Michael Addition
Jens Christoffers
Institut für Organische Chemie der Universität Stuttgart, Stuttgart, Germany
Search for more papers by this authorJens Christoffers
Institut für Organische Chemie der Universität Stuttgart, Stuttgart, Germany
Search for more papers by this authorAbstract
The Michael reaction is defined as the conjugate 1,4-addition of carbon nucleophiles to acceptor-substituted CC bonds. Enolates of β-dicarbonyl compounds represent typical nucleophiles in this classical base-catalyzed CC-bond-forming reaction, yielding 1,5-dicarbonyl compounds as products. In some cases, metal catalysts as simple as FeCl3 ˙ 6 H2O can be applied, avoiding basic reaction conditions and thus resulting in an improved chemoselectivity compared with base catalysis. The Michael reaction can be performed in an intramolecular or vinylogous fashion, and is known as an elementary step in several reaction sequences. In most cases, Michael reaction products have at least one new stereogenic center. In order to achieve asymmetric reactions, chiral auxiliaries, chiral Brönstedt bases, or metal complexes bearing chiral ligands have been reported as catalysts for the Michael reaction.
Bibliography
- 1
T. Komnenos,
Liebigs Ann. Chem.
218,
145–169
(1883);
10.1002/jlac.18832180204 Google ScholarL. Claisen, J. Prakt. Chem. 35, 413–415 (1887).10.1002/prac.18870350144 Google Scholar
- 2
A. Michael,
J. Prakt. Chem.
35,
349–356
(1887);
10.1002/prac.18870350136 Google ScholarA. Michael, J. Prakt. Chem. 36, 113–114 (1887);10.1002/prac.18870360111 Google ScholarA. Michael and O. Schulthess, J. Prakt. Chem. 45, 55–63 (1892);10.1002/prac.18910450104 Google ScholarA. Michael, Chem. Ber. 27, 2126–2130 (1894);10.1002/cber.189402702190 Google ScholarA. Michael, Chem. Ber. 33, 3731–3769 (1900).
- 3 E. D. Bergmann, D. Ginsburg, and R. Pappo, Org. React. 10, 179–555 (1959).
- 4 D. A. Oare and C. H. Heathcock, in E. L. Eliel and S. H. Wilen, eds., Topics in Stereochemistry, Vol. 19, Wiley Interscience, New York, 1989, pp. 227–407.
- 5 P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis (Tetrahedron Organic Chemistry Series, Vol. 9), Pergamon, Oxford, 1992.
- 6 R. D. Little and co-workers, Org. React. 47, 315–552 (1995).
- 7
H. H. Baer and
L. Urbas, in
H. Feuer,
ed.,
The Chemistry of the Nitro and Nitroso Groups, Part 2,
Interscience,
New York,
1970,
pp. 75–200.
10.1002/9780470771174.ch3 Google Scholar
- 8 G. V. Kryshtal and co-workers, Synthesis 107–109 (1979).
- 9 H. L. Brown and co-workers, Tetrahedron 24, 4565–4571 (1968).
- 10 J. Lu and H. Ma, Synlett 63–64 (2000); C. O. Kappe, Tetrahedron 49, 6937–6963 (1993).
- 11
N. Krause and
A. Gerold,
Angew. Chem.
109,
194–213
(1997);
10.1002/ange.19971090304 Google ScholarAngew. Chem., Int. Ed. Engl. 36, 186–204 (1997); A. Alexakis and co-workers, Pure Appl. Chem. 56, 91–98 (1984); G. H. Posner, Org. React. 19, 1–113 (1972).
- 12 S. Berger and co-workers, Angew. Chem. 109, 1603–1605 (1997); Angew. Chem., Int. Ed. Engl. 36, 1496–1498 (1997); B. L. Feringa and co-workers, Angew. Chem. 109, 2733–2736 (1997); Angew. Chem., Int. Ed. Engl. 36, 2620–2623 (1997).
- 13 J. Westermann and co-workers, Eur. J. Inorg. Chem. 295–298 (1998).
- 14 E. Emori and co-workers, J. Am. Chem. Soc. 120, 4043–4044 (1998); E. Emori, T. Iida, and M. Shibasaki, J. Org. Chem. 64, 5318–5320 (1999).
- 15 E. Ciganek, Org. React. 51, 201–350 (1997).
- 16 J. W. Cornforth and R. Robinson, J. Chem. Soc. 1855–1865 (1949); M. E. Jung, Tetrahedron 32, 3–31 (1976); R. F. Gawley, Synthesis 777–794 (1976).
