Bacterial Efflux Pumps and Their Inhibitors
John K. Walker
Saint Louis University School of Medicine, St. Louis, MO, USA
Search for more papers by this authorJerry M. Parks
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Search for more papers by this authorJohn K. Walker
Saint Louis University School of Medicine, St. Louis, MO, USA
Search for more papers by this authorJerry M. Parks
Oak Ridge National Laboratory, Oak Ridge, TN, USA
Search for more papers by this authorAbstract
Bacterial multidrug efflux transporters have distinct molecular features and mechanisms that enable their impressive substrate polyspecificity. These transporters are involved in all physiological processes where nonspecific but active transport across membranes is critical for survival and proliferation. Importantly, efflux pumps contribute to bacterial virulence and pathogenesis, as well as the spread of antibiotic resistance in clinics. Transporters belonging to several protein superfamilies have been selected for polyspecificity by evolution and augmented with accessory proteins that extend and couple transport reactions across the inner and outer membranes of the bacterium. As a result, bacteria are equipped with diverse efflux machines that protect cells from a broad variety of toxic compounds including antibiotics and other small molecule therapeutics. The inhibition of such polyspecific biomolecular machines is a challenging task, which still awaits an efficient solution. Here, we review the molecular mechanisms of efflux pumps from Gram-negative bacteria and recent advances and challenges associated with the discovery of effective inhibitors of these pumps.
References
- 1Lomovskaya, O. et al. (2007). Waltzing transporters and ‘the dance macabre’ between humans and bacteria. Nat. Rev. Drug Discov. 6 (1): 56–65.
- 2Poole, K. (2007). Efflux pumps as antimicrobial resistance mechanisms. Ann. Med. 39 (3): 162–176.
- 3Zgurskaya, H.I. (2002). Molecular analysis of efflux pump-based antibiotic resistance. Int. J. Med. Microbiol. 292 (2): 95–105.
- 4Buckley, A.M. et al. (2006). The AcrAB-TolC efflux system of Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell. Microbiol. 8 (5): 847–856.
- 5Piddock, L.J. (2006). Multidrug-resistance efflux pumps - not just for resistance. Nat. Rev. Microbiol. 4 (8): 629–636.
- 6Yoon, E.J. et al. (2016). Contribution of the ade resistance-nodulation-cell division-type efflux pumps to fitness and pathogenesis of acinetobacter baumannii. MBio 7 (3): e00697-16.
- 7De Kievit, T.R. et al. (2001). Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 45 (6): 1761–1770.
- 8Wolloscheck, D. et al. (2018). Kinetic control of quorum sensing in Pseudomonas aeruginosa by multidrug efflux pumps. ACS Infect. Dis. 4 (2): 185–195.
- 9Becnel Boyd, L. et al. (2009). Relationships among ciprofloxacin, gatifloxacin, levofloxacin, and norfloxacin MICs for fluoroquinolone-resistant Escherichia coli clinical isolates. Antimicrob. Agents Chemother. 53 (1): 229–234.
- 10Beinlich, K.L., Chuanchuen, R., and Schweizer, H.P. (2001). Contribution of multidrug efflux pumps to multiple antibiotic resistance in veterinary clinical isolates of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 198 (2): 129–134.
- 11Chiu, C.H. et al. (2010). Mechanisms of resistance to ciprofloxacin, ampicillin/sulbactam and imipenem in Acinetobacter baumannii clinical isolates in Taiwan. Int. J. Antimicrob. Agents 35 (4): 382–386.
- 12Kohira, N. et al. (2016). In vitro antimicrobial activity of a siderophore cephalosporin, s-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Agents Chemother. 60 (2): 729–734.
- 13Wolter, D.J. et al. (2004). Multidrug resistance associated with mexXY expression in clinical isolates of Pseudomonas aeruginosa from a Texas hospital. Diagn. Microbiol. Infect. Dis. 50 (1): 43–50.
- 14Zheng, J.X. et al. (2018). Overexpression of OqxAB and MacAB efflux pumps contributes to eravacycline resistance and heteroresistance in clinical isolates of Klebsiella pneumoniae. Emerg. Microbes. Infect. 7 (1): 139.
