Abstract
Combinatorial chemistry is a high throughput experimental technique that has significantly changed the drug discovery process in the pharmaceutical industry and become common practice for drug research. Combinatorial synthesis and rapid screening techniques have been applied to the development of homogeneous catalysts and for the optimization of reaction conditions. In contrast to classical experimental design, well-designed high throughput screening systems can test more catalysts a week than was previously done in a year. This could lead to significant savings in research and development costs.
This article provides a survey of the most frequently used combinatorial methods and screening systems applied in homogeneous catalysts discovery. Several examples are presented on the identification of most effective homogeneous catalysts for hydrogenation, hydrosilylation, cyclopropanation, epoxidation, etc.
Bibliography
- 1
K. D. Shimizu,
M. L. Snapper, and
A. H. Hoveyda,
Chem. Eur. J.
4,
1885–1889
(1998).
10.1002/(SICI)1521-3765(19981002)4:10<1885::AID-CHEM1885>3.0.CO;2-D CAS Web of Science® Google Scholar
- 2 R. H. Crabtree, Chem. Commun. 1611–1616 (1999).
- 3 M. B. Francis, N. S. Finney, and E. N. Jacobsen, J. Am. Chem. Soc. 118, 8983–8984 (1996).
- 4 A. Furka, F. Sebestyén, M. Asgedom, and G. Dibo, Int. J. Pept. Protein Res. 37, 487 (1991).
- 5
M. B. Francis, and
E. N. Jacobsen,
Angew. Chem., Int. Ed.
38
937–941
(1999).
10.1002/(SICI)1521-3773(19990401)38:7<937::AID-ANIE937>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 6 T. R. Boussie, V. Murphy, K. A. Hall, C. Courtard, C. Dales, M. Petro, E. Carlson, H. W. Turner, and T. S. Powers, Tetrahedron 55 11699–11710 (1999).
- 7 H. B. Kagan, J. Organomet. Chem. 567, 3–6 (1998).
- 8 B. M. Cole, K. D. Shimizu, C. A. Krueger, J. P. A. Harrity, M. L. Snapper, and A. H. Hoveyda, Angew. Chem., Int. Ed. Engl. 35, 1668–1671 (1996).
- 9 J. N. Cawse, Acc. Chem. Res. 34, 213–221 (2001).
- 10 J. R. Porter, W. G. Wirschum, K. W. Kuntz, M. L. Snapper, and A. H. Hoveyda, J. Am. Chem. Soc. 122, 2657–2658 (2000).
- 11 K. Burgess, H. Lim, A. M. Porte, and G. A. Sulikowski, Angew. Chem., Int. Ed. Engl. 35, 220–222 (1996).
- 12 D. Moye-Sherman, M. B. Welc, J. Reibenspies, and K. Burgess, Chem. Commun. 2377–2378 (1998).
- 13 C. Gennari, S. Ceccareli, U. Piarulli, C. A. G. N. Montalbetti, and R. F. W. Jackson, J. Org. Chem. 63, 5312–5313 (1998).
- 14 C. Moreau, C. G. Frost, and M. Murrer, Tetrahedron Lett. 40, 5617–5620 (1999).
- 15 R. T. Buck, D. M. Coe, M. J. Drysdale, C. J. Moody, and N. D. Pearson, Tetrahedron Lett. 39, 7181–7184 (1998).
- 16
K. Ding,
A. Ishi, and
K. Mikami,
Angew. Chem., Int. Ed.
38,
497–501
(1999).
10.1002/(SICI)1521-3773(19990215)38:4<497::AID-ANIE497>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 17 R. Noyori, Asymetric Catalysis in Organic Synthesis, John Wiley & Sons, Inc., New York, 1994.
- 18
I. Chataigner,
C. Gennari,
U. Piarulli, and
S. Ceccarelli,
Angew. Chem., Int. Ed.
39,
916–918
(2000).
10.1002/(SICI)1521-3773(20000303)39:5<916::AID-ANIE916>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 19 P. J. Fagan, E. Hauptman, R. Shapiro, and A. Casalnuvovo, J. Am. Chem. Soc. 122, 5043–5051 (2000).
- 20 M. S. Sigman, and E. N. Jacobsen, J. Am. Chem. Soc. 120, 4901–4902 (1998).
- 21
M. S. Sigman,
P. Vachal, and
E. N. Jacobsen,
Angew. Chem., Int. Ed.
39,
1279–1281
(2000).
10.1002/(SICI)1521-3773(20000403)39:7<1279::AID-ANIE1279>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 22 S. R. Gilbertson, and X. Wang, Tetrahedron Lett. 37, 6475–6478 (1996).
- 23 W. H. Weinberg, B. Jandeleit, K. Self, and H. Turner, Curr. Opin. Solid State Mater. Sci. 3, 104–110 (1998).
- 24 A. M. Bray, N. J. Maefi, and H. M. Geysen, Tetrahedron Lett. 31, 5811–5814 (1990).
- 25 S. R. Gilbertson, and X. Wang, Tetrahedron 55, 11609–11618 (1999).
- 26 S. R. Gilbertson, S. E. Collibee, and A. Agarkov, J. Am. Chem. Soc. 122, 6522–6523 (2000).
- 27 A. J. Brouwer, H. J. van der Linden, and R. M. J. Liskamp, J. Org. Chem. 65, 1750–1757 (2000).
