Cyclization—Homogeneous
Joseph J. Kaloko
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorStephen J. Chaterpaul
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorYu-Han Gary Teng
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorChi-Feng Lin
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorChih-Wei Chien
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorIwao Ojima
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorJoseph J. Kaloko
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorStephen J. Chaterpaul
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorYu-Han Gary Teng
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorChi-Feng Lin
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorChih-Wei Chien
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorIwao Ojima
State University of New York at Stony Brook, Stony Brook, New York
Search for more papers by this authorAbstract
Development of highly efficient catalytic processes for the synthesis of natural and unnatural compounds of medicinal interest or useful as intermediates for functional materials is a central focus in modern organic synthesis. One of the most efficient approaches to such methodology developments is to apply transition-metal catalyzed cyclization reactions for the transformations of simple starting materials into monocyclic, bicyclic, and polycyclic scaffolds that can be further elaborated into specific targets. This article concisely summarizes recent advances in the cyclizations promoted by homogeneous catalysts, including various carbocyclizations, carbonylative carbocyclizations, cyclohydrocarbonylations, intramolecular hydrosilylations, and silylformations, compiling relevant references up to late 2008. Among these catalytic cyclization processes, the carbocyclization and carbonylative carbocyclization are extremely important and useful reactions for the syntheses of a variety of carbocyclic and heterocyclic compounds. Cascade carbocyclization is a powerful method, providing a rapid access to polycyclic skeletons in one step. Cyclohydrocarbonylation is another powerful catalytic cyclization process, which finds a host of applications in organic syntheses. Intramolecular hydrosilylations and silylformations also provide unique methods for a variety of organic syntheses. Accordingly, catalytic cyclization reactions not only serve as highly useful synthetic methods in laboratories but also have high potential as future industrial processes.
Bibliography
- 1 T. Shibata, Adv. Synth. Catal. 348, 2328–2336 (2006).
- 2 S. E. Gibson, S. E. Lewis, and N. Mainolfi, J. Organomet. Chem. 689, 3873–3890 (2004).
- 3 P. A. Evans and D. K. Leahy, Chemtracts 16, 567–578 (2003).
- 4
M. Fujiwara and
I. Ojima, in
P. A. Evans, ed.,
Modern Rhodium-Catalyzed Organic Reactions,
Wiley-VCH Verlag GmbH & Co.
KgaA, Weinheim, Germany,
2005,
pp. 129–149.
10.1002/3527604693.ch7 Google Scholar
- 5 I. Ojima, Pure Appl. Chem. 74, 159–166 (2002).
- 6 J. E. Robinson, in P. A. Evans, ed., Modern Rhodium-Catalyzed Organic Reactions, Wiley-VCH Verlag GmbH & Co., Weinheim, Germany 2005, pp. 241–262.
- 7 G. Varchi and I. Ojima, Curr. Org. Chem. 10, 2485–2506 (2006).
- 8 A. K. Roy, Adv. Organomet. Chem. 55, 1–59 (2008).
- 9 P. Cao, B. Wang, and X. Zhang, J. Am. Chem. Soc. 122, 6490–6491 (2000).
- 10 P. Cao and X. Zhang, Angew. Chem. 39, 4104–4106 (2000).
- 11
A. Lei,
M. He,
S. Wu, and
X. Zhang,
Angew. Chem. Int. Ed.
41,
3457–3460
(2002).
10.1002/1521-3773(20020916)41:18<3457::AID-ANIE3457>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 12 A. Lei, M. He, and X. Zhang, J. Am. Chem. Soc. 124, 8198–8199 (2002).
- 13
A. Lei,
J. P. Waldkirch,
M. He, and
X. Zhang,
Angew. Chem. Int. Ed.
41,
4526–4529
(2002).
10.1002/1521-3773(20021202)41:23<4526::AID-ANIE4526>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- 14 P. A. Evans, K. W. Lai, and J. R. Sawyer, J. Am. Chem. Soc. 127, 12466–12467 (2005).
- 15 T. Shibata, Y. Arai, and Y. Tahara, Org. Lett. 7, 4955–4957 (2005).
- 16
E. J. Corey and
A. Guzman-Perez,
Angew. Chem., Int. Ed.
37,
388–401
(1998).
10.1002/(SICI)1521-3773(19980302)37:4<388::AID-ANIE388>3.0.CO;2-V PubMed Web of Science® Google Scholar
- 17 T. Shibata and Y. Tahara, J. Am. Chem. Soc. 128, 11766–11767 (2006).
- 18 B. Breit, Acc. Chem. Res. 36, 264–275 (2003).
