., Clark, R.V., Amin, D.M., Kipnes, M.S., O'Connor-Semmes, R.L., O'Driscoll, E.C., Leong, J., Murray, S.C., Dobbins, R.L., Layko, D., and Nunez, D.J.R. (2010). Single-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy volunteers and patients with type 2 diabetes mellitus. J. Clin. Pharmacol. 50 (6): 623–635. doi: 10.1177/0091270009351879.
- 71Fujimori, Y., Katsuno, K., Nakashima, I., Ishikawa-Takemura, Y., Fujikura, H., and Isaji, M. (2008). Remogliflozin etabonate, in a novel category of selective low-affinity sodium glucose cotransporter (SGLT2) inhibitors, exhibits antidiabetic efficacy in rodent models. J. Pharm. Exp. Ther. 327 (1): 268–276. doi: 10.1124/jpet.108.140210.
- 72Kapur, A., O'Connor-Semmes, R., Hussey, E.K., Dobbins, R.L., Tao, W., Hompesch, M., Smith, G.A., Polli, J.W., James, C.D. Jr., Mikoshiba, I., and Nunez, D.J. (2013). First human dose-escalation study with remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2 (SGLT2), in healthy subjects and in subjects with type 2 diabetes mellitus. BMC Pharmacol. Toxicol. 14: 26. doi: 10.1186/2050-6511-14-26.
- 73Dobbins, R.L., O'Connor-Semmes, R., Kapur, A., Kapitza, C., Golor, G., Mikoshiba, I., Tao, W., and Hussey, E.K. (2012). Remogliflozin etabonate, a selective inhibitor of the sodium-dependent transporter 2 reduces serum glucose in type 2 diabetes mellitus patients. Diabetes Obes. Metab. 14 (1): 15–22. doi: 10.1111/j.1463-1326.2011.01462.x.
- 74Meng, W., Ellsworth, B.A., Nirschl, A.A., McCann, P.J., Patel, M., Girotra, R.N., Wu, G., Sher, P.M., Morrison, E.P., Biller, S.A., Zahler, R., Deshpande, P.P., Pullockaran, A., Hagan, D.L., Morgan, N., Taylor, J.R., Obermeier, M.T., Humphreys, W.G., Khanna, A., Discenza, L., Robertson, J.G., Wang, A., Han, S., Wetterau, J.R., Janovitz, E.B., Flint, O.P., Whaley, J.M., and Washburn, W.N. (2008). Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 51 (5): 1145–1149. doi: 10.1021/jm701272q.
- 75Obermeier, M., Yao, M., Khanna, A., Koplowitz, B., Zhu, M., Li, W., Komoroski, B., Kasichayanula, S., Discenza, L., Washburn, W., Meng, W., Ellsworth, B.A., Whaley, J.M., and Humphreys, W.G. (2010). In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans. Drug Metab. Dispos. 38 (3): 405–414. doi: 10.1124/dmd.109.029165.
- 76Han, S., Hagan, D.L., Taylor, J.R., Xin, L., Meng, W., Biller, S.A., Wetterau, J.R., Washburn, W.N., and Whaley, J.M. (2008). Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes 57 (6): 1723–1729. doi: 10.2337/db07-1472.
- 77Komoroski, B., Vachharajani, N., Feng, Y., Li, L., Kornhauser, D., and Pfister, M. (2009). Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin. Pharmacol. Ther. 85 (5): 513–519. doi: 10.1038/clpt.2008.250.
- 78List, J.F., Woo, V., Morales, E., Tang, W., and Fiedorek, F.T. (2009). Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32 (4): 650–657. doi: 10.2337/dc08-1863.
- 79Bailey, C.J., Gross, J.L., Pieters, A., Bastien, A., and List, J.F. (2010). Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375 (9733): 2223–2233. doi: 10.1016/S0140-6736(10)60407-2.
- 80Zhang, L., Feng, Y., List, J., Kasichayanula, S., and Pfister, M. (2010). Dapagliflozin treatment in patients with different stages of type 2 diabetes mellitus: effects on glycaemic control and body weight. Diabetes Obes. Metab. 12 (6): 510–516. doi: 10.1111/j.1463-1326.2010.01216.x.
- 81Sjoestroem, C.D., Johansson, P., Ptaszynska, A., List, J., and Johnsson, E. (2015). Dapagliflozin lowers blood pressure in hypertensive and non-hypertensive patients with type 2 diabetes. Diabetes Vasc. Dis. Res. 12 (5): 352–358. doi: 10.1177/1479164115585298.
- 82Sternlicht, H. and Bakris, G.L. (2019). Blood pressure lowering and sodium-glucose co-transporter 2 inhibitors (SGLT2is): more than osmotic diuresis. Curr. Hypertens. Rep. 21 (2): 1–5. doi: 10.1007/s11906-019-0920-4.
- 83Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., Silverman, M.G., Zelniker, T.A., Kuder, J.F., Murphy, S.A., Bhatt, D.L., Leiter, L.A., McGuire, D.K., Wilding, J.P.H., Ruff, C.T., Nilsson, I.A.M.G., Fredriksson, M., Johansson, P.A., Langkilde, A.M., and Sabatine, M.S. (2019). Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380 (4): 347–357. doi: 10.1056/nejmoa1812389.
- 84Basu, D., Huggins, L.-A., Scerbo, D., Obunike, J., Mullick, A.E., Rothenberg, P.L., Di Prospero, N.A., Eckel, R.H., and Goldberg, I.J. (2018). Mechanism of increased LDL (low-density lipoprotein) and decreased triglycerides with SGLT2 (sodium-glucose cotransporter 2) inhibition. Arterioscler. Thromb. Vasc. Biol. 38 (9): 2207–2216. doi: 10.1161/atvbaha.118.311339.
- 85Fadini, G.P., Bonora, B.M., and Avogaro, A. (2017). SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA adverse event reporting system. Diabetologia 60 (8): 1385–1389. doi: 10.1007/s00125-017-4301-8.
