Enzymes as Drug Targets
Abstract
Many drugs commonly used today to treat infectious diseases, cancers, inflammatory, cardiovascular, and metabolic diseases, are enzyme inhibitors or inactivators. Examples exist for all six classes of enzymes, but inhibitors of hydrolases, transferases, and oxidoreductases predominate. Typically, enzyme inhibitors or inactivators that progress to become drugs exert high potency toward their targets at concentrations of 100 nanomolar or less, and attending these potencies is high selectivity for their targets. Drugs that block the activity of enzymes do so by either covalent reaction with nucleophilic enzymatic residues, or by noncovalent binding. Covalent inactivation by affinity agents and mechanism-based inactivators is generally irreversible, leading to time-dependent loss of enzyme activity that is normally un-recoverable. Drugs that are noncovalent enzyme inhibitors, including bi-substrate analogs, and analogs of enzyme reaction intermediates and transition states, like their covalent counterparts, often display time-dependent inhibition despite the absence of covalent reaction. This pseudoirreversible inhibition is manifest at nanomolar concentrations of inhibitor, and is due to the isomerization of an initial enzyme–inhibitor complex to a tighter binary complex which reverses very slowly, if at all. Natural-product enzyme inhibitors have provided the blueprints for many drugs, including the statins, epoxomicin, and inhibitors of HIV protease. We describe herein the aforementioned types of enzyme inhibitors and inactivators that, through the application of medicinal chemistry have rendered new therapies, including case histories of many of the more important drugs that block the action of enzymes.
References
- 1Robertson, J.G. (2005). Mechanistic basis of enzyme-targeted drugs. Biochemistry 44: 5561–5571.
- 2Ondetti, M.A., Rubin, B., and Cushman, D.W. (1977). Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196: 441–444.
- 3Cushman, D.W., Cheung, H., Sabo, E., and Ondetti, M. (1977). Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16: 5484–5491.
- 4Patchett, A.A., Harris, E., Tristram, E.W., Wyvratt, M.J., Wu, M.T., Taub, D., Peterson, E.R., Ikeler, T.J., ten Broeke, J., Payne, L.G., Ondeyka, D.L., Thorsett, E.D., Greenlee, W.J., Lohr, N.S., Hoffsommer, R.D., Joshua, H., Ruyle, W.V., Rothrock, J.W., Aster, S.D., Maycock, A.L., Robinson, F.M., Hirschmann, R., Sweet, C.S., Ulm, E.H., Gross, D.M., Vassil, T.C., and Stone, C.A. (1980). A new class of angiotensin-converting enzyme inhibitors. Nature 288: 280–283.
- 5Roth, B.D. (2002). The discovery and development of atorvastatin, a potent novel hypolipidemic agent. Prog. Med. Chem. 40: 1–22.
- 6Alberts, A.A., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J. (1980). Mevinolin: a highly potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. U.S.A. 77: 3957–3961.
- 7Debouck, C., Gorniak, J.G., Strickler, J.E., Meek, T.D., Metcalf, B.W., and Rosenberg, M. (1987). Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc. Natl. Acad. Sci. U.S.A. 84: 8903–8906.
- 8Meek, T.D., Dayton, B.D., Metcalf, B.W., Dreyer, G.B., Strickler, J.E., Gorniak, J.G., Rosenberg, M., Moore, M.L., Magaard, V.W., and Debouck, C. (1989). Human immunodeficiency virus protease expressed in Escherichia coli behaves as a dimeric aspartyl protease. Proc. Natl. Acad. Sci. U.S.A. 86: 1841–1845.
- 9Meek, T.D., Lambert, D.M., Dreyer, G.B., Carr, T.J., Tomaszek, T.A., Moore, M.L., Strickler, J.E., Debouck, C., Hyland, L.J., Matthews, T.J., Metcalf, B.W., and Petteway, S.R. (1990). Inhibition of HIV-1 protease in infected T-lymphocytes by synthetic peptide analogues. Nature 343: 90–92.
- 10Meek, T.D. (1992). Inhibitors of HIV-1 protease. J. Enzym. Inhib. 6: 65–98.
- 11Kempf, D.J., Sham, H.L., Marsh, K.C., Flentge, C.A., Betebenner, D., Green, B.E., McDonald, E., Vasavanonda, S., Saldivar, A., Wideburg, N.E., Kati, W.M., Ruiz, L., Zhao, C., Fino, L., Patterson, J., Molla, A., Plattner, J.J., and Norbeck, D.W. (1998). Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem. 41: 602–617.
- 12Roberts, N.A., Martin, J.A., Kinchington, D., Broadhurst, A.V., Craig, J.C., Duncan, I.A., Galpin, S.A., Handa, B.K., Kay, J., Krohn, A., Lambert, R.W., Merret, J.H., Mills, J.S., Parkes, K.E.J., Redshaw, S., Ritchie, A.J., Taylor, D.L., Thomas, G.J., and Machin, P.J. (1990). Rational design of peptide-based HIV proteinase inhibitors. Science 248: 358–362.
- 13Vacca, J.P., Guare, J.P., deSolms, S.J., Sanders, W.M., Giuliani, E.A., Young, S.D., Darke, P.L., Sigal, I.S., Emini, E., Quintero, J., Schleif, W., Anderson, P.S., and Huff, J.R. (1991). L-687,908, a potent hydroxyethylene containing HIV protease inhibitor. J. Med. Chem. 34: 1225–1228.
- 14Cohen, P. (2002). Protein kinases – the major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 1: 309–315.
- 15Silverman, R.B. and Holladay, M.W. (2014). The Organic Chemistry of Drug Design and Drug Action, 3e. Cambridge, MA: Academic Press, pp. 83–93 and pp. 207–265.
- 16Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23: 3–25.
- 17Doak, B.C., Over, B., Giordanetto, F., and Kihlberg, J. (2014). Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol. 21: 1115–1112.