- 15Ye, M. et al. (2019). Molecular analysis of linezolid-resistant clinical isolates of Mycobacterium abscessus. Antimicrob. Agents Chemother. 63 (2): e01842-18.
- 16Machado, D. et al. (2018). Efflux activity differentially modulates the levels of isoniazid and rifampicin resistance among multidrug resistant and monoresistant mycobacterium tuberculosis strains. Antibiotics (Basel) 7 (1): 18.
- 17Hoffmann, C. et al. (2008). Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl. Acad. Sci. U.S.A. 105 (10): 3963–3967.
- 18Louw, G.E. et al. (2009). A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother. 53 (8): 3181–3189.
- 19Lomovskaya, O., Zgurskaya, H.I., and Bostian, K.A. (2008). Bacterial multidrug transporters: molecular and clinical aspects. In: Transporters as Drug Carriers (ed. G.F. Ecker and P. Chiba), 119–157. Wiley and Sons in press.
- 20Lomovskaya, O. et al. (2008). Multidrug efflux pumps: structure, mechanism, and inhibition. In: Bacterial Resistance to Antimicrobials (ed. R.G. Wax et al.), 45–69. New York: CRC Press.
- 21Ren, Q. and Paulsen, I.T. (2007). Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J. Mol. Microbiol. Biotechnol. 12 (3–4): 165–179.
- 22Sanchez, L. et al. (1997). The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J. Bacteriol. 179 (21): 6855–6857.
- 23Manchester, J.I. et al. (2012). Molecular determinants of AcrB-mediated bacterial efflux implications for drug discovery. J. Med. Chem. 55 (6): 2532–2537.
- 24Gonzalez-Villoria, A.M. and Valverde-Garduno, V. (2016). Antibiotic-resistant Acinetobacter baumannii increasing success remains a challenge as a nosocomial pathogen. J. Pathog. 2016: 7318075.
- 25Antunes, L.C., Visca, P., and Towner, K.J. (2014). Acinetobacter baumannii: evolution of a global pathogen. Pathog. Dis. 71 (3): 292–301.
- 26Coyne, S., Courvalin, P., and Perichon, B. (2011). Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob. Agents Chemother. 55 (3): 947–953.
- 27Hou, P.F. et al. (2012). Study of the correlation of imipenem resistance with efflux pumps AdeABC, AdeIJK, AdeDE and AbeM in clinical isolates of Acinetobacter baumannii. Chemotherapy 58 (2): 152–158.
- 28Leus, I.V. et al. (2018). Substrate specificities and efflux efficiencies of RND efflux pumps of Acinetobacter baumannii. J. Bacteriol. 200 (13): e00049–18.
- 29Tommasi, R. et al. (2015). ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug Discov. 14 (8): 529–542.
- 30Rello, J. (2005). Bench-to-bedside review: therapeutic options and issues in the management of ventilator-associated bacterial pneumonia. Crit. Care 9 (3): 259–265.
- 31Neuner, E.A. et al. (2011). Treatment and outcomes in carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Diagn. Microbiol. Infect. Dis. 69 (4): 357–362.
- 32Li, X.Z., Nikaido, H., and Poole, K. (1995). Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39 (9): 1948–1953.
- 33Poole, K. et al. (1993). Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175 (22): 7363–7372.
- 34Pradel, E. and Pages, J.M. (2002). The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob. Agents Chemother. 46 (8): 2640–2643.
- 35Lomovskaya, O. et al. (1999). Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43 (6): 1340–1346.
- 36Markham, P.N. (1999). Inhibition of the emergence of ciprofloxacin resistance in Streptococcus pneumoniae by the multidrug efflux inhibitor reserpine. Antimicrob. Agents Chemother. 43 (4): 988–989.
- 37Lomovskaya, O. and Watkins, W. (2001). Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J. Mol. Microbiol. Biotechnol. 3 (2): 225–236.
- 38Oethinger, M. et al. (2000). Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob. Agents Chemother. 44 (1): 10–13.