- 17 H. Stetter, Angew. Chem. 67, 769–784 (1955).
- 18 A. Garcia-Raso and co-workers, Synthesis 1037–1041 (1982).
- 19 R. M. Lawrence and P. Perlmutter, Chem. Lett. 305–308 (1992); J. H. Clark, D. G. Cork, and M. S. Robertson, Chem. Lett. 1145–1148 (1983); J. Boyer and co-workers, J. Chem. Soc., Chem. Commun. 122–123 (1981); J. H. Clark, J. Chem. Soc., Chem. Commun. 789–791 (1978).
- 20 D. A. White and M. M. Baizer, Tetrahedron Lett. 3597–3600 (1973).
- 21 R. Antonioletti and co-workers, Tetrahedron Lett. 32, 5373–5374 (1991).
- 22 D. J. Macquarrie, J. Chem. Soc., Chem. Commun. 601–602 (1997); D. J. Macquarrie, Tetrahedron Lett. 39, 4125–4128 (1998); T. Saiki and Y. Aoyama, Chem. Lett. 797–798 (1999).
- 23 R. Sreekumar, P. Rugmini, and R. Padmakumar, Tetrahedron Lett. 38, 6557–6560 (1997); B. C. Ranu and S. Bhar, Tetrahedron 48, 1327–1332 (1992); P. Laszlo and P. Pennetreau, Tetrahedron Lett. 26, 2645–2648 (1985).
- 24 E. Diez-Barra and co-workers, Tetrahedron Lett. 38, 2359–2362 (1997).
- 25 H. Kotsuki and co-workers, J. Org. Chem. 64, 3770–3773 (1999).
- 26 H. Schick and co-workers, Liebigs Ann. Chem. 419–422 (1992); A. Lubineau and J. Augé, Tetrahedron Lett. 33, 8073–8074 (1992).
- 27 J. Christoffers, Eur. J. Org. Chem. 1259–1266 (1998).
- 28 T. Saegusa and co-workers, Bull. Chem. Soc. Jpn. 45, 496–499 (1972).
- 29 K. Irie, K. Miyazu, and K. Watanabe, Chem. Lett. 353–354 (1980); K. Watanabe, K. Miyazu, and K. Irie, Bull. Chem. Soc. Jpn. 55, 3212–3215 (1982).
- 30 J. H. Nelson and co-workers, J. Org. Chem. 45, 1246–1249 (1980); R. P. Eckberg and co-workers, Inorg. Chem. 16, 3128–3132 (1977).
- 31 C. P. Fei and T. H. Chan, Synthesis 467–468 (1982).
- 32 A. C. Coda and co-workers, Gazz. Chim. Ital. 114, 417–420 (1984).
- 33 A. C. Coda and co-workers, Gazz. Chim. Ital. 115, 111–117 (1985); G. Desimoni and co-workers, Gazz. Chim. Ital. 121, 483–485 (1991).
- 34 H. Brunner and B. Hammer, Angew. Chem. 96, 305–306 (1984); Angew. Chem., Int. Ed. Engl. 23, 312–313 (1984); H. Brunner and J. Kraus, J. Mol. Catal. 49, 133–142 (1989).
- 35 P. Kocovsky and D. Dvorak, Tetrahedron Lett. 27, 5015–5018 (1986); P. Kocovsky and D. Dvorak, Collect. Czech. Chem. Commun. 53, 2667–2674 (1988).
- 36 T. Naota and co-workers, J. Am. Chem. Soc. 111, 5954–5955 (1989); S.-I. Murahashi and co-workers, J. Am. Chem. Soc. 117, 12436–12451 (1995); S.-I. Murahashi and H. Takaya, Acc. Chem. Res. 33, 225–233 (2000).
- 37 P. Laszlo, M.-T. Montaufier, and S. L. Randriamahefa, Tetrahedron Lett. 31, 4867–4870 (1990).
- 38 F. Bonadies and co-workers, Tetrahedron Lett. 34, 7649–7650 (1993).
- 39 E. Keller and B. L. Feringa, Tetrahedron Lett. 37, 1879–1882 (1996).
- 40 H. Kotsuki and co-workers, Synlett 650–652 (1999).
- 41 A. Soriente and co-workers, Tetrahedron Lett. 38, 289–290 (1997).
- 42 J. Christoffers, Chem. Commun. 943–944 (1997).
- 43 J. Christoffers, J. Chem. Soc., Perkin Trans. 1 3141–3149 (1997).