- 18Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., and Kopple, K.D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45: 2615–2623.
- 19Urquhart, L. (2018). Market watch: top drugs and companies by sales in 2017. Nat. Rev. Drug Discov. 17: 232.
- 20Wolfenden, R. (1976). Transition state analog inhibitors and enzyme catalysis. Ann. Rev. Biophys. Bioeng. 5: 271–306.
- 21Schramm, V.L. (2013). Transition states, analogues, and drug development. ACS Chem. Biol. 8: 71–81.
- 22Singh, J., Petter, R.C., Baillie, T.A., and Whitty, A. (2011). The resurgence of covalent drugs. Nat. Rev. Drug Discov. 4: 307–317.
- 23Byers, L.D. (1978). Binding of reactive intermediate analogs to enzymes. J. Theor. Biol. 74: 501–512.
- 24Bull, H.G., Garcia-Clavo, M., Andersson, S., Baginsky, W.F., Chan, H.K., Ellsworth, D.E., Miller, R.R., Stearns, R.A., Bakshi, R.K., Rasmusson, G.H., Tolman, R.L., Myers, R.W., Kozarich, J.W., and Harris, G.S. (1996). Mechanism-based inhibition of human steroid 5α-reductase by finasteride: enzyme-catalyzed formation of NADP−dihydrofinasteride, a potent bisubstrate analog inhibitor. J. Am. Chem. Soc. 118: 2359–2365.
- 25Morrison, J.F. and Walsh, C.T. (1988). The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. 21: 201–299.
- 26Copeland, R.A., Pompliano, D.T., and Meek, T.D. (2006). Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 5: 730–739.
- 27Drahl, C., Cravatt, B.F., and Sorensen, E.J. (2005). Protein-reactive natural products. Angew. Chem. Int. Ed. 44: 5788–5809.
- 28Umezawa, H., Aoyagi, T., Morishima, H., Matsuzaki, M., and Hamada, M. (1970). Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J. Antibiot. 23: 259–266.
- 29Reading, C. and Cole, M. (1977). Clavulanic acid: a beta-lactamase-inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11: 852–857.
- 30Meng, L., Mohan, R., Kwok, B.H.B., Elofsson, M., Sin, N., and Crews, C.W. (1999). Epoxomicin a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. U.S.A. 96: 10403–10408.
- 31Goldstein, J.L. and Brown, M.S. (1977). The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46: 897–930.
- 32Yocum, R.R., Waxman, D.J., Rasmussen, J.R., and Strominger, J.L. (1979). Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases. Proc. Natl. Acad. Sci. U.S.A. 76: 2730–2734.
- 33Digits, J.A. and Hedstrom, L.K. (1999). Species-specific inhibition of inosine 5′-monophosphate dehydrogenase by mycophenolic acid. Biochemistry 38: 15388–15397.
- 34Hanada, K., Tamai, M., Yamagishi, M., Ohmura, S., Sawada, J., Ohmura, S., and Sawada, I. (1978). Isolation and characterization of E–64, a new thiol protease inhibitor. Agric. Biol. Chem. 42: 523–538.
- 35Turley, A. and Fast, W. (2018). The taxonomy of covalent inhibitors. Biochemistry 57: 3326–3337.
- 36Walsh, C.T. (1984). Suicide substrates, mechanism-based enzyme inactivators: recent developments. Annu. Rev. Biochem. 53: 493–535.
- 37Silverman, R.B. (1995). Mechanism-based enzyme inactivation. Methods Enzymol. 249: 240–283.
- 38Wolf, B., Lesnaw, J.A., and Reichmann, M. (1970). A mechanism of the irreversible inactivation of bovine pancreatic ribonuclease by diethylpyrocarbonate. A general reaction of diethylpyrocarbonate with proteins. Eur. J. Biochem. 13: 519–525.
- 39Riordan, J.F. and Vallee, B.L. (1972). Reactions with N-ethylmaleimide and p-mercuribenzoate. Methods Enzymol. 25: 449–456.
- 40Lu, W.P., Kincaid, E., Sun, Y., and Bauer, M.D. (2001). Kinetics of ß-lactam interactions with penicillin-susceptible and -resistant penicillin-binding protein 2x proteins from Streptococcus pneumoniae. Involvement of acylation and deacylation in ß-lactam resistance. J. Biol. Chem. 276: 31494–31501.
- 41Hochgesang, G.P. Jr., Rowlinson, S.W., and Marnett, L.J. (2000). Tyrosine-385 is critical for acetylation of cyclo-oxygenase-2 by aspirin. J. Am. Chem. Soc. 122: 6514–6515.
- 42Cornish-Bowden, A. (1986). Why is uncompetitive inhibition so rare? A possible explanation, with implications for the design of drugs and pesticides. FEBS Lett. 203: 3–6.
- 43Christopherson, R.I. and Duggleby, R.G. (1983). Metabolic resistance: the protection of enzymes against drugs which are tight-binding inhibitors by the accumulation of substrate. Eur. J. Biochem. 134: 331–335.
- 44Uetrecht, J. and Naisbitt, D.J. (2013). Idiosyncratic adverse drug reactions: current concepts. Pharmacol. Rev. 65: 779–808.
- 45Liebler, D.C. and Guengerich, F.P. (2005). Elucidating mechanisms of drug induced toxicity. Nat. Rev. Drug Discov. 2005 (4): 410–420.
- 46Potashman, M.H. and Guggan, M.E. (2009). Covalent modifiers: an orthogonal approach to drug design. J. Med. Chem. 52: 1231–1246.
- 47Jeffrey, D.A. and Bogyo, M. (2003). Chemical proteomics and its application to drug discovery. Curr. Opin. Biotechnol. 14: 87–95.
- 48Bauer, R.A. (2015). Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Drug Discov. Today 20: 1061–1073.
