Intermetallic Compounds in Catalysis
M. Armbrüster
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany
Search for more papers by this authorM. Armbrüster
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany
Search for more papers by this authorAbstract
In catalysis, intermetallic compounds play an important role as precursors for skeletal catalysts or can be formed under reaction conditions and influence the catalytic properties significantly. They can also be applied as catalysts in an unsupported state in a large number of reactions. Intermetallic compounds are structurally more complex than elemental metals or substitutional alloys and thus offer a broad range of different crystal and electronic structures. In addition, the often partly covalent bonding in the compounds increases their stability under reaction conditions and enables an innovative realization of geometric and electronic concepts. This article summarizes the work in the field, aiming at presenting the different ideas and not at giving a full literature review. Special emphasis is put on the knowledge-based development, which becomes feasible using unsupported and in situ stable intermetallic compounds as catalysts.
Bibliography
- 1 G. Centi, in B. Cornils, W. A. Herrmann, R. Schlögl, and C.-H. Wong, eds., Catalysis from A to Z, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Germany, 2003, pp 490–491.
- 2 J. H. Sinfelt, in I. T. Horvath, ed., Encyclopedia of Catalysis. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2003, pp 620–665.
- 3 V. Ponec and G. C. Bond, Stud. Surf. Sci. Catal. 95, 299–391 (1995).
- 4 N. F. Mott, Adv. Phys. 13, 325–422 (1964).
- 5 J. H. Sinfelt, Adv. Chem. Eng. 5, 37–74 (1964).
- 6 K. Kovnir, M. Armbrüster, D. Teschner, T. V. Venkov, F. C. Jentoft, Knop-A. Gericke, Y. Grin, and R. Schlögl, Sci. Technol. Adv. Mater. 8, 420–427 (2007).
- 7 H. Kohlmann, in Encyclopedia of Physical Science and Technology, Academic Press, San Diego, Calif., 2002, pp 441–458.
- 8 M. Armbrüster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin, and R. Schlögl, J. Am. Chem. Soc. 132, 14745–14747 (2010).
- 9 A. Ota, M. Armbrüster, M. Behrens, D. Rosenthal, M. Friedrich, I. Kasatkin, F. Girgsdies, W. Zhang, R. Wagner, and R. Schlögl, J. Phys. Chem. C 115, 1368–1374 (2011).
- 10 M. El-Boragy, R. Szepan, and K. Schubert, J. Less-Common Met. 29, 133–140 (1972).
- 11 E. H. Kisi and J. D. Browne, Acta Crystallogr., Sect. B: Struct. Sci. 47, 835–843 (1991).
- 12 Y. Grin, F. R. Wagner, M. Armbrüster, M. Kohout, A. Leithe-Jasper, U. Schwarz, U. Wedig, and H. G. von Schnering, J. Sol. State Chem. 179, 1707–1719 (2006).
- 13 C. Macchioni, J. A. Rayne, S. Sen, and C. L. Bauer, Thin Solid Films 81, 71–78 (1981).
- 14 W. M. H. Sachtler, Catal. Rev. Sci. Eng. 14, 193–210 (1976).
- 15 W. Steurer, Z. Kristallogr. 219, 391–446 (2004).
- 16 A. F. Al Alam, S. F. Matar, M. Nakhl, and N. Quaini, Solid State Sci. 11, 1098–1106 (2009).
- 17 G. Rienäcker, Z. Elektrochem. 40, 487–488 (1934).
- 18 G. Rienäcker, Z. Anorg. Allg. Chem. 227, 353–375 (1936).
- 19 G. Rienäcker, G. Wessing, and G. Trautmann, Z. Anorg. Allg. Chem. 236, 252–262 (1938).
- 20 U.S. Pat. 1563587 (1925), M. Raney.
- 21 US Pat. 1628190 (1927), M. Raney.
- 22 R. Sassoulas and Y. Trambouze, Bull. Soc. Chim. France 985–988 (1964).
- 23 B. Kammermeier in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Germany, 2008.
- 24 Y. Xu, S. Kameoka, K. Kishida, M. Demura, A. P. Tsai, and T. Hirano, Intermetallics 13, 151–155 (2005).
- 25 C. P. Nash, F. M. Boyden, and L. D. Whittig, J. Am. Chem. Soc. 82, 6203–6204 (1960).