- 86Nomura, S., Sakamaki, S., Hongu, M., Kawanishi, E., Koga, Y., Sakamoto, T., Yamamoto, Y., Ueta, K., Kimata, H., Nakayama, K., and Tsuda-Tsukimoto, M. (2010). Discovery of canagliflozin, a novel C-glucoside with thiophene ring, as sodium-dependent glucose co-transporter 2 inhibitor for the treatment of type 2 diabetes mellitus. J. Med. Chem. 53 (17): 6355–6360. doi: 10.1021/jm100332n.
- 87Polidori, D., Sha, S., Mudaliar, S., Ciaraldi, T.P., Ghosh, A., Vaccaro, N., Farrell, K., Rothenberg, P., and Henry, R.R. (2013). Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care 36 (8): 2154–2161. doi: 10.2337/dc12-2391.
- 88Devineni, D., Curtin, C.R., Polidori, D., Gutierrez, M.J., Murphy, J., Rusch, S., and Rothenberg, P.L. (2013). Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J. Clin. Pharmacol. 53 (6): 601–610, 610. doi: 10.1002/jcph.88.
- 89Cefalu, W.T., Leiter, L.A., Yoon, K.-H., Arias, P., Niskanen, L., Xie, J., Balis, D.A., Canovatchel, W., and Meininger, G. (2013). Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382 (9896): 941–950. doi: 10.1016/S0140-6736(13)60683-2.
- 90Schernthaner, G., Gross, J.L., Rosenstock, J., Guarisco, M., Fu, M., Yee, J., Kawaguchi, M., Canovatchel, W., and Meininger, G. (2013). Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care 36 (9): 2508–2515. doi: 10.2337/dc12-2491.
- 91Lavalle-Gonzalez, F.J., Januszewicz, A., Davidson, J., Tong, C., Qiu, R., Canovatchel, W., and Meininger, G. (2013). Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia 56 (12): 2582–2592. doi: 10.1007/s00125-013-3039-1.
- 92Neal, B., Perkovic, V., Mahaffey, K.W., de Zeeuw, D., Fulcher, G., Erondu, N., Shaw, W., Law, G., Desai, M., and Matthews, D.R. (2017). Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377 (7): 644–657. doi: 10.1056/NEJMoa1611925.
- 93Ryan, P.B., Buse, J.B., Schuemie, M.J., DeFalco, F., Yuan, Z., Stang, P.E., Berlin, J.A., and Rosenthal, N. (2018). Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: a real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes. Metab. 20 (11): 2585–2597. doi: 10.1111/dom.13424.
- 94Luippold, G., Klein, T., Mark, M., and Grempler, R. (2012). Empagliflozin, a novel potent and selective SGLT-2 inhibitor, improves glycaemic control alone and in combination with insulin in streptozotocin-induced diabetic rats, a model of type 1 diabetes mellitus. Diabetes Obes. Metab. 14 (7): 601–607. doi: 10.1111/j.1463-1326.2012.01569.x.
- 95Roden, M., Weng, J., Eilbracht, J., Delafont, B., Kim, G., Woerle, H.J., and Broedl, U.C. (2013). Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 1 (3): 208–219. doi: 10.1016/S2213-8587(13)70084-6.
- 96Häring, H.-U., Merker, L., Seewaldt-Becker, E., Weimer, M., Meinicke, T., Woerle, H.J., and Broedl, U.C. (2013). Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 36 (11): 3396–3404. doi: 10.2337/dc12-2673.
- 97Heise, T., Seewaldt-Becker, E., Macha, S., Hantel, S., Pinnetti, S., Seman, L., and Woerle, H.J. (2013). Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks' treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes. Metab. 15 (7): 613–621. doi: 10.1111/dom.12073.
- 98Zinman, B., Wanner, C., Lachin John, M., Fitchett, D., Bluhmki, E., Hantel, S., Mattheus, M., Devins, T., Johansen Odd, E., Woerle Hans, J., Broedl Uli, C., and Inzucchi Silvio, E. (2015). Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373 (22): 2117–2128. doi: 10.1056/NEJMoa1504720.
- 99Mascitti, V., Maurer, T.S., Robinson, R.P., Bian, J., Boustany-Kari, C.M., Brandt, T., Collman, B.M., Kalgutkar, A.S., Klenotic, M.K., Leininger, M.T., Lowe, A., Maguire, R.J., Masterson, V.M., Miao, Z., Mukaiyama, E., Patel, J.D., Pettersen, J.C., Preville, C., Samas, B., She, L., Sobol, Z., Steppan, C.M., Stevens, B.D., Thuma, B.A., Tugnait, M., Zeng, D., and Zhu, T. (2011). Discovery of a clinical candidate from the structurally unique dioxa-bicyclo[3.2.1]octane class of sodium-dependent glucose cotransporter 2 inhibitors. J. Med. Chem. 54 (8): 2952–2960. doi: 10.1021/jm200049r.
- 100Miao, Z., Nucci, G., Amin, N., Sharma, R., Mascitti, V., Tugnait, M., Vaz, A.D., Callegari, E., and Kalgutkar, A.S. (2013). Pharmacokinetics, metabolism, and excretion of the antidiabetic agent ertugliflozin (PF-04971729) in healthy male subjects. Drug Metab. Dispos. 41 (2): 445–456. doi: 10.1124/dmd.112.049551.
- 101Terra, S.G., Focht, K., Davies, M., Frias, J., Derosa, G., Darekar, A., Golm, G., Johnson, J., Saur, D., Lauring, B., and Dagogo-Jack, S. (2017). Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes Obes. Metab. 19 (5): 721–728. doi: 10.1111/dom.12888.
- 102Dagogo-Jack, S., Liu, J., Eldor, R., Amorin, G., Johnson, J., Hille, D., Liao, Y., Huyck, S., Golm, G., Terra, S.G., Mancuso, J.P., Engel, S.S., and Lauring, B. (2018). Efficacy and safety of the addition of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: the VERTIS SITA2 placebo-controlled randomized study. Diabetes Obes. Metab. 20 (3): 530–540. doi: 10.1111/dom.13116.