- 49Serafimova, I.A., Miles, B., Pufall, A., Krishnan, S., Duda, K., Cohen, M.S., Maglathlin, R.L., McFarland, J.L., Miller, R.M., Frödin, M., and Taunton, J. (2012). Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8: 471–476.
- 50Krishnan, S., Miller, R.M., Tian, B., Mullins, R.D., Jacobson, M.P., and Taunton, J. (2014). Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J. Am. Chem. Soc. 136: 12624–12630.
- 51Gauthier, J.Y., Chauret, N., Cromlish, W., Desmarais, S., Duong, L.T., Falgueyret, J.-P., Kimmel, D.B., Lamontagne, S., Leger, S., LeRiche, T., Li, C.S., Masse, F., McKay, D.J., Nicoll-Griffith, D.A., Oballa, R.M., Palmer, J.T., Percival, M.D., Riendeau, D., Robichaud, J., Rodan, G.A., Rodan, S.B., Seto, C., Therien, M., Truong, V.-L., Venuti, M.C., Wesolowski, G., Young, R.N., Zamboni, R., and Black, W.C. (2008). The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg. Med. Chem. Lett. 18: 923–928.
- 52Ward, Y.D., Thomson, D.S., Frye, L.L., Cywin, C.L., Morwick, T., Emmanuel, M.J., Zindell, R., McNeil, D., Bekkali, Y., Giradot, M., Hrapchak, M., DeTuri, M., Crane, K., White, D., Pav, S., Wang, Y., Hao, M.-H., Grygon, C.A., Labadia, M.E., Freeman, D.M., Davidson, W., Hopkins, J.L., Brown, M.L., and Spreo, D.M. (2002). Design and synthesis of dipeptide nitriles as reversible and potent Cathepsin S inhibitors. J. Med. Chem. 45: 5471–5482.
- 53Falgueyret, J.P., Renata, M., Oballa, R.M., Okamoto, O., Wesolowski, G., Aubin, Y., Rydzewski, R.M., Prasit, P., Riendeau, D., Rodan, S.B., and Percival, M.D. (2001). Novel, nonpeptidic cyanamides as potent and reversible inhibitors of human cathepsins K and L. J. Med. Chem. 44: 94–104.
- 54Krantz, A. (1994). Peptidyl (acyloxy)methanes as quiescent affinity labels for cysteine proteinases. Methods Enzymol. 244: 656–671.
- 55Wagner, B.M., Smith, R.A., Coles, P.J., Copp, L.J., Ernest, M.J., and Krantz, A. (1994). In vivo inhibition of cathepsin B by peptidyl (acyloxy)methyl ketones. J. Med. Chem. 37: 1833–1834.
- 56Johnson, C.M., Linsky, T.W., Yoon, D.W., Person, M.D., and Fast, W. (2011). Discovery of halopyridines as quiescent affinity labels: inactivation of dimethylarginine dimethylaminohydrolase. J. Am. Chem. Soc. 133: 1553–1562.
- 57Sin, N., Meng, L., Wang, M.Q.W., Wen, J.J., Bornmann, W.G., and Crews, C.M. (1997). The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2. Proc. Natl. Acad. Sci. U.S.A. 94: 6099–6103.
- 58Griffith, E.C., Su, Z., Niwayama, S., Ramsay, C.A., Chang, Y.-H., and Liu, J.O. (1998). Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc. Natl. Acad. Sci. U.S.A. 95: 15183–15188.
- 59Kim, D.H., Lees, W.J., Kempsell, K.E., Lane, W.S., Duncan, K., and Walsh, C.T. (1996). Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35: 4923–4928.
- 60Kim, K.B. and Crews, C.M. (2013). From epoxomicin to carfilzomib: chemistry, biology and medical outcomes. Nat. Prod. Rep. 30: 600–604.
- 61Silverman, R.B. (1988). Mechanism-Based Enzyme Inactivation: Chemistry and Enzymology, 12. Boca Raton, FL: CRC Press.
- 62Cartwright, S.J. and Coulson, A.F.W. (1980). Active site of staphylococcal beta-lactamase. Philos. Trans. R Soc. Lond. B Biol. Sci. 289: 370–373.
- 63Charnas, R.L., Fisher, J., and Knowles, J.R. (1978). Chemical studies on the inactivation of Escherichia coli RTEM beta-lactamase by clavulanic acid. Biochemistry 17: 2185–2189.
- 64Charnas, R.L. and Knowles, J.R. (1981). Inactivation of RTEM beta-lactamase from Escherichia coli by clavulanic acid and 9-deoxyclavulanic acid. Biochemistry 20: 3214–3219.
- 65Brenner, D.G. and Knowles, J.R. (1981). Penicillanic acid sulfone: an unexpected isotope effect in the interaction of 6 alpha- and 6 beta-monodeuterio and of 6,6-dideuterio derivatives with RTEM beta-lactamase from Escherichia coli. Biochemistry 20: 3680–3687.
- 66Silverman, R.B. (2018). Design and mechanism of GABA aminotransferase inactivators. Treatments for epilepsies and addictions. Chem. Rev. 118: 4037–4070.
- 67Lippert, B., Metcalf, B.W., Jung, M.J., and Casera, P. (1977). 4-Amino-hex-5-enoic acid, a selective catalytic inhibitor of 4-aminobutyric-acid aminotransferase in mammalian brain. Eur. J. Biochem. 74: 441–445.
- 68Nanavati, S.M. and Silverman, R.B. (1991). Mechanisms of inactivation of g-aminobutyric acid aminotransferase by the antiepilepsy drug, γ-vinyl GABA (vigabatrin). J. Am. Chem. Soc. 113: 9341–9349.
- 69Furman, P., St. Clair, M., and Spector, T. (1984). Acyclovir triphosphate is a suicide inactivator of the herpes simplex virus DNA polymerase. J. Biol. Chem. 259: 9575–9579.