- 26 H. Imamura, Y. Kato, and S. Tsuchiya, Z. Phys. Chem., Neue Folge 141, 129–132 (1984).
- 27 J. B. Friedrich, M. S. Wainwright, and D. J. Young, J. Catal. 80, 1–13 (1983).
- 28 M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, J. Catal. 115, 301–309 (1989).
- 29 S. Kameoka and A. P. Tsai, Catal. Lett. 121, 337–341 (2008).
- 30 M. Turner, V. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. Tikhov, B. F. G. Johnson, and R. M. Lambert, Nature 454, 981–983 (2008).
- 31 R. Richards, G. Geibel, W. Hofstadt, and H. Bönnemann, Appl. Organomet. Chem. 16, 377–383 (2002).
- 32 O. K. Davtyan and R. I. Makordei, Soviet Electrochem. 7, 1816–1816 (1971).
- 33 U.S. Pat. 4374712 (1983), T. J. Gray (Olin Corporation, New Haven, Conn.).
- 34 S. Kameoka, T. Tanabe, and A. P. Tsai, Catal. Today 93–95, 23–26 (2004).
- 35 A. P. Tsai and T. Yoshimura, Appl. Catal. A 214, 237–241 (2001).
- 36 T. Tanabe, S. Kameoka, and A. P. Tsai, Catal. Today 111, 153–157 (2006).
- 37 M. Yoshimura and A. P. Tsai, J. Alloys Compd. 342, 451–454 (2002).
- 38 M. Behrens, M. Armbrüster in L. Guczi, ed., Catalysis for Alternative Energy Generation, Springer, Berlin, Heidelberg, New York.
- 39 A. Borodzinski and A. Janko, React. Kinet. Catal. Lett. 7, 163–170 (1977).
- 40 V. T. Coon, T. Takeshita, W. E. Wallace, and R. S. Craig, J. Phys. Chem. 80, 1878–1879 (1976).
- 41 W. E. Wallace, A. Elattar, T. Takeshita, V. T. Coon, C. A. Bechman, and R. S. Craig, in J. Mulak, W. Suski, and R. Troc, eds., 2nd International Conference on the Electronic Structure of the Actinides, Zaklad Narodowy Imienia Ossolinskick Wydawnictwo Polskiej Akademii NAUK, 1977, Wroclaw, Poland, pp 357–365.
- 42 T. Takeshita, W. E. Wallace, and R. S. Craig, J. Catal. 44, 236–243 (1976).
- 43 J. E. France and W. E. Wallace, Lanthanide Actinide Res. 2, 165–180 (1988).
- 44 W. E. Wallace, CHEMTECH 12, 752–754 (1982).
- 45 G. Owen, C. M. Hawkes, D. Lloyd, J. R. Jennings, R. M. Lambert, and R. M. Nix, Appl. Catal. 33, 405–430 (1987).
- 46 E. A. Shaw, T. Rayment, A. P. Walker, R. M. Lambert, T. Gauntlett, R. J. Oldman, and A. Dent, Catal. Today 9, 197–202 (1991).
- 47 K. Takeishi and K.-I. Aika, J. Catal. 136, 252–257 (1992).
- 48 A. P. Walker, T. Rayment, and R. M. Lambert, J. Catal. 117, 102–120 (1989).
- 49 J. B. Branco, C. J. Dias, and A. P. Gonçalves, J. Alloys Compd. 478, 687–693 (2009).
- 50 P. Rotterskamp, A. Kuklya, M.-A. Wüstkamp, K. Kerpen, C. Weidenthaler, and M. Demuth, Angew. Chem., Int. Ed. 46, 7770–7774 (2007).
- 51 Q. Li and G. Lu, Catal. Lett. 125, 376–379 (2008).
- 52 V. V. Lunin, Y. M. Bondarev, L. N. Padurec, S. I. Kondrat'ev, and A. A. Chertkov, Dokl. Akad. Nauk SSSR 220, 383–385 (1975).
- 53 V. V. Lunin, V. I. Deineka, S. I. Abasov, and A. F. Plate, Neftekhimiya 15, 832–835 (1975).