- 39Lomovskaya, O. and Bostian, K.A. (2006). Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem. Pharmacol. 71 (7): 910–918.
- 40Brown, D.G. et al. (2014). Trends and exceptions of physical properties on antibacterial activity for gram-positive and gram-negative pathogens. J. Med. Chem. 57 (23): 10144–10161.
- 41Silver, L.L. (2011). Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24 (1): 71–109.
- 42Lewis, K. (1999). Multidrug resistance: versatile drug sensors of bacterial cells. Curr. Biol. 9 (11): R403–R407.
- 43Nelson, R. (2003). Antibiotic development pipeline runs dry new drugs to fight resistant organisms are not being developed, experts say. Lancet 362 (9397): 1726–1727.
- 44Talbot, G.H. et al. (2006). Bad bugs need drugs: an update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of America. Clin. Infect. Dis. 42 (5): 657–668.
- 45Lomovskaya, O. et al. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother. 45 (1): 105–116.
- 46Sen, K., Hellman, J., and Nikaido, H. (1988). Porin channels in intact cells of Escherichia coli are not affected by Donnan potentials across the outer membrane. J. Biol. Chem. 263 (3): 1182–1187.
- 47Westfall, D.A. et al. (2017). Bifurcation kinetics of drug uptake by gram-negative bacteria. PLoS One 12 (9): e0184671.
- 48Aires, J.R. and Nikaido, H. (2005). Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. J. Bacteriol. 187 (6): 1923–1929.
- 49Zgurskaya, H.I. and Nikaido, H. (1999). Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 96 (13): 7190–7195.
- 50Murakami, S. et al. (2002). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419 (6907): 587–593.
- 51Eicher, T. et al. (2012). Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl. Acad. Sci. U.S.A. 109 (15): 5687–5692.
- 52Eicher, T. et al. (2014). Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB. elife 3: e03145.
- 53Du, D. et al. (2014). Structure of the AcrAB-TolC multidrug efflux pump. Nature 509 (7501): 512–515.
- 54Krishnamoorthy, G., Tikhonova, E.B., and Zgurskaya, H.I. (2008). Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. J. Bacteriol. 190 (2): 691–698.
- 55Tikhonova, E.B. et al. (2007). Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB. Mol. Microbiol. 63 (3): 895–910.
- 56Tikhonova, E.B., Yamada, Y., and Zgurskaya, H.I. (2011). Sequential mechanism of assembly of multidrug efflux pump AcrAB-TolC. Chem. Biol. 18 (4): 454–463.
- 57Tikhonova, E.B. and Zgurskaya, H.I. (2004). AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex. J. Biol. Chem. 279 (31): 32116–32124.
- 58Santiago, A.G. et al. (2017). Adaptor protein mediates dynamic pump assembly for bacterial metal efflux. Proc. Natl. Acad. Sci. U.S.A. 114 (26): 6694–6699.
- 59Pos, K.M. (2009). Drug transport mechanism of the AcrB efflux pump. Biochim. Biophys. Acta 1794 (5): 782–793.
- 60Seeger, M.A. et al. (2006). Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313 (5791): 1295–1298.
- 61Murakami, S. et al. (2006). Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443 (7108): 173–179.
- 62Nakashima, R. et al. (2013). Structural basis for the inhibition of bacterial multidrug exporters. Nature 500 (7460): 102–106.
- 63Sjuts, H. et al. (2016). Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc. Natl. Acad. Sci. U.S.A. 113 (13): 3509–3514.
- 64Mikolosko, J. et al. (2006). Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14 (3): 577–587.
- 65Ip, H. et al. (2003). pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system. J. Biol. Chem. 278 (50): 50474–50482.
- 66Wang, B. et al. (2012). Interdomain flexibility and pH-induced conformational changes of AcrA revealed by molecular dynamics simulations. J. Phys. Chem. B 116 (10): 3411–3420.
- 67Abdali, N. et al. (2017). Reviving antibiotics: efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrAB-TolC multidrug efflux pump. ACS Infect. Dis. 3 (1): 89–98.