- 70Elion, G.B. (1983). The biochemistry and mechanism of action of acyclovir. J. Antimicrob. Chemother. 12: 9–17.
- 71Massey, V., Komai, H., Palmer, G., and Elion, G. (1970). On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J. Biol. Chem. 245: 2837–2844.
- 72Nakamura, C.E. and Abeles, R.H. (1985). Mode of interaction of β-hydroxy-β-methylglutaryl coenzyme A reductase with strong binding inhibitors: compactin and related compounds. Biochemistry 24: 1364–1376.
- 73Shapiro, R. and Riordan, J.F. (1984). Inhibition of angiotensin converting enzyme: dependence on chloride. Biochemistry 23: 5234–5240.
- 74Stone, S. and Morrison, J. (1986). Mechanism of inhibition of dihydrofolate reductases from bacterial and vertebrate sources by various classes of folate analogues. Biochim. Biophys. Acta 869: 275–285.
- 75Miles, R.W., Tyler, P.C., Furneaux, R.H., Bagdassarin, C.K., and Schramm, V.L. (1998). One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase. Biochemistry 37: 8615–8621.
- 76Cohen, R.E. and Schachman, H.K. (1986). Kinetics of the interaction of N-(phosphonacetyl)-L-aspartate with the catalytic subunit of aspartate transcarbamoylase. A slow conformational change subsequent to binding. J. Biol. Chem. 261: 2623–2631.
- 77Kline, P.C. and Schramm, V.L. (1993). Purine nucleoside phosphorylase. Catalytic mechanism and transition-state analysis of the arsenolysis reaction. Biochemistry 32: 13212–13219.
- 78Schramm, V.L. (2011). Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes. Annu. Rev. Biochem. 80: 703–732.
- 79Lewandowicz, A., Tyler, P.C., Evans, G., Furneaux, R., and Schramm, V.L. (2003). Achieving the ultimate physiological goal in transition state analogue inhibitors for purine nucleoside phosphorylase. J. Biol. Chem. 278: 31465–31468.
- 80Lewandowicz, A. and Schramm, V.L. (2004). Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases. Biochemistry 43: 1458–1468.
- 81Saen-oon, S., Quaytman-Machleder, S., Schramm, V.L., and Schwartz, S.D. (2009). Atomic detail of chemical transformation at the transition state of an enzymatic reaction. Proc. Natl. Acad. Sci. U.S.A. 105: 16543–16548. doi: 10.1073/pnas.0808413105.
- 82Stoeckler, J.D., Ryden, J.B., Parks, R.E. Jr., Chu, M.-Y., Lim, M.-I., Ren, W.-Y., and Klein, R.S. (1986). Inhibitors of purine nucleoside phosphorylase: effects of 9-deazapurine ribonucleosides and synthesis of 5′-deoxy-5′-iodo-9-deazainosine. Cancer Res. 46: 1774–1778.
- 83Greg, A., Kicska, G.A., Long, L., Horig, H., Fairchild, C., Tyler, P.C., Furneaux, R.H., Schramm, V.L., and Kaufman, H.L. (2001). Immucillin H, a powerful transition-state analog inhibitor of purine nucleoside phosphorylase, selectively inhibits human T lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 86: 4593–4598.
- 84Elliott, R.D., Niwas, S., Riordan, J.M., Montgomery, J.A., and Secrist, J.A. III (1992). Synthesis of 9-(1-deoxy-1-phosphono-β-D-psicofuranosyl)-1,9-dihydro-6H-purin-6-one as a potential transition state analog inhibitor of purine nucleoside phosphorylase. Nucleosides Nucleotides 11 (1): 97–119. doi: 10.1080/07328319208021155.
- 85Radzicka, A. and Wolfenden, R. (1995). Transition state and multisubstrate analog inhibitors. Methods Enzymol. 249: 284–312.
- 86Mort, J.S. and Chan, W.W. (1975). Subunit interactions in aspartate transcarbamylase. Characterization of a complex between the catalytic and the regulatory subunits. J. Biol. Chem. 250: 2653–2660.
- 87Rosenzweig, M., von Hoff, D.D., Cysyk, R.L., and Muggia, F.M. (1979). m-AMSA and PALA: two new agents in cancer chemotherapy. Cancer Chemother. Pharmcol. 3: 135–141.
- 88Koucher, J.A., Alfieri, A.A., Stolfi, R.L., Devitt, M.L., Colofiore, J.R., Nord, L.D., and Martin, D.S. (1993). Potentiation of a three-drug chemotherapy regimen by radiation. Cancer Res. 53: 3518–3523.
- 89Pauling, L. (1946). Chemical achievement and hope for the future. Am. Sci. 36: 51–58.
- 90Wolfenden, R. (1976). Transition state analog inhibitors and enzyme catalysis. Annu. Rev. Biophys. Bioeng. 5: 271–306.
- 91Schramm, V.L. (2005). Enzymatic transition states: thermodynamics, dynamics and analogue design. Arch. Biochem. Biophys. 433: 13–26.
- 92Schramm, V.L. (2013). Transition states, analogues, and drug development. ACS Chem. Biol. 8: 71–81.
- 93Blanchard, J.S. and Cleland, W.W. (1980). Kinetic and chemical mechanisms of yeast formate dehydrogenase. Biochemistry 19: 3543–3550.
- 94Kurimochi, H., Nakata, H., and Ishii, S.-I. (1979). Mechanism of association of a specific-aldehyde inhibitor, leupeptin, with bovine trypsin. J. Biochem. 86: 1403–1410.
- 95Stein, R.L. and Strimpler, A.M. (1987). Slow-binding inhibition of chymotrypsin and cathepsin G by the peptide aldehyde chymostatin. Biochemistry 26: 2611–2615.
- 96Imperiali, B. and Abeles, R.H. (1986). Inhibition of serine proteases by peptidyl fluoromethyl ketones. Biochemistry 25: 3760–3767.