- 103Imamura, M., Nakanishi, K., Suzuki, T., Ikegai, K., Shiraki, R., Ogiyama, T., Murakami, T., Kurosaki, E., Noda, A., Kobayashi, Y., Yokota, M., Koide, T., Kosakai, K., Ohkura, Y., Takeuchi, M., Tomiyama, H., and Ohta, M. (2012). Discovery of Ipragliflozin (ASP1941): a novel C-glucoside with benzothiophene structure as a potent and selective sodium glucose co-transporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes mellitus. Bioorg. Med. Chem. 20 (10): 3263–3279. doi: 10.1016/j.bmc.2012.03.051.
- 104Kakinuma, H., Oi, T., Hashimoto-Tsuchiya, Y., Arai, M., Kawakita, Y., Fukasawa, Y., Iida, I., Hagima, N., Takeuchi, H., Chino, Y., Asami, J., Okumura-Kitajima, L., Io, F., Yamamoto, D., Miyata, N., Takahashi, T., Uchida, S., and Yamamoto, K. (2010). (1S)-1,5-Anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol (TS-071) is a potent, selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for type 2 diabetes treatment. J. Med. Chem. 53 (8): 3247–3261. doi: 10.1021/jm901893x.
- 105Ohtake, Y., Sato, T., Kobayashi, T., Nishimoto, M., Taka, N., Takano, K., Yamamoto, K., Ohmori, M., Yamaguchi, M., Takami, K., Yeu, S.-Y., Ahn, K.-H., Matsuoka, H., Morikawa, K., Suzuki, M., Hagita, H., Ozawa, K., Yamaguchi, K., Kato, M., and Ikeda, S. (2012). Discovery of tofogliflozin, a novel C-arylglucoside with an O-spiroketal ring system, as a highly selective sodium glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 55 (17): 7828–7840. doi: 10.1021/jm300884k.
- 106Tahara, A., Kurosaki, E., Yokono, M., Yamajuku, D., Kihara, R., Hayashizaki, Y., Takasu, T., Imamura, M., Qun, L., Tomiyama, H., Kobayashi, Y., Noda, A., Sasamata, M., and Shibasaki, M. (2012). Pharmacological profile of ipragliflozin (ASP1941), a novel selective SGLT2 inhibitor, in vitro and in vivo. Naunyn Schmiedeberg's Arch. Pharmacol. 385 (4): 423–436. doi: 10.1007/s00210-011-0713-z.
- 107Wilding, J.P.H., Ferrannini, E., Fonseca, V.A., Wilpshaar, W., Dhanjal, P., and Houzer, A. (2013). Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes. Metab. 15 (5): 403–409. doi: 10.1111/dom.12038.
- 108Kojima, N., Williams, J.M., Takahashi, T., Miyata, N., and Roman, R.J. (2013). Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J. Pharm. Exp. Ther. 345 (3): 464–472. doi: 10.1124/jpet.113.203869.
- 109Seino, Y., Sasaki, T., Fukatsu, A., Ubukata, M., Sakai, S., and Samukawa, Y. (2014). Efficacy and safety of luseogliflozin as monotherapy in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, phase 3 study. Curr. Med. Res. Opin. 30 (7): 1245–1255. doi: 10.1185/03007995.2014.912983.
- 110Suzuki, M., Honda, K., Fukazawa, M., Ozawa, K., Hagita, H., Kawai, T., Takeda, M., Yata, T., Kawai, M., Fukuzawa, T., Kobayashi, T., Sato, T., Kawabe, Y., and Ikeda, S. (2012). Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice. J. Pharm. Exp. Ther. 341 (3): 692–701. doi: 10.1124/jpet.112.191593.
- 111Tanizawa, Y., Kaku, K., Araki, E., Tobe, K., Terauchi, Y., Utsunomiya, K., Iwamoto, Y., Watada, H., Ohtsuka, W., Watanabe, D., and Suganami, H. (2014). Long-term safety and efficacy of tofogliflozin, a selective inhibitor of sodium-glucose cotransporter 2, as monotherapy or in combination with other oral antidiabetic agents in japanese patients with type 2 diabetes mellitus: multicenter, open-label, randomized controlled trials. Expert. Opin. Pharmacother. 15 (6): 749–766. doi: 10.1517/14656566.2014.887680.
- 112Xu, B., Feng, Y., Cheng, H., Song, Y., Lv, B., Wu, Y., Wang, C., Li, S., Xu, M., Du, J., Peng, K., Dong, J., Zhang, W., Zhang, T., Zhu, L., Ding, H., Sheng, Z., Welihinda, A., Roberge, J.Y., Seed, B., and Chen, Y. (2011). C-Aryl glucosides substituted at the 4'-position as potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Bioorg. Med. Chem. Lett. 21 (15): 4465–4470. doi: 10.1016/j.bmcl.2011.06.032.
- 113Zhang, W., Welihinda, A., Mechanic, J., Ding, H., Zhu, L., Lu, Y., Deng, Z., Sheng, Z., Lv, B., Chen, Y., Roberge, J.Y., Seed, B., and Wang, Y.-X. (2011). EGT1442, a potent and selective SGLT2 inhibitor, attenuates blood glucose and HbA1c levels in db/db mice and prolongs the survival of stroke-prone rats. Pharmacol. Res. 63 (4): 284–293. doi: 10.1016/j.phrs.2011.01.001.
- 114ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02836873 (accessed 14 August 2019).
- 115Allegretti, A.S., Zhang, W., Zhou, W., Thurber, T.K., Rigby, S.P., Bowman-Stroud, C., Trescoli, C., Serusclat, P., Freeman, M.W., and Halvorsen, Y.-D.C. (2019). safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD. Am. J. Kidney Dis. 74 (3): 328–337. doi: 10.1053/j.ajkd.2019.03.417.
