Aziridination
Bhanu Manish Chanda
National Chemical Laboratory, Pune, Maharashtra, India
Search for more papers by this authorRenu Vyas
National Chemical Laboratory, Pune, Maharashtra, India
Search for more papers by this authorBhanu Manish Chanda
National Chemical Laboratory, Pune, Maharashtra, India
Search for more papers by this authorRenu Vyas
National Chemical Laboratory, Pune, Maharashtra, India
Search for more papers by this authorAbstract
Aziridines, smallest three-membered nitrogen-containing heterocycles, are important subunits of several natural products. They also function efficiently as removable chiral auxiliaries for asymmetric alkylation and aldol transformations. The ring strain in aziridines renders them susceptible to ring-opening reactions that dominate their chemistry.
Catalytic aziridination, of late, has assumed a prominent role. Several comprehensive reviews have been written. The present article, in addition to giving an insight into aziridine chemistry, mechanism, etc., delves more deeply into various catalytic aziridination protocol, both for racemic as well as for chiral aziridines. Several selected approaches to catalytic aziridination transformations and their advantages have been described, bringing out distinctly the importance of aziridination strategy in synthetic organic chemistry. The authors' own latest contributions via the introduction of a new and superior reagent for aziridination, bromamine-T, is also described. Future strategies in aziridination chemistry is expected to emphasize on catalytic asymmetric aziridination and development of efficient ligands.
Bibliography
- 1
J. E. G. Kemp, in
B. M. Trost and
I. Fleming, eds.
Comprehensive Organic Synthesis,
Pergamon,
Oxford,
1991,
p. 469.
10.1016/B978-0-08-052349-1.00199-2 Google Scholar
- 2 H. M. I. Osborn and J. Sweeney, Tetrahedron: Asymmetry 8, 1693–1715 (1997).
- 3 D. Tanner, Angew. Chem., Int. Ed. Engl. 33, 599–619 (1994).
- 4 T. Ibuka, Chem. Soc. Rev. 27, 145–154 (1998).
- 5 W. Lwowski, in W. Lwowski, ed., Nitrenes, Wiley-Interscience, New York, 1970, p. 185.
- 6 J. A. Deyrup, in A. Hassner, ed., The Chemistry of Heterocyclic Compounds, John Wiley & Sons, Inc., New York, 1983, Chapt. I.
- 7 K. B. Hasner, N. S. Finney, and E. N. Jacobsen, Angew. Chem., Int. Ed. Engl. 34, 676–678 (1995).
- 8 K. G. Rasmussen and K. A. Jorgenson, J. Chem. Soc., Chem. Commun. 1401–1402 (1995).
- 9 Z. Zhu and J. H. Espenson, J. Org. Chem. 60, 7090–7091 (1995).
- 10 K. G. Rasmussen, K. Juhl, R. G. Hazell, and K. A. Jorgenson, J. Chem. Soc., Perkin Trans. 2 6, 1347–1350 (1998).
- 11 K. G. Rasmussen and K. A. Jorgenson, J. Chem. Soc., Perkin. Trans 1, 1287–1291 (1997).
- 12 L. Casarrubios, J. A. Perez, A. Brookhart, and J. L. Templeton, J. Org. Chem. 61, 8358–8359 (1996).
- 13 B. T. Gunnoe, P. S. White, J. L. Templeton, and L. Casarrubios, J. Am. Chem. Soc. 119, 3171–3172 (1997).
- 14 M. F. Mayer and M. M. Hossain, J. Org. Chem. 63, 6839–6844 (1998).
- 15 W. Xie, J. Fang, J. Li, and P. G. Wang, Tetrahedron 55, 12929–12938 (1999).
- 16 J. C. Antilla and W. D. Wulff, J. Am. Chem. Soc. 121, 5099–5100 (1999).
- 17
J. C. Antilla and
W. D. Wulff,
Angew. Chem., Int. Ed. Engl.