- 97Brady, K., Wei, A., Ringe, D., and Abeles, R.H. (1990). Structure of chymotrypsin-trifluoromethyl ketone inhibitor complexes: comparison of slowly and rapidly equilibrating inhibitors. Biochemistry 29: 7600–7607.
- 98Stein, R.L., Strimpler, A.M., Edwards, P.D., Lewis, J.L., Maufer, R.C., Schwartz, J.A., Stein, M.M., Trainor, D.A., Wildonger, R.A., and Zottola, M.A. (1987). Mechanism of slow-binding inhibition of human leukocyte elastase by trifluoromethyl ketones. Biochemistry 26: 2682–2689.
- 99Brady, K. and Abeles, R.H. (1990). Inhibition of chymotrypsin by peptidyl trifluoromethyl ketones: determinants of slow-binding kinetics. Biochemistry 29: 7608–7617.
- 100Szelke, M., Jones, D.M., Atrash, B., Hallett, A., and Leckie, B. (1983). Novel transition-state analogue inhibitors of renin. In: Peptides: Structure and Function. Proceedings of the 8th American Peptide Symposium (ed. V.J. Hruby and D.H. Rich), 579–582. Rockford, IL: PierceChemical Co.
- 101Foundling, S.I., Cooper, J., Watson, F.E., Cleasby, A., Pearl, L.H., Sibanda, B.L., Hemmings, A., Wood, S.P., Blundell, T.L., Valler, M.J., Norey, C.G., Kay, J., Boger, J., Dunn, B.M., Leckie, B.J., Jones, D.M., Atrash, B., Hallett, A., and Szelke, M. (1987). High resolution X-ray analyses of renin inhibitor-aspartic proteinase complexes. Nature 327: 349–352.
- 102Jacobson, N.E. and Bartlett, P.A. (1981). A phosphonamidite dipeptide analog as an inhibitor of carboxypeptidase A. J. Am. Chem. Soc. 103: 654–657.
- 103Juers, D.H., Kim, J., Matthews, B.A., and Sieburth, S.M. (2005). Structural analysis of silanediols as transition-state-analogue inhibitors of the benchmark metalloprotease thermolysin. Biochemistry 44: 16524–16528.
- 104Kim, J., Hewitt, G., Carroll, P., and Sieburth, S.M. (2005). Silanediol inhibitors of angiotensin-converting enzyme. Synthesis and evaluation of four diastereomers of Phe[Si]Ala dipeptide analogues. J. Org. Chem. 70: 5781–5789.
- 105Chen, C.A., Sieburth, S.M., Glekas, A., Hewitt, G., Trainor, G.L., Erickson-Viitanen, S., Garber, S.S., Cordoba, B., Jeffrey, S., and Klabe, R.M. (2001). Drug design with a new transition state analog of the hydrated carbonyl: silicon-based inhibitors of the HIV protease. Chem. Biol. 8: 1161–1166.
- 106Kettner, C.A. and Shenvi, A.B. (1984). Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G, and chymotrypsin by peptide boronic acids. J. Biol. Chem. 259: 15106–15114.
- 107Bartlett, P.A. and Marlowe, C.K. (1983). Phosphonamidates as transition-state analogue inhibitors of thermolysin. Biochemistry 22: 4618–4624.
- 108Hanson, J.P., Kaplan, A.P., and Bartlett, P.A. (1989). Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors. Biochemistry 28: 6294–6305.
- 109Qureshi, M.H., Smith, D.T., Delost, M.D. and Njardarson, J.T. (2016). Top 200 pharmaceutical products by prescription.
- 110Holdgate, G.A., Meek, T.D., and Grimley, R.L. (2018). Mechanistic enzymology in drug discovery: a fresh perspective. Nat. Rev. Drug Discov. 17: 115–132.
- 111Bar-On, P., Millard, C.B., Harel, M., Dvir, H., Enz, A., Sussman, J.L., and Silman, I. (2002). Kinetic and structural studies on the interaction of cholinesterases with the anti-Alzheimer's drug rivastigmine. Biochemistry 41: 3555–3564.
- 112Lindberg, P., Brandstrom, A., Wallmark, B., Mattsson, H., Rikner, L., and Hoffmann, K.J. (1990). Omeprazole: the first proton pump inhibitor. Med. Res. Rev. 10: 1–54.
- 113Metcalf, B.W., Bey, P., Danzin, C., Jung, M.J., Casara, P., and Vevert, J.P. (1978). Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogs. J. Am. Chem. Soc. 100 (8): 2551–2553.
- 114Reardon, J. and Spector, T. (1989). Herpes simplex virus type 1 DNA polymerase. Mechanism of inhibition by acyclovir triphosphate. J. Biol. Chem. 264: 7405–7411.
- 115Istvan, E.S. and Deisenhofer, J. (2001). Structural mechanism for statin inhibition of HMG-CoA reductase. Science 292: 1160–1164.
- 116Lin, Y.L., Meng, Y., Jiang, W., and Roux, B. (2013). Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc. Natl. Acad. Sci. U.S.A. 110: 1664–1669.
- 117Kim, D., Wang, L., Beconi, M., Eiermann, G.J., Fisher, M.H., He, H., Hickey, G.J., Kowalchick, J.E., Leiting, B., Lyons, K., Marsilio, F., McCann, M.E., Patel, R.A., Petrov, A., Scapin, G., Patel, S.B., Roy, R.S., Wu, J.K., Wyvratt, M.J., Zhang, B.B., Zhu, L., Thornberry, N.A., and Weber, A.E. (2005). (2R)-4-oxo-4-[3-(trifluoromethyl)-5,6-dihydro[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl]-1-(2,4,5-trifluorophenyl)butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 48: 141–145.