- 44 J. Christoffers, H. Oertling, and M. Leitner, Synlett 349–350 (2000).
- 45 J. Christoffers, Org. Synth. 78, 249–253 (2000); J. Christoffers, Synlett 723–732 (2001).
- 46 H. Kotsuki and K. Arimura, Tetrahedron Lett. 38, 7583–7586 (1997).
- 47 A. Boruah and co-workers, Synth. Commun. 28, 653–658 (1998).
- 48 G. Bartoli and co-workers, Eur. J. Org. Chem. 617–620 (1999).
- 49 M. Picquet, C. Bruneau, and P. H. Dixneuf, Tetrahedron 55, 3937–3948 (1999).
- 50 R. N. Lacey, J. Chem. Soc. 1625–1633 (1960).
- 51 T. Mukaiyama, K. Banno, and K. Narasaka, J. Am. Chem. Soc. 96, 7503–7509 (1974); T. Mukaiyama, Org. React. 28, 203–331 (1982).
- 52 S. Kobayashi and co-workers, Chem. Lett. 97–100 (1994); K. Narasaka and co-workers, Bull. Chem. Soc. Jpn. 49, 779–783 (1976); K. Saigo, M. Osaki, and T. Mukaiyama, Chem. Lett. 163–164 (1976); I. Matsuda and co-workers, Tetrahedron Lett. 41, 1409–1412 (2000).
- 53 T. H. Chan and I. Fleming, Synthesis 761–786 (1979).
- 54 A. Jellal and M. Santelli, Tetrahedron Lett. 21, 4487–4490 (1980); A. Hosomi and co-workers, Chem. Lett. 245–248 (1979); A. Hosomi and H. Sakurai, J. Am. Chem. Soc. 99, 1673–1675 (1977).
- 55 J. Leonard, E. Diez-Barra, and S. Merino, Eur. J. Org. Chem. 2051–2061 (1998); J. d'Angelo and co-workers, Tetrahedron: Asymmetry 3, 459–505 (1992).
- 56
K. Tomioka and
K. Koga, in
J. D. Morrison,
ed.,
Asymmetric Synthesis,
Vol. 2,
Academic Press,
New York,
1983,
pp. 201–224;
10.1016/B978-0-12-507702-6.50012-8 Google ScholarN. Krause and A. Hoffmann-Röder, Synthesis 171–196 (2001).
- 57 S. J. Blarer and D. Seebach, Chem. Ber. 116, 2250–2260 (1983); Chem. Ber. 116, 3086–3096 (1983); S. J. Blarer, W. B. Schweizer, and D. Seebach, Helv. Chim. Acta 65, 1637–1654 (1982); J.-M. Lassaletta and co-workers, J. Am. Chem. Soc. 118, 7002–7003 (1996).
- 58 H. Brunner, J. Kraus, and H.-J. Lautenschlager, Monatsh. Chem. 119, 1161–1167 (1988); D. Desmaële, J. d'Angelo, and C. Bois, Tetrahedron: Asymmetry 1, 759–762 (1990); A. Guingant and H. Hammami, Tetrahedron: Asymmetry 2, 411–414 (1991); K. D. Belfield and J. Seo, Synth. Commun. 25, 461–466 (1995); C. Cave and co-workers, J. Org. Chem. 61, 4361–4368 (1996).
- 59 K. Ando and co-workers, Tetrahedron 50, 13081–13088 (1994); K. Ando and co-workers, Tetrahedron 49, 1579–1588 (1993); K. Tomioka and co-workers, Tetrahedron Lett. 28, 6637–6640 (1987).
- 60
J. Christoffers and
A. Mann,
Angew. Chem.
112,
2871–2874
(2000);
10.1002/1521-3757(20000804)112:15<2871::AID-ANGE2871>3.0.CO;2-Y Google ScholarAngew. Chem. Int. Ed. 39, 2752–2754 (2000);10.1002/1521-3773(20000804)39:15<2752::AID-ANIE2752>3.0.CO;2-5 CAS PubMed Web of Science® Google ScholarChem. Eur. J. 7, 1014–1027 (2001).10.1002/1521-3765(20010302)7:5<1014::AID-CHEM1014>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 61 P. Wieland and K. Miescher, Helv. Chim. Acta 33, 2215–2228 (1950); N. Cohen, Acc. Chem. Res. 9, 412–417 (1976).
- 62
U. Eder,
G. Sauer, and
R. Wiechert,
Angew. Chem.