- 116Goodwin, N.C., Mabon, R., Harrison, B.A., Shadoan, M.K., Almstead, Z.Y., Xie, Y., Healy, J., Buhring, L.M., DaCosta, C.M., Bardenhagen, J., Mseeh, F., Liu, Q., Nouraldeen, A., Wilson, A.G.E., Kimball, S.D., Powell, D.R., and Rawlins, D.B. (2009). Novel L-Xylose derivatives as selective sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. J. Med. Chem. 52 (20): 6201–6204. doi: 10.1021/jm900951n.
- 117Zambrowicz, B., Freiman, J., Brown, P.M., Frazier, K.S., Turnage, A., Bronner, J., Ruff, D., Shadoan, M., Banks, P., Mseeh, F., Rawlins, D.B., Goodwin, N.C., Mabon, R., Harrison, B.A., Wilson, A., Sands, A., and Powell, D.R. (2012). LX4211, a dual SGLT1/SGLT2 inhibitor, improved glycemic control in patients with type 2 diabetes in a randomized, placebo-controlled trial. Clin. Pharmacol. Ther. 92 (2): 158–169. doi: 10.1038/clpt.2012.58.
- 118Powell, D.R., Smith, M., Greer, J., Harris, A., Zhao, S., Da Costa, C., Mseeh, F., Shadoan, M.K., Sands, A., Zambrowicz, B., and Ding, Z.-M. (2013). LX4211 increases serum glucagon-like peptide 1 and peptide yy levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J. Pharm. Exp. Ther. 345 (2): 250–259. doi: 10.1124/jpet.113.203364.
- 119Tsimihodimos, V., Filippas-Ntekouan, S., and Elisaf, M. (2018). SGLT1 inhibition: pros and cons. Eur. J. Pharmacol. 838: 153–156. doi: 10.1016/j.ejphar.2018.09.019.
- 120Powell, D.R., Da Costa, C.M., Smith, M., Doree, D., Harris, A., Buhring, L., Heydorn, W., Nouraldeen, A., Xiong, W., Yalamanchili, P., Mseeh, F., Wilson, A., Shadoan, M., Zambrowicz, B., and Ding, Z.-M. (2014). Effect of LX4211 on glucose homeostasis and body composition in preclinical models. J. Pharm. Exp. Ther. 350 (2): 232–242. doi: 10.1124/jpet.114.214304.
- 121Zambrowicz, B., Ogbaa, I., Frazier, K., Banks, P., Turnage, A., Freiman, J., Boehm, K.A., Ruff, D., Powell, D., and Sands, A. (2013). Effects of LX4211, a dual sodium-dependent glucose cotransporters 1 and 2 inhibitor, on postprandial glucose, insulin, glucagon-like peptide 1, and peptide tyrosine tyrosine in a dose-timing study in healthy subjects. Clin. Ther. 35 (8): 1162–1173 e1168. doi: 10.1016/j.clinthera.2013.06.011.
- 122Connelly, K.A., Zhang, Y., Desjardins, J.-F., Thai, K., and Gilbert, R.E. (2018). Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction. Cardiovasc. Diabetol. 17: 99. doi: 10.1186/s12933-018-0741-9.
- 123Rosenstock, J., Cejalu, W.T., Lapuerta, P., Zambrowicz, B., Ogbaa, I., Banks, P., and Sands, A. (2015). Greater dose-ranging effects on A1C levels than on glucosuria with LX4211, a dual inhibitor of SGLT1 and SGLT2, in patients type 2 diabetes on metformin monotherapy. Diabetes Care 38 (3): 431–438. doi: 10.2337/dc14-0890.
- 124Zambrowicz, B., Lapuerta, P., Strumph, P., Banks, P., Wilson, A., Ogbaa, I., Sands, A., and Powell, D. (2015). LX4211 therapy reduces postprandial glucose levels in patients with type 2 diabetes mellitus and renal impairment despite low urinary glucose excretion. Clin. Ther. 37 (1): 71–82 e12. doi: 10.1016/j.clinthera.2014.10.026.
- 125Goodwin, N.C., Ding, Z.-M., Harrison, B.A., Strobel, E.D., Harris, A.L., Smith, M., Thompson, A.Y., Xiong, W., Mseeh, F., Bruce, D.J., Diaz, D., Gopinathan, S., Li, L., O'Neill, E., Thiel, M., Wilson, A.G.E., Carson, K.G., Powell, D.R., and Rawlins, D.B. (2017). Discovery of LX2761, a sodium-dependent glucose cotransporter 1 (sglt1) inhibitor restricted to the intestinal lumen, for the treatment of diabetes. J. Med. Chem. 60 (2): 710–721. doi: 10.1021/acs.jmedchem.6b01541.
- 126Powell, D.R., Smith, M.G., Doree, D.D., Harris, A.L., Greer, J., DaCosta, C.M., Thompson, A., Jeter-Jones, S., Xiong, W., Carson, K.G., Goodwin, N.C., Harrison, B.A., Rawlins, D.B., Strobel, E.D., Gopinathan, S., Wilson, A., Mseeh, F., Zambrowicz, B., and Ding, Z.-M. (2017). LX2761, a sodium/glucose cotransporter 1 inhibitor restricted to the intestine, improves glycemic control in mice. J. Pharm. Exp. Ther. 362 (1): 85–97. doi: 10.1124/jpet.117.240820.
- 127Li, Y., Shi, Z., Chen, L., Zheng, S., Li, S., Xu, B., Liu, Z., Liu, J., Deng, C., and Ye, F. (2017). Discovery of a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor (HSK0935) for the treatment of type 2 diabetes. J. Med. Chem. 60 (10): 4173–4184. doi: 10.1021/acs.jmedchem.6b01818.
- 128Yuan, M.-C., Yeh, T.-K., Chen, C.-T., Song, J.-S., Huang, Y.-C., Hsieh, T.-C., Huang, C.-Y., Huang, Y.-L., Wang, M.-H., Wu, S.-H., Yao, C.-H., Chao, Y.-S., and Lee, J.-C. (2018). Identification of an oxime-containing C-glucosylarene as a potential inhibitor of sodium-dependent glucose co-transporter 2. Eur. J. Med. Chem. 143: 611–620. doi: 10.1016/j.ejmech.2017.11.019.