- 118Onodera, Y., Okuda, J., Tanaka, M., and Sato, K. (2002). Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV of Enterococcus faecalis. Antimicrob. Agents Chemother. 46: 1800–1804.
- 119Tsiang, M., Jones, G.S., Niedziela-Lajka, A., Kan, E., Landson, E.B., Huang, W., Hung, M., Samuel, D., Novikov, N., Xu, Y., Mitchell, M., Guo, H., Babaoglu, K., Liu, X., Geleziunas, R., and Sakowicz, R. (2012). New class of HIV-1 integrase (IN) inhibitors with a dual mode of action. J. Biol. Chem. 287: 21189–21203.
- 120Brower, E.T., Bacha, U.M., Kawasaki, Y., and Freire, E. (2008). Inhibition of HIV-2 protease by HIV-1 protease inhibitors in clinical use. Chem. Biol. Drug Des. 71: 298–305.
- 121Cordes, E.H. (2018, 2019). Hallelujah Moments. Oxford University Press, 85–164, 197–228.
- 122Ferriera, S.H. (1965). A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararca. Br. J. Pharmacol. Chemother. 24: 163–169.
- 123Ferriera, S.H., Greene, L.J., Alabaster, V.A., Bakhle, Y.S., and Vane, J.R. (1970). Activity of various fractions of bradykinin potentiating factor against angiotensin I converting enzyme. Nature 225: 379–380.
- 124Byers, L.D. and Wolfenden, R. (1973). Binding of the by-product analog benzylsuccinic acid by carboxypeptidase A. Biochemistry 12: 2070–2076.
- 125Vane, J.R. (2001). The history of inhibitors of angiotensin converting enzyme. In: ACE Inhibitors, Milestones in Drug Therapy MDT (ed. P. D'Orléans-Juste and G.E. Plante), 1–10. Basel: Birkhäuser.
10.1007/978-3-0348-7579-0_1 Google Scholar
- 126Bull, H.G., Thornberry, N.A., Cordes, M.H., Patchett, A.A., and Cordes, E.H. (1985). Inhibition of rabbit lung angiotensin-converting enzyme by N alpha-[(S)-1-carboxy-3-phenylpropyl]L-alanyl-L-proline and N alpha-[(S)-1-carboxy-3-phenylpropyl]L-lysyl-L-proline. J. Biol. Chem. 260: 2952–2962.
- 127Qureshi, N., Dugan, R.E., Cleland, W.W., and Porter, J.W. (1976). Kinetic analysis of the individual reductive steps catalyzed by beta-hydroxy-beta-methylglutaryl-coenzyme A reductase obtained from yeast. Biochemistry 15: 4191–4197.
- 128Endo, A., Kuroda, M., and Tsujita, Y. (1976). ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. 29: 1346–1368.
- 129Brown, A.G., Smale, T.C., King, T.J., Hasenkamp, R., and Thompson, R.H. (1976). Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J. Chem. Soc. Perkin. 1 (11): 1165–1170.
- 130Alberts, A.W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J. (1980). Mevinolin: a highly potent competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. U.S.A. 77: 3957–3961.
- 131Hoffman, W.F., Alberts, A.W., Cragoe, E.J. Jr., Dasna, A.A., Evans, B.E., Gilfillan, J.L., Gould, N.P., Huff, J.W., Novello, F.C., Prugh, J.D., Rittle, K.E., Smith, R.L., Stokker, G.E., and Willard, A.K. (1986). 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. 2. Structural modification of 7-(substituted aryl)-3,5-dihydroxy-6-heptenoic acids and their lactone derivatives. J. Med. Chem. 29: 159–169.
- 132Schaeffer, H.J. and Schwender, C.F. (1971). Enzyme inhibitors XXIV: bridging hydrophobic and hydrophilic regions on adenosine deaminase. Pharm. Sci. 60: 1204–1208.
- 133Schaeffer, H.J. and Schwender, C.F. (1974). Enzyme inhibitors. 26. Bridging hydrophobic and hydrophilic regions on adenosine deaminase with some 9-(2-hydroxy-3-alkyl)adenines. J. Med. Chem. 17: 6–8.
- 134Gottlieb, M.S., Schroff, R., Schanker, H.M., Weisman, J.D., Fan, P.T., Wolf, R.A., and Saxon, A. (1981). Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N. Engl. J. Med. 305: 1425–1431.
- 135Ratner, L., Haseltine, W., Patarca, R., Livak, K.J., Starcich, B., Josephs, S.F., Doran, E.R., Rafalski, J.A., Whitehorn, E.A., Boumeister, K., Ivanoff, L., Petteway, S.R. Jr., Pearson, M., Lautenberger, J.A., Papas, T.S., Ghrayeb, J., Chang, N.T., Gallo, R.C., and Wong-Stall, F. (1985). Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313: 277–284.
- 136Barre-Sinoussi, F., Chermann, J.C., Rey, F., Nugeybe, M.T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W., and Montagnier, L. (1983). Isolation of a T-Iymphotropic retrovirus from a patient at risk of acquired immune deficiency syndrome (AIDS). Science 220: 868–870.
- 137Wain-Hobson, S., Sonigo, P., Danos, O., Cole, S., and Alizon, M. (1985). Nucleotide sequence of the AIDS virus, LAV. Cell 40: 9–17.
- 138Hellen, C.U., Krausslich, H.G., and Wimmer, E. (1989). Proteolytic processing of polyproteins in the replication of RNA viruses. Biochemistry 28: 9881–9890.
- 139Krausslich, H.G., Schneider, H., Zybarth, G., Carter, C.A., and Wimmer, E.J. (1988). Processing of in vitro-synthesized gag precursor proteins of human immunodeficiency virus (HIV) type 1 by HIV proteinase generated in Escherichia coli. J. Virol. 62: 4393–4397.
- 140Jacks, T., Power, M.D., Masiarz, F.R., Luciw, P.A., Barr, P.J., and Varmus, H.E. (1988). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331: 280–283.