83,
492–493
(1971);
10.1002/ange.19710831307 Google ScholarAngew. Chem., Int. Ed. Engl. 10, 496–497 (1971); Z. G. Hajos and D. R. Parrish, J. Org. Chem. 39, 1612–1615 (1974); J. Gutzwiller, P. Buchschacher, and A. Fürst, Synthesis 167–168 (1977); C. Agami and co-workers, Tetrahedron 40, 1031–1038 (1984); S. Terashima, S. Sato, and K. Koga, Tetrahedron Lett. 3469–3472 (1979).
- 63 Z. G. Hajos and D. R. Parrish, Org. Synth. 63, 26–36 (1984); P. Buchschacher and A. Fürst, Org. Synth. 63, 37–43 (1984); L. F. Tietze and J. Utecht, Synthesis 957–958 (1993).
- 64 H. Wynberg and R. Helder, Tetrahedron Lett. 4057–4060 (1975); K. Hermann and H. Wynberg, Helv. Chim. Acta 60, 2208–2212 (1977); K. Hermann and H. Wynberg, J. Org. Chem. 44, 2238–2244 (1979).
- 65 R. Alvarez and co-workers, Tetrahedron Lett. 40 7091–7094 (1999); M. Inagaki and co-workers, Bull. Chem. Soc. Jpn. 60, 4121–4126 (1987); R. S. E. Conn and co-workers, J. Org. Chem. 51, 4710–4711 (1986); P. Hodge, E. Khoshdel, and J. Waterhouse, J. Chem. Soc., Perkin Trans. 1 2205–2209 (1983); S. Colonna, A. Re, and H. Wynberg, J. Chem. Soc., Perkin Trans. 1 547–552 (1981); N. Kobayashi and K. Iwai, J. Polym. Sci., Polym. Chem. Ed. 18, 923–932 (1980); N. Kobayashi and K. Iwai, J. Am. Chem. Soc. 100, 7071–7072 (1978).
- 66 Y. Tamai and co-workers, Chem. Lett. 957–958 (1995); M. Yamaguchi, T. Shiraishi, and M. Hirama, Angew. Chem. 105, 1243–1245 (1993); Angew. Chem., Int. Ed. Engl. 32, 1176–1178 (1993); S. Aoki, S. Sasaki, and K. Koga, Heterocycles 33, 493–495 (1992); D. J. Cram and G. D. Y. Sogah, J. Chem. Soc., Chem. Commun. 625–628 (1981).
- 67
H. Sasai and co-workers,
J. Am. Chem. Soc.
117,
6194–6198
(1995);
T. Arai and co-workers,
Chem. Eur. J.
2,
1368–1372
(1996);
H. Sasai and co-workers,
Tetrahedron Lett.
37,
5561–5564
(1996);
M. Shibasaki and
H. Sasai,
Pure Appl. Chem.
68,
523–530
(1996);
M. Shibasaki,
H. Sasai, and
T. Arai,
Angew. Chem.
109,
1290–1310
(1997);
10.1002/ange.19971091204 Google ScholarAngew. Chem., Int. Ed. Engl. 36, 1236–1256 (1997);
- 68
M. Kanai and
M. Shibasaki, in
I. Ojima,
ed.,
Catalytic Asymmetric Synthesis,
2nd ed.,
Wiley-VCH,
Weinheim,
2000,
pp. 569–592.
10.1002/0471721506.ch18 Google Scholar
- 69 K. Yamada and co-workers, J. Org. Chem. 63, 3666–3672 (1998); E. Keller and co-workers, Tetrahedron: Asymmetry 8, 3403–3413 (1997).
- 70 G. Desimoni and co-workers, Tetrahedron 51, 4131–4144 (1995); G. Desimoni and co-workers, Gazz. Chim. Ital. 122, 269–273 (1992); G. Desimoni, P. Quadrelli, and P. P. Righetti, Tetrahedron 46, 2927–2934 (1990).
- 71 M. Sawamura, H. Hamashima, and Y. Ito, Tetrahedron 50, 4439–4454 (1994); M. Sawamura, H. Hamashima, and Y. Ito, J. Am. Chem. Soc. 114, 8295–8296 (1992); M. Sawamura, H. Hamashima, and Y. Ito, Tetrahedron: Asymmetry 2, 593–596 (1991).
- 72 N. End and co-workers, Chem. Eur. J. 4, 818–824 (1998).
- 73 J. Christoffers, U. Rößler, and T. Werner, Eur. J. Org. Chem. 701–705 (2000).
- 74
E. J. Corey and
A. Guzman-Perez,
Angew. Chem.