- 68Verchere, A. et al. (2015). In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa. Nat. Commun. 6: 6890.
- 69Xu, Y. et al. (2011). Funnel-like hexameric assembly of the periplasmic adapter protein in the tripartite multidrug efflux pump in gram-negative bacteria. J. Biol. Chem. 286 (20): 17910–17920.
- 70Wang, Z. et al. (2017). An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. elife 6: e24905.
- 71Ge, Q., Yamada, Y., and Zgurskaya, H. (2009). The c-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC. J. Bacteriol. 191 (13): 4365–4371.
- 72Modali, S.D. and Zgurskaya, H.I. (2011). The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter. Mol. Microbiol. 81 (4): 937–951.
- 73Du, D. et al. (2018). Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol. 16 (9): 523–539.
- 74Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67 (4): 593–656.
- 75Abraham, T. et al. (2007). Neutron diffraction study of Pseudomonas aeruginosa lipopolysaccharide bilayers. J. Phys. Chem. B 111 (10): 2477–2483.
- 76Faunce, C.A. et al. (2005). The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions. J. Chem. Phys. 122 (21): 214727.
- 77Labischinski, H. et al. (1990). Architecture of bacterial lipid A in solution. a neutron small-angle scattering study. Eur. J. Biochem. 190 (2): 359–363.
- 78Tamber, S. and Hancock, R.E. (2004). The outer membranes of pseudomonads. In: Pseudomonas (ed. J.-L. Ramos), 575–601. New York: Kluwer Academic/Plenum Publishers.
10.1007/978-1-4419-9086-0_19 Google Scholar
- 79Knirel, Y.A. et al. (2006). Conserved and variable structural features in the lipopolysaccharide of Pseudomonas aeruginosa. J. Endotoxin Res. 12 (6): 324–336.
- 80Rice, A. and Wereszczynski, J. (2018). Atomistic scale effects of lipopolysaccharide modifications on bacterial outer membrane defenses. Biophys. J. 114 (6): 1389–1399.
- 81Moskowitz, S.M. et al. (2012). PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob. Agents Chemother. 56 (2): 1019–1030.
- 82Murata, T. et al. (2007). PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar typhimurium. J. Bacteriol. 189 (20): 7213–7222.
- 83Acosta-Gutierrez, S. et al. (2018). Getting drugs into gram-negative bacteria: rational rules for permeation through general porins. ACS Infect. Dis. 4 (10): 1487–1498.
- 84Bhamidimarri, S.P. et al. (2019). A multidisciplinary approach toward identification of antibiotic scaffolds for Acinetobacter baumannii. Structure 27 (2): 268–280, e6.
- 85Samanta, S. et al. (2018). Getting drugs through small pores: exploiting the porins pathway in Pseudomonas aeruginosa. ACS Infect. Dis. 4 (10): 1519–1528.
- 86Zgurskaya, H.I., Lopez, C.A., and Gnanakaran, S. (2015). Permeability barrier of gram-negative cell envelopes and approaches to bypass it. ACS Infect. Dis. 1 (11): 512–522.
- 87Angus, B.L. et al. (1982). Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob. Agents Chemother. 21 (2): 299–309.
- 88Chevalier, S. et al. (2017). Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol. Rev. 41 (5): 698–722.
- 89Nikaido, H., Rosenberg, E.Y., and Foulds, J. (1983). Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J. Bacteriol. 153 (1): 232–240.
- 90Krishnamoorthy, G. et al. (2013). On the role of TolC in multidrug efflux: the function and assembly of AcrAB-TolC tolerate significant depletion of intracellular TolC protein. Mol. Microbiol. 87 (5): 982–997.
- 91Malkia, A. et al. (2004). Drug permeation in biomembranes: in vitro and in silico prediction and influence of physicochemical properties. Eur. J. Pharm. Sci. 23 (1): 13–47.
- 92Nestorovich, E.M. et al. (2002). Designed to penetrate: time-resolved interaction of single antibiotic molecules with bacterial pores. Proc. Natl. Acad. Sci. U.S.A. 99 (15): 9789–9794.