- 141Li, H., Dou, J., Ding, L., and Spearman, P. (2007). Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells. J. Virol. 81: 12899–12910.
- 142Kohl, N.E., Emini, E.A., Schleif, W.A., Davis, L.J., Heimbach, J.C., Dixon, R.A.F., Scolnick, E.M., and Sigal, I.S. (1988). Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. U.S.A. 85: 4686–4690.
- 143Pearl, L.H. and Taylor, W.R. (1987). A structural model for the retroviral proteases. Nature 329: 351–354.
- 144Navia, M.A., Fitzgerald, P.M., McKeever, B.M., Leu, C.T., Heimbach, J.C., Herber, W.K., Sigal, I.S., Darke, P.L., and Springer, J.P. (1989). Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337: 615–620.
- 145Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana, B.K., Baldwin, E., Weber, I.T., Selk, L.M., Clawson, L., Schneider, J., and Kent, S.B.H. (1989). Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245: 616–621.
- 146Fitzgerald, P.M.D., McKeever, B.M., VanMiddlesworth, J.F., Springer, J.P., Heimbach, J.C., Leu, C.T., Herber, W.K., Dixon, R.A., and Darke, P.L. (1990). Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-A resolution. J. Biol. Chem. 265: 14209–14219.
- 147Seelmeier, S., Schmidt, H., Turk, V., and von der Helm, K. (1988). Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin A. Proc. Natl. Acad. Sci. U.S.A. 85: 6612–6616.
- 148Hyland, L.J., Tomaszek, T.A. Jr., Roberts, G.D., Carr, S.A., Magaard, V.W., Bryan, H.L., Fakhoury, S.A., Moore, M.L., Minnich, M.D., Culp, J.S., DesJarlais, R.L., and Meek, T.D. (1991). Human immunodeficiency virus-1 protease. 1. Initial velocity studies and kinetic characterization of reaction intermediates by 18O isotope exchange. Biochemistry 30: 8441–8453.
- 149Hyland, L.J., Tomaszek, T.A. Jr., and Meek, T.D. (1991). Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism. Biochemistry 30: 8454–8463.
- 150Kipp, D.R., Hirschi, J.S., Wakata, A., Goldstein, H., and Schramm, V.L. (2013). Transition states of native and drug-resistant HIV-1 protease are the same. Proc. Natl. Acad. Sci. U.S.A. 109: 6543–6548.
- 151Adachi, M., Ohhara, T., Kurihara, K., Tamada, T., Honjo, E., Okazaki, N., Shoyama, S.Y., Kimurab, K., Matsumura, H., Sugiyamac, S., Adachi, H., Takano, K., Moric, Y., Hidaka, K., Kimuraf, T., Hayashi, Y., Kiso, Y., and Ryota, K. (2009). Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Proc. Natl. Acad. Sci. U.S.A. 106: 4641–4646.
- 152Smith, R., Brereton, I.M., Chai, R.Y., and Kent, S.B. (1996). Ionization states of the catalytic residues in HIV-1 protease. Nat. Struct. Biol. 3: 946–950.
- 153Chatfield, D.C. and Brooks, B.R. (1995). HIV protease cleaved mechanism elucidated with molecular dynamics simulation. J. Am. Chem. Soc. 117: 5561–5572.
- 154Dreyer, G.B., Metcalf, B.W., Tomaszek, T.A. Jr., Carr, T.J., Chandler, A.C. III, Hyland, L., Fakhoury, S.A., Magaard, V.W., Moore, M.L., Strickler, J.E., Debouck, C., and Meek, T.D. (1989). Inhibition of human immunodeficiency virus 1 protease in vitro: rational design of substrate analogue inhibitors. Proc. Natl. Acad. Sci. U.S.A. 86: 9752–9756.
- 155Dreyer, G.B., Lambert, D.M., Meek, T.D., Carr, T.J., Tomaszek, T.A. Jr., Fernandez, A.V., Bartus, H., Cacciavillani, F., Hassell, A.M., Minnich, M., Petteway, S.R. Jr., Metcalf, B.W., and Lewis, M. (1992). Hydroxyethylene isostere inhibitors of human immunodeficiency virus-1 protease: structure-activity analysis using enzyme kinetics, X-ray crystallography, and infected T-cell assays. Biochemistry 31: 6646–6659.
- 156Huff, J.R. (1991). HIV protease: a novel chemotherapeutic target for AIDS. J. Med. Chem. 34: 2305–2314.
- 157Vacca, J.P., Guare, J.P., deSolms, S.J., Sanders, W.M., Giuliani, E.A., Young, S.D., Darke, P.L., Sigal, I.S., Emini, E., Quintero, J., Schleif, W., Anderson, P.S., and Huff, J.R. (1991). L-687,908, a potent hydroxyethylene-containing HIV protease inhibitor. J. Med. Chem. 34: 1225–1228.
- 158Lyle, T.A., Wiscount, C.M., Guare, J.P., Thompson, W.J., Anderson, P.S., Darke, P.L., Zugay, J.A., Emini, E.A., Schleif, W.A., Dixon, R.A.F., Sigal, I.S., and Huff, J.R. (1991). Benzocycloalkyl amines as novel C-termini for HIV protease inhibitors. J. Med. Chem. 34 (3): 1228–1230.
- 159Vacca, J.P., Dorsey, B.D., Schleif, W.A., Levin, R.B., McDaniel, S.L., Darke, P.L., Zugay, J., Quintaro, J.C., Blahy, O.M., and Roth, E. (1994). L-735,524: an orally bio-available human immunodeficiency virus type 1 protease inhibitor. Proc. Natl. Acad. Sci. U.S.A. 91: 4096–4100.