- 28
R. Kranich,
K. Eis,
O. Geis,
S. Mühle,
J. W. Bats, and
H.-G. Schmalz,
Chem. Eur. J.
6,
2874–2894
(2000).
10.1002/1521-3765(20000804)6:15<2874::AID-CHEM2874>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 29
G. Y. Li,
P. J. Fagan, and
P. L. Watson,
Angew. Chem., Int. Ed.
40,
1106–1109
(2001).
10.1002/1521-3773(20010316)40:6<1106::AID-ANIE11060>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 30
O. Lavastre, and
J. P. Morken,
Angew. Chem., Int. Ed.
38,
3163–3165
(1999).
10.1002/(SICI)1521-3773(19991102)38:21<3163::AID-ANIE3163>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 31 A. C. Cooper, L. H. McAlexander, D.-H. Lee, M. T. Torres, and R. H. Crabtree, J. Am. Chem. Soc. 120, 9971–9972 (1998).
- 32 A. H. Hoveyda, Chem. Biol. 6, R305–R308 (1999).
- 33 G. T. Copeland, and S. J. Miller, J. Am. Chem. Soc. 121, 4306–4307 (1999).
- 34 R. Moreira, M. Havranek, and D. Sames, J. Am. Chem. Soc. 123, 3927–3931 (2001).
- 35 E. R. Jarvo, C. A. Evans, G. T. Copeland, and S. J. Miller, J. Org. Chem. 66, 5522–5527 (2001).
- 36 J. P. Stambuli, S. R. Stauffer, K. H. Shaughnessy, and J. F. Hartwig, J. Am. Chem. Soc. 123, 2677–2678 (2001).
- 37 D. G. I. Petra, J. N. H. Reek, P. C. J. Kamer, H. E. Schoemaker, and P. W. N. M. van Leuven, Chem. Commun. 683–684 (2000).
- 38 B. Altava, M. I. Burguete, E. Garcia-Verdugo, S. V. Luis, and M. J. Vicent, Tetrahedron 57, 8675–8683 (2001).
- 39 F. C. Moates, M. Somani, J. Annamali, J. T. Richardson, D. Luss, and R. C. Willson, Ind. Eng. Chem. Res. 35, 4801–4803 (1996).
- 40 S. J. Taylor, and J. P. Morken, Science 280, 267–270 (1998).
- 41
M. T. Reetz,
M. H. Becker,
K. M. Kühling, and
Holzwarth,
Angew. Chem., Int. Ed.
37,
2647–2650
(1998).
10.1002/(SICI)1521-3773(19981016)37:19<2647::AID-ANIE2647>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 42
M. T. Reetz,
M. H. Becker,
M. Liebl, and
A. Fürstner,
Angew. Chem., Int. Ed.
39,
1236–1239
(2000).
10.1002/(SICI)1521-3773(20000403)39:7<1236::AID-ANIE1236>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 43
K. Ding,
A. Ishii, and
K. Mikami,
Angew. Chem., Int. Ed.
38,
497–501
(1999).
10.1002/(SICI)1521-3773(19990215)38:4<497::AID-ANIE497>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 44
M. T. Reetz,
Angew. Chem., Int. Ed.
40,
284–310
(2001).
10.1002/1521-3773(20010119)40:2<284::AID-ANIE284>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 45
B. Jandeleit,
D. J. Schaefer,
T. S. Powers,
H. W. Turner, and
W. H. Weinberg,
Angew. Chem., Int. Ed.
38,
2494–2532
(1999).
10.1002/(SICI)1521-3773(19990903)38:17<2494::AID-ANIE2494>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 46
S. Senkan,
K. Krantz,
S. Oztruk,
V. Zengin, and
I. Onal,
Angew. Chem., Int. Ed.
38,
2794–2799
(1999).
10.1002/(SICI)1521-3773(19990917)38:18<2794::AID-ANIE2794>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 47
W. F. Maier,
Angew. Chem., Int. Ed.
38,
1216–1218
(1999).
10.1002/(SICI)1521-3773(19990503)38:9<1216::AID-ANIE1216>3.0.CO;2-V CAS Web of Science® Google Scholar
- 48
M. T. Reetz,
M. H. Becker,
H.-W. Klein, and
D. Stöckigt,
Angew. Chem., Int. Ed.
38,
1758–1761
(1999).
10.1002/(SICI)1521-3773(19990614)38:12<1758::AID-ANIE1758>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 49
J. Guo,
J. Wu,
G. Siuzdak, and
M. G. Finn,
Angew. Chem., Int. Ed.
38,
1755–1758
(1999).
10.1002/(SICI)1521-3773(19990614)38:12<1755::AID-ANIE1755>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 50 M. J. Shapiro, and J. S. Gounarides, Prog. Nucl. Magn. Reson. Spectrosc. 35, 153–200 (1999).
- 51
H. Schröder,
P. Neidig, and
G. Rossé,
Angew. Chem., Int. Ed.
39,
3816–3819
(2000).
10.1002/1521-3773(20001103)39:21<3816::AID-ANIE3816>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 52 R. L. Thomas, F. E. S. Souza, and T. B. Marder, J. Chem. Soc., Dalton Trans. 1650–1656 (2001).
- 53 M. T. Reetz, K. M. Kühling, S. Wilensek, H. Husmann, U. W. Häusig, and M. Hermes, Catal. Today 67, 389–396 (2001).