39,
4518–4521
(2000).
10.1002/1521-3773(20001215)39:24<4518::AID-ANIE4518>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 18
T. Rosen, in
C. H. Heathcock, ed.,
Comprehensive Organic Synthesis,
Pergamon Press,
Oxford,
1991,
p. 409.
10.1016/B978-0-08-052349-1.00035-4 Google Scholar
- 19 F. A. Davis, P. Zhou, and G. V. Reddy, J. Org. Chem. 59, 3243–3245 (1994).
- 20 R. Takagi, J. Kimura, Y. Shinohara, Y. Ohba, K. Takemono, Y. Hiraga, S. Kojima, and K. Ohkata, J. Chem. Soc., Perkin Trans. 1, 689–698 (1997).
- 21 A. B. McLaren and J. B. Sweeney, Org. Lett. 1, 1339–1341 (1999).
- 22 V. K. Aggarwal, Synlett. 329–336 (1998).
- 23 M. Ochiai and Y. Kitagawa, J. Org. Chem. 64, 3181–3189 (1999).
- 24 V. K. Aggarwal, R. A. Stenson, Ray, V. H. Jones, R. Fieldhouse, and J. Blacker, Tetrahedron Lett. 42, 1587–1589 (2001).
- 25 A.-H. Li, Y.-G. Zhou, L.-X. Dai, X.-L. Hou, L.-J. Xia, and L. Lin, J. Org. Chem. 63, 4338–4348 (1998).
- 26 J. J. G. Ruano, I. Fernandez, M. P. Catalina, and A. A. Cruz, Tetrahedron: Asymmetry 7, 3407–3414 (1996).
- 27 O. E. Edwards, in W. Lwowski, ed., Nitrenes, Wiley-Interscience, New York, 1970, p. 225.
- 28 H. Kwart and A. A. Kahn, J. Am. Chem. Soc. 89, 1951 (1967).
- 29 J. T. Groves and T. Takahashi, J. Am. Chem. Soc. 105, 2073–2074 (1983).
- 30 D. Mansuy, J. P. Mahy, A. Durault, G. Bedi, and P. Battioni, J. Chem. Soc., Chem. Commun. 1161–1163 (1984).
- 31 D. A. Evans, M. M. Faul, and M. T. Bilodeau, J. Am. Chem. Soc. 116, 2742–2753 (1994).
- 32 J. G. Knight and M. P. Muldowney, Synlett 949–951 (1995).
- 33 P. Mueller, C. Baud, and Y. Jacquier Tetrahedron 52, 1543–1548 (1996).
- 34 P. Dauban and R. H. Dodd, J. Org. Chem. 64, 5304–5307 (1999).
- 35 H.-J. Jeon and S. T. Nguyen, J. Chem. Soc., Chem. Commun. 235–236 (2001).
- 36 T. Ando, S. Minakata, I. Ryu, and M. Komatsu, Tetrahedron. Lett. 39, 309–312 (1998).
- 37 R. Vyas, B. M. Chanda, and A. V. Bedekar, Tetrahedron. Lett. 39, 4715–4716 (1998).
- 38 B. M. Chanda, R. Vyas, and A. V. Bedekar, J. Org. Chem. 61, 30 (2001).
- 39 D. P. Albone, P. S. Aujla, P. C. Taylor, S. Challenger, and A. M. Derrick, J. Org. Chem. 63, 9569–9571 (1998).
- 40 J. A. Halfen, J. K. Hallman, J. A. Schultz, and J. P. Emerson, Organometallics 5435–5437 (1999).
- 41 D. Tanner and C. Birgersson, Tetrahedron Lett. 32, 2533 (1991).
- 42 M. Kasai and M. Kono, Synlett 778–790 (1992).
- 43 W. A. Remers and B. S. Iyengar, in G. Lukacos and M. Ohno, eds., Recent Progress in the Chemical Synthesis of Antibiotics, Springer, Berlin, 1990, p. 415.