- 54 K. Soga, H. Imamura, and S. Ikeda, J. Phys. Chem. 81, 1762–1766 (1977).
- 55 K. Soga, H. Imamura, and S. Ikeda, J. Catal. 56, 119–126 (1979).
- 56 K. Soga, H. Imamura, and S. Ikeda, Nippon Kagaku Kaishi 923–929 (1978).
- 57 K. N. Semenenko and L. A. Petrova, Neftekhimiya 19, 26–31 (1979).
- 58 P. A. Chernavskii and V. V. Lunin, Kinet. Catal. 24, 769–773 (1983).
- 59 R. M. Frak, J. Less-Common Met. 109, 279–286 (1985).
- 60 A. Ashraf, O. V. Chetina, L. A. Erivanskaya, E. S. Shpiro, G. V. Antoshin, and V. V. Lunin, Neftekhimiya 23, 61–65 (1983).
- 61 V. V. Lunin, Inorg. Mater. 14, 1245–1248 (1978).
- 62 T. Imamoto, T. Mita, and M. Yokoyama, J. Chem. Soc., Chem. Commun. 163–164 (1984).
- 63 R. K. Ibrasheva, T. A. Solomina, B. B. Bekkulov, and K. A. Zhubanov, Kinet. Katal. 27, 1278–1278 (1986).
- 64 R. K. Ibrasheva, T. A. Solomina, G. I. Leonova, V. V. Kiselev, P. A. Zhdan, G. I. Kaplan, V. P. Mordovin, and R. G. Baisheva, Kinet. Catal. 31, 1057–1063 (1990).
- 65 V. V. Molchanov, V. V. Goidin, and R. A. Buyanov, Kinet. Catal. 47, 744–746 (2006).
- 66 R. Valarivan, C. N. Pillai, and C. S. Swamy, React. Kinet. Catal. Lett. 53, 419–428 (1994).
- 67 H. Oesterreicher and F. Spada, Mater. Res. Bull. 15, 477–481 (1980).
- 68 D. E. Hall and V. R. Shepard, Int. J. Hydrogen Energy 9, 1005–1009 (1984).
- 69 S. Y. Vasina, S. A. Stuken, O. A. Petrii, I. L. Gogichadze, and V. A. Mukhin, Soviet Electrochem. 23, 1066–1069 (1987).
- 70 V. Paul-Boncour, L. Hilaire, and A. Percheron-Guegan, in K. A. Gschneidner and L. Eyring, eds., Handbook on the Physics and Chemistry of Rare Earths, Elsevier, Amsterdam, the Netherlands, 2000, pp 5–44.
- 71 N. M. Parfenova, I. R. Konenko, A. L. Shilov, A. A. Tolstopyatova, E. I. Klabunovskii, and M. E. Kost, Inorg. Mater. 14, 1333–1336 (1978).
- 72 H. Imamura, H. Yamada, K. Nukui, and S. Tsuchiya, J. Chem. Soc., Chem. Commun. 367–368 (1986).
- 73 H. Imamura, S. Kasahara, T. Takada, and S. Tsuchiya, J. Chem. Soc., Faraday Trans. 1 84, 765–772 (1988).
- 74 K. Shashikala, N. M. Gupta, P. Suryanarayana, A. Sathyamoorthy, V. S. Kamble, and P. Raj, J. Molec. Catal. 91, 223–235 (1994).
- 75 J. P. Candy, O. A. Ferretti, G. Mabilon, J.-P. Bournonville, El A. Mansur, J. M. Basset, and G. Martino, J. Catal. 112, 210–220 (1988).
- 76 U.S. Patent 4456775 (1984), C. Travers, T. D. Chan, R. Snappe, and J.-P. Bournonville (Institut Francais du petrole, Rueil-Malmaison, France).
- 77 A. Miura, H. Wang, B. M. Leonard, H. D. Abruña, and F. J. DiSalvo, Chem. Mater. 21, 2661–2667 (2009).
- 78 X. Zhong, J. Zhu, and J. Liu, J. Catal. 236, 9–13 (2005).
- 79 S. Penner, D. Wang, D. S. Su, G. Rupprechter, R. Podloucky, R. Schlögl, and K. Hayek, Surf. Sci. 532–535, 276–280 (2003).