- 129Huang, F., Dai, F., Bi, J., Hao, L., Wang, C., Xu, K., Liu, Y., and Cheng, X. (2019). A novel SGLT2 inhibitor, SU-011, improves glycaemic control in rodents without the risk of hypoglycaemia and weight gain. J. Pharm. Pharmacol. 71 (9): 1393–1399. doi: 10.1111/jphp.13130.
- 130Wang, Y., Lou, Y., Wang, J., Li, D., Chen, H., Zheng, T., Xia, C., Song, X., Dong, T., Li, J., Li, J., and Liu, H. (2019). Design, synthesis and biological evaluation of 6-deoxy O-spiroketal C-arylglucosides as novel renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for the treatment of type 2 diabetes. Eur. J. Med. Chem. 180: 398–416. doi: 10.1016/j.ejmech.2019.07.032.
- 131Kamakura, R., Son, M.J., de Beer, D., Joubert, E., Miura, Y., and Yagasaki, K. (2015). Antidiabetic effect of green rooibos (Aspalathus linearis) extract in cultured cells and type 2 diabetic model KK-Ay mice. Cytotechnology 67 (4): 699–710.
- 132Sasaki, M., Nishida, N., and Shimada, M. (2018). A beneficial role of rooibos in diabetes mellitus: a systematic review and meta-analysis. Molecules 23 (4): 839/831–839/815. doi: 10.3390/molecules23040839.
- 133Muller, C.J.F., Joubert, E., de Beer, D., Sanderson, M., Malherbe, C.J., Fey, S.J., and Louw, J. (2012). Acute assessment of an aspalathin-enriched green rooibos (Aspalathus linearis) extract with hypoglycemic potential. Phytomedicine 20 (1): 32–39. doi: 10.1016/j.phymed.2012.09.010.
- 134Son, M.J., Minakawa, M., Miura, Y., and Yagasaki, K. (2013). Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur. J. Nutr. 52 (6): 1607–1619. doi: 10.1007/s00394-012-0466-6.
- 135Pan, X., Huan, Y., Shen, Z., and Liu, Z. (2016). Synthesis and biological evaluation of novel tetrahydroisoquinoline-C-aryl glucosides as SGLT2 inhibitors for the treatment of type 2 diabetes. Eur. J. Med. Chem. 114: 89–100.
- 136Sato, S., Takeo, J., Aoyama, C., and Kawahara, H. (2007). Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorg. Med. Chem. 15 (10): 3445–3449. doi: 10.1016/j.bmc.2007.03.011.
- 137Yang, J., Yang, X., Wang, C., Lin, Q., Mei, Z., and Zhao, P. (2015). Sodium-glucose-linked transporter 2 inhibitors from Sophora flavescens. Med. Chem. Res. 24 (3): 1265–1271. doi: 10.1007/s00044-014-1200-0.
- 138Arai, H., Hirasawa, Y., Rahman, A., Kusumawati, I., Zaini, N.C., Sato, S., Aoyama, C., Takeo, J., and Morita, H. (2010). Alstiphyllanines E-H, picraline and ajmaline-type alkaloids from Alstonia macrophylla inhibiting sodium glucose cotransporter. Bioorg. Med. Chem. 18 (6): 2152–2158. doi: 10.1016/j.bmc.2010.01.077.
- 139Morita, H., Deguchi, J., Motegi, Y., Sato, S., Aoyama, C., Takeo, J., Shiro, M., and Hirasawa, Y. (2010). Cyclic diarylheptanoids as Na+-glucose cotransporter (SGLT) inhibitors from Acer nikoense. Bioorg. Med. Chem. Lett. 20 (3): 1070–1074. doi: 10.1016/j.bmcl.2009.12.036.
- 140Shimokawa, Y., Akao, Y., Hirasawa, Y., Awang, K., Hadi, A.H.A., Sato, S., Aoyama, C., Takeo, J., Shiro, M., and Morita, H. (2010). Gneyulins A and B, stilbene trimers, and noidesols A and B, dihydroflavonol-C-glucosides, from the bark of Gnetum gnemonoides. J. Nat. Prod. 73 (4): 763–767. doi: 10.1021/np9007987.
- 141Palmer, S.C., Mavridis, D., Nicolucci, A., Johnson, D.W., Tonelli, M., Craig, J.C., Maggo, J., Gray, V., De Berardis, G., Ruospo, M., Natale, P., Saglimbene, V., Badve, S.V., Cho, Y., Nadeau-Fredette, A.-C., Burke, M., Faruque, L., Lloyd, A., Ahmad, N., Liu, Y., Tiv, S., Wiebe, N., and Strippoli, G.F.M. (2016). Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA 316 (3): 313–324. doi: 10.1001/jama.2016.9400.
- 142Storgaard, H., Gluud, L.L., Bennett, C., Groendahl, M.F., Christensen, M.B., Knop, F.K., and Vilsboell, T. (2016). Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS One 11 (11): e0166125/0166121–e0166125/0166123. doi: 10.1371/journal.pone.0166125.
- 143Nystroem, T., Bodegard, J., Nathanson, D., Thuresson, M., Norhammar, A., and Eriksson, J.W. (2017). Novel oral glucose-lowering drugs are associated with lower risk of all-cause mortality, cardiovascular events and severe hypoglycaemia compared with insulin in patients with type 2. Diabetes Obes. Metab. 19 (6): 831–841. doi: 10.1111/dom.12889.
- 144Avogaro, A., Delgado, E., and Lingvay, I. (2018). When metformin is not enough: pros and cons of SGLT2 and DPP-4 inhibitors as a second line therapy. Diabetes Metab. Res. Rev. 34 (4): e2981.