- 44 F. Gerhart, W. Higgins, C. Tardiff, and J. Ducep, J. Med. Chem. 33, 2157–2162 (1990).
- 45 D. A. Evans, M. M. Faul, M. T. Bilodeau, B. A. Andersson, and D. M. Barnes, J. Am. Chem. Soc. 115, 5328–5329 (1993).
- 46 Z. Liz, K. R. Conser, and E. N. Jacobsen, J. Am. Chem. Soc. 115, 5326–5327 (1993).
- 47 R. E. Lowenthal and S. Masamune, Tetrahedron Lett. 32, 7373–7376 (1991).
- 48 M. J. Sodergren, D. A. Alonso, A. V. Bedekar, and P. G. Andersson, Tetrahedron Lett. 38, 6897–6900 (1997).
- 49 A. M. Harm, J. G. Knight, and G. Stemp, Tetrahedron Lett. 37, 6189–6192 (1996).
- 50 J. P. Simonato, J. Peacut, R. Scheidt, and J. C. Marchon, J. Chem. Soc., Chem. Commun. 11, 989 (1999).
- 51 W. Adam, K. J. Roschmann, and C. R. S. Moller, Eur. J. Org. Chem. 557–561 (2000).
- 52 T. Ando, D. Kano, S. Minakata, I. Ryu, and M. Komatsu, Tetrahedron 54, 13485–13494 (1998).
- 53 J. U. Jeong, B. Tao, I. Sagasser, H. Hennings, and K. B. Sharpless, J. Am. Chem. Soc. 120, 6844–6845 (1998).
- 54 A. V. Gontcharov, H. Liu, and K. B. Sharpless, Org. Lett. 1, 783–786 (1999).
- 55 A. Iliyas, M. D. Nikalje, and A. Sudalai, Org. Lett. 1, 705–707 (1999).
- 56Ind. Pat. N.F/33 (2000), R. Vyas, B. M. Chanda, and A. V. Bedekar (to National Chemical Laboratory, India).
- 57 H. Ohno, A. Toda, Y. Miwa, T. Aga, E. Osawa, Y. Yammaoka, N. Fujii, and T. Ibuka, J. Org. Chem. 64, 2992–2993 (1999).
- 58 S.-M. Au, J.-S. Huang, W.-Y. Yu, W.-H. Fung, and C.-M. Che, J. Am. Chem. Soc. 121, 9120–9132 (1999).
- 59 C. Langham, S. Taylor, D. Bethell, P. McMorn, P. C. B. Page, J. D. Wilock, C. Sly, F. E. Hancock, F. King, and G. J. Hutchings, J. Chem. Soc., Perkin Trans. 2 1043–1049 (1999).
- 60 M. D. Requejo and M. P. J. Perez, J. Organomet. Chem. 110–118 (2001).
- 61 B. M. Chanda, R. Vyas, A. V. Bedekar, M. W. Kasture, and P. N. Joshi, eds., Proceedings of International Zeolite Conference, Montpellier, France, 2001. Stud. Surf. Sci. Catal. 135, (2001).
- 62U.S. Pat. 3,308,069 (1964), R. L. Wadlinger, G. T. Keer, and E. J. Rosinki.
- 63 R. Vyas, B. M. Chanda, A. A. Belhekar, D. R. Patel, R. N. Ram, and A. V. Bedekar, J. Mol. Catal., A. 160, 237–241 (2000).
- 64 W. M. Coull and F. A. Davis, Synthesis 1347–1365 (2000).
- 65 R. Leng, M. Yoshida, and P. S. Mariano, J. Org. Chem. 69, 4439–4449 (1996).
- 66 M. Meguro, N. Asao, and Y. Yamamoto, Tetrahedron Lett. 35, 7395–7398 (1994).
- 67 G. Sekhar and V. K. Singh, J. Org. Chem. 64, 2537–2539 (1999).