- 80 S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. L. Cartes, J. A. P. Omil, and J. M. Pintado, Catal. Today 77, 385–406 (2003).
- 81 S. J. Tauster, S. C. Fung, and R. L. Garten, J. Am. Chem. Soc. 100, 170–175 (1978).
- 82 S. J. Tauster, Acc. Chem. Res. 20, 389–394 (1987).
- 83 N. Iwasa, T. Akazawa, S. Ohyama, K. Fujikawa, and N. Takezawa, React. Kinet. Catal. Lett. 55, 245–250 (1995).
- 84 G. Chen, S. Li, and Q. Yuan, Catal. Today 120, 63–70 (2007).
- 85 M. Lenarda, L. Storaro, R. Frattini, M. Casagrande, M. Marchiori, G. Capannelli, C. Uliana, F. Ferrari, and R. Ganzerla, Catal. Commun. 8, 467–470 (2007).
- 86 S. Liu, K. Takahashi, K. Uematsu, and M. Ayabe, Appl. Catal. A 277, 265–270 (2004).
- 87 S. Liu, K. Takahashi, and M. Ayabe, Catal. Today 87, 247–253 (2003).
- 88 M. L. Cubeiro and J. L. G. Fierro, Appl. Catal. A 168, 307–322 (1998).
- 89 M. L. Cubeiro and J. L. G. Fierro, J. Catal. 179, 150–162 (1998).
- 90 Y. Wang, J. Zhang, H. Xu, and X. Bai, Chin. J. Catal. 28, 234–238 (2007).
- 91 Y. Wang, J. Zhang, and H. Xu, Chin. J. Catal. 27, 217–222 (2006).
- 92 S. Liu, K. Takahashi, K. Uematsu, and M. Ayabe, Appl. Catal. A 283, 125–135 (2005).
- 93 N. Iwasa, S. Masuda, N. Ogawa, and N. Takezawa, Appl. Catal. A 125, 145–157 (1995).
- 94 Y. Kobayashi, Y. Tadaki, K. Takahashi, and M. Konno, J. Ceram. Soc. Japan 114, 654–656 (2006).
- 95 G. D. Zakumbaeva, V. A. Naidin, T. S. Dagirov, and E. N. Litvyakova, Russ. J. Phys. Chem. 61, 801–808 (1987).
- 96 A. Sarkany, Z. Zsoldos, B. Furlong, J. W. Hightower, and L. Guczi, J. Catal. 141, 566–582 (1993).
- 97 D. V. Sokolskii, L. M. Anisimova, and L. N. Edygenova, Russ. J. Phys. Chem. 60, 1639–1641 (1986).
- 98 F. Boccuzzi, A. Chiorino, G. Ghiotti, F. Pinna, G. Strukul, and R. Tessari, J. Catal. 126, 381–387 (1990).
- 99 W. Li, Y. Chen, C. Yu, X. Wang, Z. Hong, and Z. Wei, in Proceedings of the 8th International Congress on Catalysis, Berlin, 1984, pp 205–216.
- 100 M. Abid, G. Ehret, and R. Touroude, Appl. Catal. A 217, 219–229 (2001).
- 101 E. Gebauer-Henke, R. Touroude, and J. Rynkowski, Kinet. Catal. 48, 562–566 (2007).
- 102 S. Chettibi, R. Wojcieszak, E. H. Boudjennad, J. Belloni, M. M. Bettahar, and N. Keghouche, Catal. Today 113, 157–165 (2006).
- 103 W.-H. Cheng, Appl. Catal. A 130, 13–30 (1995).
- 104 T. Okanishi, T. Matsui, T. Takeguchi, R. Kikuchi, and K. Eguchi, Appl. Catal. A 298, 181–187 (2006).
- 105 H. E. Swift and J. E. Bozik, J. Catal. 12, 5–14 (1968).
- 106 S. T. Srinivas and P. K. Rao, J. Catal. 179, 1–17 (1998).
- 107 Z. Huang, J. R. Fryer, C. Park, D. Stirling, and G. Webb, J. Catal. 159, 340–352 (1996).
- 108 N. A. Pakhomov, R. A. Buyanov, E. N. Yurchenko, A. P. Chernyshev, G. R. Kotelnikov, E. M. Moroz, N. A. Zaitseva, and V. A. Patanov, Kinet. Catal. 22, 374–380 (1981).