- 145Wang, K., Zhang, Y., Zhao, C., and Jiang, M. (2018). SGLT-2 inhibitors and DPP-4 inhibitors as second-line drugs in patients with type 2 diabetes: a meta-analysis of randomized clinical trials. Horm. Metab. Res. 50 (10): 768–777. doi: 10.1055/a-0733-7919.
- 146Zaccardi, F., Dhalwani, N.N., Dales, J., Mani, H., Khunti, K., Davies, M.J., and Webb, D.R. (2018). Comparison of glucose-lowering agents after dual therapy failure in type 2 diabetes: a systematic review and network meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 20 (4): 985–997. doi: 10.1111/dom.13185.
- 147Cho, Y.K., Kang, Y.M., Lee, S.E., Lee, J., Park, J.Y., Lee, W.J., Kim, Y.J., and Jung, C.H. (2018). Efficacy and safety of combination therapy with SGLT2 and DPP4 inhibitors in the treatment of type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. 44 (5): 393–401. doi: 10.1016/j.diabet.2018.01.011.
- 148Wang, Z., Sun, J., Han, R., Fan, D., Dong, X., Luan, Z., Xiang, R., Zhao, M., and Yang, J. (2018). Efficacy and safety of sodium-glucose cotransporter-2 inhibitors versus dipeptidyl peptidase-4 inhibitors as monotherapy or add-on to metformin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Obes. Metab. 20 (1): 113–120. doi: 10.1111/dom.13047.
- 149Seidu, S., Kunutsor Setor, K., Cos, X., Gillani, S., and Khunti, K. (2018). SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: a systematic review and meta-analysis. Prim. Care Diabetes 12 (3): 265–283. doi: 10.1016/j.pcd.2018.02.001.
- 150Fioretto, P., Zambon, A., Rossato, M., Busetto, L., and Vettor, R. (2016). SGLT2 inhibitors and the diabetic kidney. Diabetes Care 39 (Suppl. 2): S165–S171. doi: 10.2337/dcS15-3006.
- 151Andrianesis, V., Glykofridi, S., and Doupis, J. (2016). The renal effects of SGLT2 inhibitors and a mini-review of the literature. Ther. Adv. Endocrinol. Metab. 7 (5-6): 212–228. doi: 10.1177/2042018816676239.
- 152Tsimihodimos, V., Filippatos, T.D., Filippas-Ntekouan, S., and Elisaf, M. (2017). Renoprotective effects of SGLT2 inhibitors: beyond glucose reabsorption inhibition. Curr. Vasc. Pharmacol. 15 (2): 96–102. doi: 10.2174/1570161114666161007163426.
- 153Tsimihodimos, V., Elisaf, M.S., and Filippatos, T.D. (2018). SGLT2 inhibitors and the kidney: effects and mechanisms. Diabetes Metab. Syndr. 12 (6): 1117–1123. doi: 10.1016/j.dsx.2018.06.003.
- 154 American Diabetes Association (2018). Cardiovascular disease and risk management: standards of medical care in diabetes-2018. Diabetes Care 41 (Suppl. 1): S86–S104. doi: 10.2337/dc18-s009.
- 155Scheen, A.J. (2018). Cardiovascular outcome studies in type 2 diabetes: comparison between SGLT2 inhibitors and GLP-1 receptor agonists. Diabetes Res. Clin. Pract. 143: 88–100. doi: 10.1016/j.diabres.2018.06.008.
- 156Paneni, F. and Luscher, T.F. (2017). Cardiovascular protection in the treatment of type 2 diabetes: a review of clinical trial results across drug classes. Am. J. Med. 130 (6_Suppl): S18–S29. doi: 10.1016/j.amjmed.2017.04.008.
- 157Verma, S. and McMurray, J.J.V. (2018). SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 61 (10): 2108–2117. doi: 10.1007/s00125-018-4670-7.
- 158Sattar, N., McLaren, J., McMurray John, J., Kristensen Soren, L., and Preiss, D. (2016). SGLT2 inhibition and cardiovascular events: why did EMPA-REG outcomes surprise and what were the likely mechanisms? Diabetologia 59 (7): 1333–1339.
- 159Packer, M., Anker Stefan, D., Anker Stefan, D., Butler, J., Filippatos, G., and Zannad, F. (2017). Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2 (9): 1025–1029. doi: 10.1001/jamacardio.2017.2275.
- 160Oliva, R.V. and Bakris, G.L. (2014). Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J. Am. Soc. Hypertens. 8 (5): 330–339. doi: 10.1016/j.jash.2014.02.003.
- 161Briasoulis, A., Al Dhaybi, O., and Bakris George, L. (2018). SGLT2 inhibitors and mechanisms of hypertension. Curr. Cardiol. Rep. 20 (1): 1.
- 162Kawasoe, S., Maruguchi, Y., Kajiya, S., Uenomachi, H., Miyata, M., Kawasoe, M., Kubozono, T., and Ohishi, M. (2017). Mechanism of the blood pressure-lowering effect of sodium-glucose cotransporter 2 inhibitors in obese patients with type 2 diabetes. BMC Pharmacol. Toxicol. 18: 23/21–23/10. doi: 10.1186/s40360-017-0125-x.
- 163Lee, P.C., Ganguly, S., and Goh, S.Y. (2018). Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes. Rev. 19 (12): 1630–1641. doi: 10.1111/obr.12755.
- 164Ribola, F.A., Cancado, F.B., Schoueri, J.H.M., De Toni, V.F., Medeiros, V.H.R., and Feder, D. (2017). Effects of SGLT2 inhibitors on weight loss in patients with type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 21 (1): 199–211.
- 165Ferrannini, E., Baldi, S., Frascerra, S., Astiarraga, B., Heise, T., Bizzotto, R., Mari, A., Pieber, T.R., and Muscelli, E. (2016). Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65 (5): 1190–1195. doi: 10.2337/db15-1356.
- 166Geerlings, S., Fonseca, V., Castro-Diaz, D., List, J., and Parikh, S. (2014). Genital and urinary tract infections in diabetes: impact of pharmacologically-induced glucosuria. Diabetes Res. Clin. Pract. 103 (3): 373–381. doi: 10.1016/j.diabres.2013.12.052.