- 160Kempf, D.J., Sham, H.L., Marsh, K.C., Flentge, C.A., Betebenner, D., Green, B.E., McDonald, E., Vasavanonda, S., Saldivar, A., Wideburg, N.E., Kati, W.M., Ruiz, L., Zhao, C., Fino, L., Patterson, J., Molla, A., Plattner, J.J., and Norbeck, D.W. (1998). Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem. 41: 602–617.
- 161Gschwind, A., Fischer, O.M., and Ullrich, A. (2004). The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat. Rev. Cancer 4: 361–370.
- 162Wang, Z. and Cole, P.T. (2014). Catalytic mechanisms and regulation of protein kinases. Methods Enzymol. 548: 1–21.
- 163Kenyon, G.L. and Garcia, G.A. (1987). Design of kinase inhibitors. Med. Res. Rev. 7: 389–416.
- 164Graves, P.R., Yu, L., Schwarz, J.K., Gales, J., Sausville, E.A., O'Connor, P.M., and Piwnica-Worms, H. (2000). The CHK1 protein kinase and the CDC25C regulatory pathways are targets of the anticancer agent UCN-01. J. Biol. Chem. 275: 5600–5605.
- 165Fry, D.W., Kraker, A.J., McMichael, A., Ambroso, L.A., Nelson, J.A., Leopold, W.R., Connors, R.W., and Bridges, A.J. (1994). A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science 265: 1039–1095.
- 166Morin, M.J. (2000). From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents. Oncogene 19: 6574–6583.
- 167Moyer, J.D., Barbacci, E.G., Iwata, K.K., Arnold, L., Boman, B., Cunningham, A., DiOrio, C., Doty, J., Morin, M.J., Moyer, M.P., Neveu, M., Pollack, V.A., Pustilnik, L.R., Reynolds, M.M., Sloan, D., Theleman, A., and Miller, P. (1997). Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57: 4838–4848.
- 168Schwartz, P.A., Kuzmic, P., Solowiej, J., Bergqvist, S., Bolanos, S., Almaden, C., Nagata, A., Ryan, K., Feng, J., Dalvie, D., Kath, J.C., Xu, M., Wani, R., and Murray, B.W. (2014). Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc. Natl. Acad. Sci. U.S.A. 111: 173–178.
- 169Li, D., Ambrogio, L., Shimamura, T., Kubo, S., Takahashi, M., Chirieac, L.R., Padera, R.F., Shapiro, G.I., Baum, A., Himmelsbach, F., Rettig, W.J., Meyerson, M., Solca, F., Greulich, H., and Wong, K.K. (2008). BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 7: 4702–4711.
- 170Wood, E.R., Truesdale, A.T., McDonald, O.B., Yuan, D., Hassell, A., Dickerson, S.H., Ellis, B., Pennisi, C., Horne, E., Lackey, K., Alligood, K.J., Rusnak, D.W., Gillmer, T.M., and Shewchuk, L. (2004). A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 64: 6652–6659.
- 171Hershko, A. and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.
- 172Kisselev, A.F., van der Linden, W.A., and Overkleeft, H.S. (2012). Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 19: 99–115.
- 173King, R.W., Deshaies, R.J., Peters, J.M., and Kirschner, M.W. (1996). How proteolysis drives the cell cycle. Science 274: 1652–1659.
- 174Dietrich, C., Bartsch, T., Schanz, F., Oesch, F., and Wieser, R.J. (1996). p53-Dependent cell cycle arrest induced by N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal in platelet-derived growth factor-stimulated human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 93: 10815–10819.
- 175Marques, A., Palanimurugan, R., Matias, A.C., Ramos, P.C., and Dohmen, R.J. (2009). Catalytic mechanism and assembly of the proteasome. Chem. Rev. 109: 1509–1536.
- 176Adams, J., Behnke, M., Chen, S., Cruikshank, A.A., Dick, L.R., Grenier, L., Klunder, J.M., Ma, Y.T., Plamondon, L., and Stein, R.L. (1998). Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 8: 333–338.
- 177Teicher, B.A. and Tomaszewski, J.A. (2015). Proteasome inhibitors. Biochem. Pharmacol. 96: 1–9.
- 178Marguet, D., Baggio, L., Kobayashi, T., Bernard, A.M., Pierres, M., Nielsen, P.F., Ribel, U., Watanabe, T., Drucker, D.J., and Wagtmann, N. (2000). Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl. Acad. Sci. U.S.A. 97: 6874–6879.
- 179Conarello, S.L., Li, Z., Ronan, J., Roy, R.S., Zhu, L., Jiang, G., Liu, F., Woods, J., Zycband, E., Moller, D.E., Thornberry, N.A., and Zhang, B.B. (2003). Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. Proc. Natl. Acad. Sci. U.S.A. 100: 6825–6830.
- 180Augeri, D.J., Robl, J.A., Betebenner, D.A., Magnin, D.R., Khanna, A., Robertson, J.G., Wang, A., Simpkins, L.M., Taunk, P., Huang, Q., Han, S.P., Abboa-Offei, B., Cap, M., Xin, L., Tao, L., Tozzo, E., Welzel, G.E., Egan, D.M., Marcinkeviciene, J., Chang, S.Y., Biller, S.A., Kirby, M.S., Parker, R.A., and Hamann, L.G. (2005). Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 48: 5025–5037.
- 181Miller, B.G. and Wolfenden, R. (2002). Catalytic proficiency: the unusual case of OMP decarboxylase. Annu. Rev. Biochem. 71: 847–885.
- 182Stein, R.L. (1993). Mechanism of enzymatic and nonenzymatic prolyl cis-trans isomerization. Adv. Protein Chem. 44: 1–24.
- 183Levine, H.L., Brody, R.S., and Westheimer, F.H. (1980). Inhibition of orotidine-5′-phosphate decarboxylase by 1-(5′-phospho-beta-d-ribofuranosyl)barbituric acid, 6-azauridine 5′-phosphate, and uridine 5′-phosphate. Biochemistry 19: 4993–4999.