- 109 S. A. Bocanegra, A. Guerrero-Ruiz, S. R. de Miguel, and O. A. Scelza, Appl. Catal. A 277, 11–22 (2004).
- 110 C. Kappenstein, M. Guérin, K. Lázár, K. Matusek, and Z. Páal, J. Chem. Soc., Faraday Trans. 94, 2463–2473 (1998).
- 111 M. Masai, K. Honda, A. Kubota, S. Ohnaka, Y. Nishikawa, K. Nakahara, K. Kishi, and S. Ikeda, J. Catal. 50, 419–428 (1977).
- 112 M. Masai, K. Mori, H. Muramoto, T. Fujiwara, and S. Ohnaka, J. Catal. 38, 128–134 (1975).
- 113 J. Stachurski and J. M. Thomas, Catal. Lett. 1, 67–72 (1988).
- 114 E. A. Sales, M. de Jesus Mendes, and F. Bozon-Verduraz, J. Catal. 195, 96–105 (2000).
- 115 E. A. Sales, J. Jove, M. de Jesus Mendes, and F. Bozon-Verduraz, J. Catal. 195, 88–95 (2000).
- 116 R. J. Kalenczuk, J. Chem. Technol. Biotechnol. 54, 349–357 (1992).
- 117 R. Bacaud and P. Bussière, J. Catal. 69, 399–409 (1981).
- 118 M. A. Vannice and B. Sen, J. Catal. 115, 65–78 (1989).
- 119 J. C. S. Wu, T.-S. Cheng, and C.-L. Lai, Appl. Catal. A 314, 233–239 (2006).
- 120 G. Cárdenas, R. Oliva, P. Reyes, and B. L. Rivas, J. Molec. Catal. A 191, 75–86 (2003).
- 121 M. D. C. Aguirre, P. Reyes, M. Oportus, I. Melián-Cabrera, and J.-L. G. Fierro, Appl. Catal. A 233, 183–196 (2002).
- 122 K. Ishii, F. Mizukami, S.-I. Niwa, M. Toba, and T. Sato, Catal. Lett. 30, 297–304 (1995).
- 123 M. Lucas and P. Claus, Chem. Eng. Technol. 28, 867–870 (2005).
- 124 M. Steffan, M. Lucas, A. Brandner, M. Wollny, N. Oldenburg, and P. Claus, Chem. Eng. Technol. 30, 481–486 (2007).
- 125 E. Moretti, M. Lenarda, L. Storaro, R. Frattini, P. Patrono, and L. Pinzari, J. Colloid Interface Sci. 306, 89–95 (2007).
- 126 S. Karski, I. Witonska, and J. Goluchowska, J. Molec. Catal. A 245, 225–230 (2006).
- 127 S. Karski, Przem. Chem. 85, 201–204 (2006).
- 128 S. Karski, J. Molec. Catal. A 253, 147–154 (2006).
- 129 S. Karski and I. Witonska, J. Molec. Catal. A 191, 87–92 (2003).
- 130 T. Chojnacki, K. Krause, and L. D. Schmidt, J. Catal. 128, 161–185 (1991).
- 131 S. Naito, T. Hasebe, and T. Miyao, Chem. Lett. 1119–1120 (1998).
- 132 K. Hayek, H. Goller, S. Penner, G. Rupprechter, and C. Zimmermann, Catal. Lett. 92, 1–9 (2004).
- 133 S. Penner, G. Rupprechter, H. Sauer, D. S. Su, R. Tessadri, R. Podloucky, R. Schlögl, and K. Hayek, Vacuum 71, 71–76 (2003).
- 134 H. Lorenz, Q. Zhao, S. Turner, B. L. Lebedev, Van G. Tendeloo, B. Klötzer, C. Rameshan, K. Pfaller, J. Konzett, and S. Penner, Appl. Catal. A 381, 242–252 (2010).
- 135 H. Lorenz, S. Turner, O. I. Lebedev, Van G. Tendeloo, B. Klötzer, C. Rameshan, K. Pfaller, and S. Penner, Appl. Catal. A 374, 180–188 (2010).