- 167Zaccardi, F., Webb, D.R., Htike, Z.Z., Youssef, D., Khunti, K., and Davies, M.J. (2016). Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes. Metab. 18 (8): 783–794. doi: 10.1111/dom.12670.
- 168Liu, J., Li, L., Li, S., Jia, P., Deng, K., Chen, W., and Sun, X. (2017). Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci. Rep. 7 (1): 1–11. doi: 10.1038/s41598-017-02733-w.
- 169Gadzhanova, S., Pratt, N., and Roughead, E. (2017). Use of SGLT2 inhibitors for diabetes and risk of infection: analysis using general practice records from the NPS medicinewise medicineinsight program. Diabetes Res. Clin. Pract. 130: 180–185. doi: 10.1016/j.diabres.2017.06.018.
- 170 US Food and Drug Administration. FDA drug safety communication: FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections. https://www.fda.gov/Drugs/DrugSafety/ucm475463.htm (accessed 9 January 2019).
- 171Taylor, S.I., Blau, J.E., and Rother, K.I. (2015). SGLT2 inhibitors may predispose to ketoacidosis. J. Clin. Endocrinol. Metab. 100 (8): 2849–2852. doi: 10.1210/jc.2015-1884.
- 172 European Medicines Agency. EMA confirms recommendations to minimise ketoacidosis risk with SGLT2 inhibitors for diabetes. https://www.ema.europa.eu/documents/referral/sglt2-inhibitors-article-20-procedure-review-started_en.pdf (accessed 9 January 2019).
- 173Rosenstock, J. and Ferrannini, E. (2015). Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 38 (9): 1638–1642. doi: 10.2337/dc15-1380.
- 174Peters, A.L., Buschur, E.O., Buse, J.B., Cohan, P., Diner, J.C., and Hirsch, I.B. (2015). Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care 38 (9): 1687–1693. doi: 10.2337/dc15-0843.
- 175Bonora, B.M., Avogaro, A., and Fadini, G.P. (2018). Sodium-glucose co-transporter-2 inhibitors and diabetic ketoacidosis: an updated review of the literature. Diabetes Obes. Metab. 20 (1): 25–33. doi: 10.1111/dom.13012.
- 176Fadini, G.P. and Avogaro, A. (2017). SGLT2 inhibitors and amputations in the US FDA adverse event reporting system. Lancet Diabetes Endocrinol. 5 (9): 680–681.
- 177Inzucchi, S.E., Iliev, H., Pfarr, E., and Zinman, B. (2018). Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME Trial. Diabetes Care 41 (1): e4–e5.
- 178Yuan, Z., De Falco, F.J., Ryan, P.B., Schuemie, M.J., Stang, P.E., Berlin, J.A., Desai, M., and Rosenthal, N. (2018). Risk of lower extremity amputations in people with type 2 diabetes mellitus treated with sodium-glucose co-transporter-2 inhibitors in the USA: a retrospective cohort study. Diabetes Obes. Metab. 20 (3): 582–589. doi: 10.1111/dom.13115.
- 179Khouri, C., Cracowski, J.-L., and Roustit, M. (2018). SGLT-2 inhibitors and the risk of lower-limb amputation: is this a class effect? Diabetes Obes. Metab. 20 (6): 1531–1534. doi: 10.1111/dom.13255.
- 180Kohan, D.E., Fioretto, P., Tang, W., and List, J.F. (2014). Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 85 (4): 962–971. doi: 10.1038/ki.2013.356.
- 181Bilezikian, J.P., Watts, N.B., Usiskin, K., Polidori, D., Fung, A., Sullivan, D., and Rosenthal, N. (2016). Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. J. Clin. Endocrinol. Metab. 101 (1): 44–51. doi: 10.1210/jc.2015-1860.
- 182Blau, J.E. and Taylor, S.I. (2018). Adverse effects of SGLT2 inhibitors on bone health. Nat. Rev. Nephrol. 14 (8): 473–474. doi: 10.1038/s41581-018-0028-0.
- 183Lueddeke, H.J., Sreenan, S., Aczel, S., Maxeiner, S., Yenigun, M., Kozlovski, P., Gydesen, H., and Dornhorst, A. (2007). PREDICTIVE - a global, prospective observational study to evaluate insulin detemir treatment in types 1 and 2 diabetes: baseline characteristics and predictors of hypoglycaemia from the european cohort. Diabetes Obes. Metab. 9 (3): 428–434. doi: 10.1111/j.1463-1326.2006.00677.x.
- 184Donnelly, L.A., Morris, A.D., Frier, B.M., Ellis, J.D., Donnan, P.T., Durrant, R., Band, M.M., Reekie, G., and Leese, G.P. (2005). Frequency and predictors of hypoglycaemia in type 1 and insulin-treated type 2 diabetes: a population-based study. Diabet. Med. 22 (6): 749–755. doi: 10.1111/j.1464-5491.2005.01501.x.
- 185Conway, B., Miller, R.G., Costacou, T., Fried, L., Kelsey, S., Evans, R.W., and Orchard, T.J. (2010). Temporal patterns in overweight and obesity in type 1 diabetes. Diabet. Med. 27 (4): 398–404. doi: 10.1111/j.1464-5491.2010.02956.x.
- 186Miller, K.M., Foster, N.C., Beck, R.W., DuBose, S.N., Bergenstal, R.M., DiMeglio, L.A., Maahs, D.M., and Tamborlane, W.V. (2015). Current state of type 1 diabetes treatment in the U.S.: updated data from the T1D Exchange clinic registry. Diabetes Care 38 (6): 971–978. doi: 10.2337/dc15-0078.