- 93Minnock, A. et al. (2000). Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob. Agents Chemother. 44 (3): 522–527.
- 94Stokes, J.M. et al. (2017). Pentamidine sensitizes gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat. Microbiol. 2: 17028.
- 95Bolla, J.M. et al. (2011). Strategies for bypassing the membrane barrier in multidrug resistant gram-negative bacteria. FEBS Lett. 585 (11): 1682–1690.
- 96Vaara, M. (1992). Agents that increase the permeability of the outer-membrane. Microbiol. Rev. 56 (3): 395–411.
- 97Shah, N.R., Hancock, R.E., and Fernandez, R.C. (2014). Bordetella pertussis lipid a glucosamine modification confers resistance to cationic antimicrobial peptides and increases resistance to outer membrane perturbation. Antimicrob. Agents Chemother. 58 (8): 4931–4934.
- 98Arroyo, L.A. et al. (2011). The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob. Agents Chemother. 55 (8): 3743–3751.
- 99Clifton, L.A. et al. (2016). The effect of lipopolysaccharide core oligosaccharide size on the electrostatic binding of antimicrobial proteins to models of the gram negative bacterial outer membrane. Langmuir 32 (14): 3485–3494.
- 100Fu, H.G. et al. (2016). Design, synthesis and biological evaluation of monobactams as antibacterial agents against gram-negative bacteria. Eur. J. Med. Chem. 110: 151–163.
- 101Takrouri, K. et al. (2016). Progress against Escherichia coli with the oxazolidinone class of antibacterials: test case for a general approach to improving whole-cell gram-negative activity. ACS Infect. Dis. 2 (6): 405–426.
- 102Opperman, T.J. et al. (2014). Characterization of a novel pyranopyridine inhibitor of the AcrAB efflux pump of Escherichia coli. Antimicrob. Agents Chemother. 58 (2): 722–733.
- 103Iyer, R. et al. (2017). Whole-cell-based assay to evaluate structure permeation relationships for carbapenem passage through the pseudomonas aeruginosa porin OprD. ACS Infect. Dis. 3 (4): 310–319.
- 104Sulavik, M.C. et al. (2001). Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45 (4): 1126–1136.
- 105Nishino, K. and Yamaguchi, A. (2001). Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183 (20): 5803–5812.
- 106Wang, Z. et al. (2015). Influence of core oligosaccharide of lipopolysaccharide to outer membrane behavior of Escherichia coli. Mar. Drugs 13 (6): 3325–3339.
- 107Krishnamoorthy, G. et al. (2017). Synergy between active efflux and outer membrane diffusion defines rules of antibiotic permeation into gram-negative bacteria. MBio 8 (5): e01172–17.
- 108Krishnamoorthy, G. et al. (2016). Breaking the permeability barrier of Escherichia coli by controlled hyperporination of the outer membrane. Antimicrob. Agents Chemother. 60 (12): 7372–7381.
- 109Haynes, K.M. et al. (2017). Identification and structure-activity relationships of novel compounds that potentiate the activities of antibiotics in Escherichia coli. J. Med. Chem. 60 (14): 6205–6219.
- 110Cooper, S.J. et al. (2018). Molecular properties that define the activities of antibiotics in Escherichia coli and Pseudomonas aeruginosa. ACS Infect. Dis. 4 (8): 1223–1234.
- 111Renau, T.E. et al. (1999). Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J. Med. Chem. 42 (24): 4928–4931.
- 112Renau, T.E. et al. (2001). Addressing the stability of c-capped dipeptide efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 11 (5): 663–667.
- 113Renau, T.E. et al. (2002). Peptidomimetics of efflux pump inhibitors potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 12 (5): 763–766.
- 114Renau, T.E. et al. (2003). Conformationally-restricted analogues of efflux pump inhibitors that potentiate the activity of levofloxacin in Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett. 13 (16): 2755–2758.
- 115Nakayama, K. et al. (2003). MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: discovery and early strategies for lead optimization. Bioorg. Med. Chem. Lett. 13 (23): 4201–4204.