- 136 S. Penner, B. Jenewein, H. Gabasch, B. Klötzer, D. Wang, A. Knop-Gericke, R. Schlögl, and K. Hayek, J. Catal. 241, 14–19 (2006).
- 137 S. Penner, B. Jenewein, and K. Hayek, Catal. Lett. 113, 65–72 (2007).
- 138 S. Penner, H. Lorenz, W. Jochum, M. Stöger-Pollach, D. Wang, C. Rameshan, and B. Klötzer, Appl. Catal. A 358, 193–202 (2009).
- 139 T. Komatsu, M. Mesuda, and T. Yashima, Appl. Catal. A 194–195, 333–339 (2000).
- 140 A. Onda, T. Komatsu, and T. Yashima, J. Catal. 201, 13–21 (2001).
- 141 A. Onda, T. Komatsu, and T. Yashima, J. Catal. 221, 378–385 (2003).
- 142 T. Komatsu, T. Kishi, and T. Gorai, J. Catal. 259, 174–182 (2008).
- 143 T. Komatsu and M. Fukui, Appl. Catal. A 279, 173–180 (2005).
- 144 T. Komatsu, K. Inaba, T. Uezono, A. Onda, and T. Yashima, Appl. Catal. A 251, 315–326 (2003).
- 145 G. Rienäcker, Z. Elektrochem. 47, 805–809 (1941).
- 146 G. Rienäcker and H. Hildebrandt, Z. Anorg. Allg. Chem. 248, 52–64 (1941).
- 147 G.-M. Schwab, Trans. Faraday Soc. 42, 689–697 (1946).
- 148 D.-H. Chun, Y. Xu, M. Demura, K. Kishida, M.-C. Kim, M.-H. Oh, T. Hirano, and D.-M. Wee, J. Korean Inst. Met. Mater. 43, 801–809 (2005).
- 149 P. P. Clopp and G. Parravano, J. Phys. Chem. 62, 1055–1059 (1958).
- 150 T. Komatsu, S.-I. Hyodo, and T. Yashima, J. Phys. Chem. B 101, 5565–5572 (1997).
- 151 H. Verbeek and W. M. H. Sachtler, J. Catal. 42, 257–267 (1976).
- 152 T. Komatsu, M. Fukui, and T. Yashima, Stud. Surf. Sci. Catal. 101, 1095–1104 (1996).
- 153 A. Onda, T. Komatsu, and T. Yashima, Phys. Chem. Chem. Phys. 2, 2999–3005 (2000).
- 154 J. B. Branco, A. P. Gonçalves, and A. P. de Mato, J. Alloys Compd. 465, 361–366 (2008).
- 155 P. Claus, F. Raif, S. Cavet, S. Demirel-Gülen, J. Radnik, M. Schreyer, and T. Fässler, Catal. Comm. 7, 618–622 (2006).
- 156 C. Gieck, M. Schreyer, T. F. Fässler, F. Raif, and P. Claus, Eur. J. Inorg. Chem. 3482–3488 (2006).
- 157 C. Gieck, M. Schreyer, T. F. Fässler, S. Cavet, and P. Claus, Chem. Eur. J. 12, 1924–1930 (2006).
- 158 V. Hlukhyy, F. Raif, P. Claus, and T. F. Fässler, Chem. Eur. J. 14, 3737–3744 (2008).
- 159
S. M. Kauzlarich, in
R. B. King, ed.,
Encyclopedia of Inorganic Chemistry,
Wiley,
Hoboken, N.J.,
2006.
10.1002/0470862106.ia262 Google Scholar
- 160 B. I. Popov, N. G. Skomorokhova, V. V. Karonik, and V. E. Kolesnichenko, React. Kinet. Catal. Lett. 27, 419–423 (1985).
- 161 M. Friedrich, A. Ormeci, Y. Grin, and M. Armbrüster, Z. Anorg. Allg. Chem. 636, 1735–1739 (2010).
- 162 N. Iwasa, T. Mayanagi, S. Masuda, and N. Takezawa, React. Kinet. Catal. Lett. 69, 355–360 (2000).
- 163 A. P. Tsai, S. Kameoka, and Y. Ishii, J. Phys. Soc. Japan 73, 3270–3273 (2004).
- 164 N. Takezawa and N. Iwasa, Catal. Today 36, 45–56 (1997).