- 187Hinshaw, L., Schiavon, M., Dadlani, V., Mallad, A., Dalla Man, C., Bharucha, A., Basu, R., Geske, J.R., Carter, R.E., Cobelli, C., Basu, A., and Kudva, Y.C. (2016). Effect of pramlintide on postprandial glucose fluxes in type 1 diabetes. J. Clin. Endocrinol. Metab. 101 (5): 1954–1962. doi: 10.1210/jc.2015-3952.
- 188Herrmann, K., Brunell, S.C., Li, Y., Zhou, M., and Maggs, D.G. (2016). Impact of disease duration on the effects of pramlintide in type 1 diabetes: a post hoc analysis of three clinical trials. Adv. Ther. 33 (5): 848–861. doi: 10.1007/s12325-016-0326-5.
- 189Ahmed-Sarwar, N., Nagel, A.K., Leistman, S., and Heacock, K. (2017). SGLT-2 inhibitors: is there a role in type 1 diabetes mellitus management? Ann. Pharmacother. 51 (9): 791–796. doi: 10.1177/1060028017710481.
- 190Akturk, H.K., Rewers, A., and Garg, S.K. (2018). SGLT inhibition: a possible adjunctive treatment for type 1 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 25 (4): 246–250. doi: 10.1097/med.0000000000000423.
- 191Fattah, H. and Vallon, V. (2018). The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes mellitus. Drugs 78 (7): 717–726. doi: 10.1007/s40265-018-0901-y.
- 192El Masri, D., Ghosh, S., and Jaber, L.A. (2018). Safety and efficacy of sodium-glucose cotransporter 2 (SGLT2) inhibitors in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res. Clin. Pract. 137: 83–92. doi: 10.1016/j.diabres.2018.01.004.
- 193Perkins, B.A., Cherney, D.Z.I., Partridge, H., Soleymanlou, N., Tschirhart, H., Zinman, B., Fagan, N.M., Kaspers, S., Woerle, H.-J., Broedl, U.C., and Johansen, O.-E. (2014). Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care 37 (5): 1480–1483. doi: 10.2337/dc13-2338.
- 194Cherney, D.Z.I., Perkins, B.A., Soleymanlou, N., Maione, M., Lai, V., Lee, A., Fagan, N.M., Woerle, H.J., Johansen, O.E., Broedl, U.C., and von Eynatten, M. (2014). Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129 (5): 587–597. doi: 10.1161/circulationaha.113.005081.
- 195Herring, R. and Russell-Jones, D.L. (2018). SGLT2 inhibitors in type 1 diabetes: is this the future? Diabet. Med. 35 (12): 1642–1643. doi: 10.1111/dme.13791.
- 196Mudaliar, S., Armstrong, D.A., Mavian, A.A., O'Connor-Semmes, R., Mydlow, P.K., Ye, J., Hussey, E.K., Nunez, D.J., Henry, R.R., and Dobbins, R.L. (2012). Remogliflozin etabonate, a selective inhibitor of the sodium-glucose transporter 2, improves serum glucose profiles in type 1 diabetes. Diabetes Care 35 (11): 2198–2200. doi: 10.2337/dc12-0508.
- 197McCrimmon, R.J. and Henry, R.R. (2018). SGLT inhibitor adjunct therapy in type 1 diabetes. Diabetologia 61 (10): 2126–2133. doi: 10.1007/s00125-018-4671-6.
- 198Dandona, P., Mathieu, C., Phillip, M., Hansen, L., Tschope, D., Thoren, F., Xu, J., and Langkilde Anna, M. (2018). Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: The DEPICT-1 52-week study. Diabetes Care 41 (12): 2552–2559. doi: 10.2337/dc18-1087.
- 199Mathieu, C., Dandona, P., Gillard, P., Senior, P., Hasslacher, C., Araki, E., Lind, M., Bain Stephen, C., Jabbour, S., Arya, N., Hansen, L., Thoren, F., and Langkilde Anna, M. (2018). Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 study): 24-week results from a randomized controlled trial. Diabetes Care 41 (9): 1938–1946. doi: 10.2337/dc18-1087.
- 200Garg, S.K., Henry, R.R., Banks, P., Buse, J.B., Davies, M.J., Fulcher, G.R., Pozzilli, P., Gesty-Palmer, D., Lapuerta, P., Simo, R., Danne, T., McGuire, D.K., Kushner, J.A., Peters, A., and Strumph, P. (2017). Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N. Engl. J. Med. 377 (24): 2337–2348. doi: 10.1056/NEJMoa1708337.
- 201Sims, H., Smith, K.H., Bramlage, P., and Minguet, J. (2018). Sotagliflozin: a dual sodium-glucose co-transporter-1 and -2 inhibitor for the management of type 1 and type 2 diabetes mellitus. Diabet. Med. 35 (8): 1037–1048. doi: 10.1111/dme.13645.
- 202Henry, R.R., Thakkar, P., Tong, C., Polidori, D., and Alba, M. (2015). Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care 38 (12): 2258–2265. doi: 10.2337/dc15-1730.
- 203Peters, A.L., Henry, R.R., Thakkar, P., Tong, C., and Alba, M. (2016). Diabetic ketoacidosis with canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in patients with type 1 diabetes. Diabetes Care 39 (4): 532–538. doi: 10.2337/dc15-1995.
- 204Lamos, E.M., Younk, L.M., and Davis, S.N. (2014). Empagliflozin, a sodium glucose co-transporter 2 inhibitor, in the treatment of type 1 diabetes. Expert Opin. Investig. Drugs 23 (6): 875–882. doi: 10.1517/13543784.2014.909407.
- 205Tahara, A., Kurosaki, E., Yokono, M., Yamajuku, D., Kihara, R., Hayashizaki, Y., Takasu, T., Imamura, M., Li, Q., Tomiyama, H., Kobayashi, Y., Noda, A., Sasamata, M., and Shibasaki, M. (2014). Effects of sodium-glucose cotransporter 2 selective inhibitor ipragliflozin on hyperglycaemia, oxidative stress, inflammation and liver injury in streptozotocin-induced type 1 diabetic rats. J. Pharm. Pharmacol. 66 (7): 975–987. doi: 10.1111/jphp.12223.