110,
402–415
(1998);
10.1002/(SICI)1521-3757(19980216)110:4<402::AID-ANGE402>3.0.CO;2-6 Google ScholarAngew. Chem. Int. Ed. 37, 388–401 (1998);10.1002/(SICI)1521-3773(19980302)37:4<388::AID-ANIE388>3.0.CO;2-V PubMed Web of Science® Google ScholarJ. Christoffers and A. Mann, Angew. Chem. 113, 4725–4732 (2001);10.1002/1521-3757(20011217)113:24<4725::AID-ANGE4725>3.0.CO;2-L Google ScholarAngew. Chem. Int. Ed. 40, 4591–4597 (2001).10.1002/1521-3773(20011217)40:24<4591::AID-ANIE4591>3.0.CO;2-V CAS PubMed Web of Science® Google Scholar
- 75 R. Ruel and P. Deslongchamps, Can. J. Chem. 68, 1917–1922 (1990); J.-F. Lavallée, G. Berthiaume, and P. Deslongchamps, Tetrahedron Lett. 27, 5455–5458 (1986); G. Berthiaume, J.-F. Lavallée, and P. Deslongchamps, Tetrahedron Lett. 27, 5451–5454 (1986); K. Krohn and co-workers, Liebigs Ann. Chem. 306–318 (1984).
- 76 J. Christoffers, Tetrahedron Lett. 39, 7083–7084 (1998); J. Christoffers and H. Oertling, Tetrahedron 56, 1339–1344 (2000).
- 77 C. Crévisy and co-workers, Bull. Soc. Chim. Fr. 132, 360–370 (1995); G. Berthiaume and P. Deslongchamps, Bull. Soc. Chim. Fr. 132, 371–383 (1995); P. Deslongchamps and B. L. Roy, Can. J. Chem. 64, 2068–2075 (1986).
- 78 A. Ullmann, H.-U. Reißig, and O. Rademacher, Eur. J. Org. Chem. 2541–2549 (1998).
- 79 M. A. Varner and R. B. Grossman, Tetrahedron 55, 13867–13886 (1999).
- 80 J. Bruhn, H. Heimgartner, and H. Schmid, Helv. Chim. Acta 62, 2630–2654 (1979).
- 81 H. Hagiwara and co-workers, Tetrahedron Lett. 38, 2103–2106 (1997); J.-F. Lavallée and P. Deslongchamps, Tetrahedron Lett. 28, 3457–3458 (1987).
- 82 J. Rodriguez, Synlett 505–518 (1999).
- 83 J.-F. Lavallée and co-workers, Can. J. Chem. 70, 1406–1426 (1992); C. Spino and P. Deslongchamps, Tetrahedron Lett. 31, 3969–3972 (1990); J.-F. Lavallée and P. Deslongchamps, Tetrahedron Lett. 29, 5117–5118 (1988).
- 84 R. B. Grossman, R. M. Rasne, and B. O. Patrick, J. Org. Chem. 64, 7173–7177 (1999); R. B. Grossman, D. S. Pendharkar, and B. O. Patrick, J. Org. Chem. 64, 7178–7183 (1999); R. B. Grossman, Synlett 13–21 (2001).
- 85
S. Saito and
H. Yamamoto,
Chem. Eur. J.
5,
1959–1962
(1999);
10.1002/(SICI)1521-3765(19990702)5:7<1959::AID-CHEM1959>3.0.CO;2-7 CAS Web of Science® Google ScholarG. Rassu and co-workers, Synlett 1333–1350 (1999).
- 86 K. Krohn and co-workers, Liebigs Ann. Chem. 471–477 (1994); G. A. Kraus and B. Roth, Tetrahedron Lett. 3129–3132 (1977).
- 87 J. Christoffers, Eur. J. Org. Chem. 759–761 (1998).
- 88 J. Christoffers, J. Org. Chem. 63, 4539–4540 (1998).
- 89 R. L. Funk and co-workers, J. Am. Chem. Soc. 115, 8849–8850 (1993); Y. Y. Ozols and co-workers, Chem. Heterocycl. Compd. (Engl. Transl.) 26, 58–62 (1990); U. Gruseck and M. Heuschmann, Chem. Ber. 120, 2065–2074 (1987); B. B. Snider, Tetrahedron Lett. 21, 1133–1136 (1980).
- 90 J. Christoffers and A. Mann, Eur. J. Org. Chem. 2511–2514 (1999); J. Christoffers and A. Mann, Eur. J. Org. Chem. 1977–1982 (2000).