- 165 A. K. M. S. Huq and A. J. Rosenberg, J. Electrochem. Soc. 111, 270–278 (1964).
- 166 E. W. Justi, H. H. Ewe, A. W. Kalberlah, N. M. Saridakis, and M. H. Schaefer, Energy Conv. 10, 183–187 (1970).
- 167 E. W. Brooman and A. T. Kuhn, Electroanal. Chem. Interfacial Electrochem. 49, 325–353 (1974).
- 168 M. H. Miles, Electroanal. Chem. Interfacial Electrochem. 60, 89–96 (1975).
- 169 M. M. Jakšić, Electrochim. Acta 29, 1539–1550 (1984).
- 170 A. Bélanger, and A. K. Vijh, Int. J. Hydrogen Energy 12, 227–233 (1987).
- 171 A. B. Shein, Russ. Electrochem. 24, 1233–1236 (1988).
- 172 A. K. Vijh, G. Bélanger, and R. Jaques, Mater. Chem. Phys. 21, 529–538 (1989).
- 173 E. Casado-Rivera, Z. Gál, A. C. D. Angelo, C. Lind, F. J. DiSalvo, and H. D. Abruña, Chem Phys Chem 4, 193–199 (2003).
- 174 E. Casado-Rivera, D. J. Volpe, L. Alden, C. Lind, C. Downie, T. Vázquez-Alvarez, A. C. D. Angelo, F. J. DiSalvo, and H. D. Abruña, J. Am. Chem. Soc. 126, 4043–4049 (2004).
- 175 F. Matsumoto, C. Roychowdhury, F. J. DiSalvo, and H. D. Abruña, J. Electrochem. Soc. 155, B148-B154 (2008).
- 176 M. M. P. Janssen and J. Moolhuysen, Electrochim. Acta 21, 861–868 (1976).
- 177 Z. Liu, D. Reed, G. Kwon, M. Shamsuzzoha, and D. E. Nikles, J. Phys. Chem. C 111, 14223–14229 (2007).
- 178 L. Zhang and D. Xia, Appl. Surf. Sci. 252, 2191–2195 (2006).
- 179 T. Ghosh, Q. Zhou, J. M. Gregoire, R. B. van Dover, and F. J. DiSalvo, J. Phys. Chem. C 114, 12545–12553 (2010).
- 180 H. Wang, L. R. Alden, F. J. DiSalvo, and H. D. Abruña, Langmuir 25, 7725–7735 (2009).
- 181 H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H. D. Abruña, and F. J. DiSalvo, J. Am. Chem. Soc. 130, 5452–5458 (2008).
- 182 D. J. Volpe, E. Casado-Rivera, L. Alden, C. Lind, K. Hagerdon, C. Downie, C. Korzeniewski, F. J. DiSalvo, and H. D. Abruña, J. Electrochem. Soc. 151, A971–A977 (2004).
- 183 C. Roychowdhury, F. Matsutomo, P. F. Mutolo, H. D. Abruña, and F. J. DiSalvo, Chem. Mater. 17, 5871–5876 (2005).
- 184 J. Osswald, K. Kovnir, M. Armbrüster, R. Giedigkeit, R. E. Jentoft, U. Wild, Y. Grin, and R. Schlögl, J. Catal. 258, 219–227 (2008).
- 185 K. Kovnir, J. Osswald, M. Armbrüster, R. Giedigkeit, T. Ressler, Y. Grin, and R. Schlögl, Stud. Surf. Sci. Catal. 162, 481–488 (2006).
- 186 J. Osswald, R. Giedigkeit, R. E. Jentoft, M. Armbrüster, F. Girgsdies, K. Kovnir, T. Ressler, Y. Grin, and R. Schlögl, J. Catal. 258, 210–218 (2008).
- 187 K. Kovnir, M. Armbrüster, D. Teschner, T. V. Venkov, L. Szentmiklósi, F. C. Jentoft, A. Knop-Gericke, Y. Grin, and R. Schlögl, Surf. Sci. 603, 1784–1792 (2009).
- 188 J. Singh, C. Lamberti, J. A. van Bokhoven, Chem. Soc. Rev. 39, 4754–4766 (2010).