- 116Nakayama, K. et al. (2003). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 2: achieving activity in vivo through the use of alternative scaffolds. Bioorg. Med. Chem. Lett. 13 (23): 4205–4208.
- 117Nakayama, K. et al. (2004). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 3: optimization of potency in the pyridopyrimidine series through the application of a pharmacophore model. Bioorg. Med. Chem. Lett. 14 (2): 475–479.
- 118Nakayama, K. et al. (2004). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 4: addressing the problem of poor stability due to photoisomerization of an acrylic acid moiety. Bioorg. Med. Chem. Lett. 14 (10): 2493–2497.
- 119Yoshida, K. et al. (2006). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: carbon-substituted analogues at the C-2 position. Bioorg. Med. Chem. 14 (6): 1993–2004.
- 120Yoshida, K. et al. (2006). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 6: exploration of aromatic substituents. Bioorg. Med. Chem. 14 (24): 8506–8518.
- 121Yoshida, K.-i. et al. (2007). MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13-9001, a potential preclinical candidate. Bioorg. Med. Chem. 15 (22): 7087–7097.
- 122Handzlik, J. et al. (2011). Amine-alkyl derivatives of hydantoin: new tool to combat resistant bacteria. Eur. J. Med. Chem. 46 (12): 5807–5816.
- 123Handzlik, J. et al. (2013). Search for new tools to combat gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin. Bioorg. Med. Chem. 21 (1): 135–145.
- 124Thorarensen, A., Presley-Bodnar, A.L., Marotti, K.R., Boyle, T.P., Heckaman, C.L., Bohanon, M.J., Tomich, P.K., Zurenko, G.E., Sweeny, M.T., and Yagi, B.H. (2001). 3-Arylpiperidine as potentiators of existing antibacterial agents. Bioorg. Med. Chem. Lett. 11: 1903–1906.
- 125Bohnert, J.A. and Kern, W.V. (2005). Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob. Agents Chemother. 49 (2): 849.
- 126Mahamoud, A. et al. (2011). An alkylaminoquinazoline restores antibiotic activity in gram-negative resistant isolates. Microbiology 157 (Pt 2): 566–571.
- 127Mahamoud, A. et al. (2006). Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr. Drug Targets 7 (7): 843–847.
- 128Wang, Y. et al. (2017). Evaluation of a series of 2-naphthamide derivatives as inhibitors of the drug efflux pump AcrB for the reversal of antimicrobial resistance. Bioorg. Med. Chem. Lett. 27 (4): 733–739.
- 129Wang, Y. et al. (2018). Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. Eur. J. Med. Chem. 143: 699–709.
- 130Dreier, J., Gaucher, B., and Desabre, E. (2016). Efflux-pump inhibitors and therapeutic uses thereof. WIPO, Editor, Basilea Therapeutica.
- 131Gaucher, B. and Dreier, J. (2017). Piperidine, pyrrolidine and 2-xo-1,3-oxazine derivatives as inhibitors of bacterial efflux-pumps for the treatment of microbial infections. WIPO, Editor, Basilea Pharmaceutica.
- 132Coldham, N.G. et al. (2010). A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J. Antimicrob. Chemother. 65 (8): 1655–1663.
- 133Eagle, H., Fleischman, R., and Musselman, A.D. (1950). The effective concentrations of penicillin in vitro and in vivo for Streptococci, Pneumococci, and Treponema pallidum. J. Bacteriol. 59 (5): 625.
- 134Sy, S.K.B., Zhuang, L., and Derendorf, H. (2016). Pharmacokinetics and pharmacodynamics in antibiotic dose optimization. Expert Opin. Drug Metab. Toxicol. 12 (1): 93–114.
- 135Asín-Prieto, E., Rodríguez-Gascón, A., and Isla, A. (2015). Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 21 (5): 319–329.
- 136Yılmaz, Ç. and Özcengiz, G. (2017). Antibiotics: pharmacokinetics, toxicityresistance and multidrug efflux pumps. Biochem. Pharmacol. 133: 43–62.