- 189 Z. Révay, T. Belgya, L. Szentmiklósi, Z. Kis, A. Wootsch, D. Teschner, M. Swoboda, R. Schlögl, J. Borsodi, and R. Zepernick, Anal. Chem. 6066–6071 (2008).
- 190 H. Bluhm, M. Hävecker, A. Knop-Gericke, E. Kleimenov, R. Schlögl, D. Teschner, V. I. Bukhtiyarov, D. F. Ogletree, and M. Salmeron, J. Phys. Chem. B 108, 14340–14347 (2004).
- 191 D. Teschner, E. Vass, M. Haväcker, S. Zafeiratos, P. Schnörch, H. Sauer, Knop-A. Gericke, R. Schlögl, M. Chamam, A. Wootsch, A. S. Canning, J. J. Gamman, S. D. Jackson, J. McGregor, and L. F. Gladden, J. Catal. 242, 26–37 (2006).
- 192 D. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker, A. Knop-Gericke, S. D. Jackson, and R. Schlögl, Science 320, 86–89 (2008).
- 193 D. Teschner, Z. Révay, J. Borsodi, M. Hävecker, A. Knop-Gericke, R. Schlögl, D. Milroy, S. D. Jackson, D. Torres, and P. Sautet, Angew. Chem., Int. Ed. 47, 9274–9278 (2008).
- 194 K. Wolter, O. Seiferth, J. Libuda, H. Kuhlenbeck, M. Bäumer, and H.-J. Freund, Surf. Sci. 402–404, 428 (1998).
- 195 K. Wolter, O. Seiferth, H. Kuhlenbeck, M. Bäumer, and H.-J. Freund, Surf. Sci. 399, 190 (1998).
- 196 Y. Jin, A. K. Datye, E. Rightor, R. Gulotty, W. Waterman, M. Smith, M. Holbrook, J. Maj, and J. Blackson, J. Catal. 203, 292–306 (2001).
- 197 N. A. Khan, S. Shaikhutdinov, and H.-J. Freund, Catal. Lett. 108, 159–164 (2006).
- 198 A. A. Lamberov, S. R. Egorova, I. R. Iĺyasov, Kh. Kh. Giĺmanov, S. V. Trifonov, V. M. Shatilov, and A. Sh. Ziyatdinov, Kinet. Catal. 48, 136–142 (2007).
- 199 D. Mei, M. Neurock, and C. M. Smith, J. Catal. 268, 181–195 (2009).
- 200 H. Zea, K. Lester, A. K. Datye, E. Rightor, R. Gulotty, W. Waterman, and M. Smith, Appl. Catal. A 282, 237–245 (2005).
- 201 K. Kovnir, M. Schmidt, C. Waurisch, M. Armbrüster, Y. Prots, and Y. Grin, Z. Kristallogr.—NCS 223, 7–8 (2008).
- 202 M. Armbrüster, H. Borrmann, M. Wedel, Y. Prots, R. Giedigkeit, and P. Gille, Z. Kristallogr.—NCS 225, 617–618 (2010).
- 203 K. Khalaff and K. Schubert, J. Less-Common Met. 37, 129–140 (1974).
- 204
G.-M. Schwab and
E. Schwab-Agallidis,
Ber. Dtsch. Chem. Gesellsch.
76,
1228–1256
(1943).
10.1002/cber.19430761214 Google Scholar
- 205 G.-M. Schwab and A. Karatzas, Z. Elektrochem. 50, 242–249 (1944).
- 206 G.-M. Schwab and S. Pesmatjoglou, J. Phys. Chem. 52, 1046–1053 (1948).
- 207 G.-M. Schwab, Experientia 2, 103–105 (1946).
- 208 B. Frank, F. C. Jentoft, H. Soerijanto, J. Kröhnert, R. Schlögl, and R. Schomäcker, J. Catal. 246, 177–192 (2007).
- 209 V. Ponec, Appl. Catal. A 149, 27–48 (1997).
- 210 E. Galloway, M. Armbrüster, K. Kovnir, M. Tikhov, and R. M. Lambert, J. Catal. 261, 60–65 (2009).
- 211 J. L. Murray, Int. Met. Rev. 30, 211–233 (1985).
- 212 T. B. Massalski, in T. B. Massalski, ed., Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1990, pp 1836–1837.