- 19 C. K. Rofer-DePoorter, Chem. Rev. 81, 447–474 (1981).
- 20 A. H. Wolfgang, Angew. Chem., Int. Ed. 21(2), 117–130 (1982).
- 21 J. U. Rhee and M. J. Krische, J. Am. Chem. Soc. 128, 10674–10675 (2006).
- 22 J. U. Rhee, R. Jones, and M. Krische, Synthesis 3427–3430 (2007).
- 23 H. Y. Jang, F. W. Hughes, H. Gong, J. Zhang, J. S. Brodbelt, and M. J. Krische, J. Am. Chem. Soc. 127, 6174–6175 (2005).
- 24 H. Y. Jang and M. J. Krische, J. Am. Chem. Soc. 126, 7875–7880 (2004).
- 25 R. R. Huddleston and M. J. Krische, Org. Lett. 5, 1143–1146 (2003).
- 26 P. J. Brothers, Prog. Inorg. Chem. 28, 1–61 (1981).
- 27 H.-Y. Jang, R. R. Huddleston, and M. J. Krische, J. Am. Chem. Soc. 124, 15156–15157 (2002).
- 28 N. S. Perch and R. A. Widenhoefer, J. Am. Chem. Soc. 121, 6960–6961 (1999).
- 29 N. S. Perch, T. Pei, and R. A. Widenhoefer, J. Org. Chem. 65, 3836–3845 (2000).
- 30 R. A. Widenhoefer, Acc. Chem. Res. 35, 905–913 (2002).
- 31 H. Chakrapani, C. Liu, and R. A. Widenhoefer, Org. Lett. 5 (2), 157–159 (2003).
- 32 H.-Y. Jang and M. J. Krische, Acc. Chem. Res. 37, 653–661 (2004).
- 33 K. Tamao, K. Kobayashi, and Y. Ito, Synlett 539–546 (1992).
- 34 I. Ojima, J. Zhu, E. S. Vidal, and D. F. Kass, J. Am. Chem. Soc. 120, 6690–6697 (1998).
- 35 I. Ojima, R. J. Donovan, and W. R. Shay, J. Am. Chem. Soc. 114, 6580–6582 (1992).
- 36 I. Ojima, A. T. Vu, S. Y. Lee, J. V. McCullagh, A. C. Moralee, M. Fujiwara, and T. H. Hoang, J. Am. Chem. Soc. 124, 9164–9174 (2002).
- 37 I. Ojima, A. T. Vu, J. V. McCullagh, and A. Kinoshita, J. Am. Chem. Soc. 121, 3230–3231 (1999).
- 38 I. Ojima and S. Y. Lee, J. Am. Chem. Soc. 122, 2385–2386 (2000).
- 39 I. Ojima, J. V. McCullagh, W. R. Shay, J. Organomet. Chem. 521, 421–423 (1996).
- 40 T. Shibata, S. Kadowaki, and K. Takagi, Organometallics 23, 4116–4120 (2004).
- 41 R. A. Widenhoefer and M. A. DeCarli, J. Am. Chem. Soc. 120, 3805–3806 (1998).
- 42 R. A. Widenhoefer and C. N. Stengone, J. Org. Chem. 64, 8681–8692 (1999).
- 43 R. A. Widenhoefer and A. Vadehra, Tetrahedron Lett. 40, 8499–8502 (1999).
- 44 N. S. Perch and R. A. Widenhoefer, J. Am. Chem. Soc. 121, 6960–6961 (1999).
- 45 T. Pei and R. A. Widenhoefer, Org. Lett. 2, 1469–1471 (2000).
- 46 C. N. Stengone and R. A. Widenhoefer, Tetrahedron Lett. 40, 1451–1454 (1999).
- 47 N. S. Perch, T. Pei, and R. A. Widenhoefer, J. Org. Chem. 65, 3836–3845 (2000).
- 48 T. Pei and R. A. Widenhoefer, Tetrahedron Lett. 41, 7597–7600 (2000).
- 49 X. Wang, H. Chakrapani, C. N. Stengone, and R. A. Widenhoefer, J. Org. Chem. 66, 1755–1760 (2001).
- 50 T. Pei and R. A. Widenhoefer, J. Org. Chem. 66, 7639–7645 (2001).
- 51 X. Wang, S. Z. Stankovich, and R. A. Widenhoefer, Organometallics 21, 901–905 (2002).
- 52 G. A. Molander and P. J. Nichols, J. Am. Chem. Soc. 117, 4415–4416 (1995).
- 53 G. A. Molander and J. O. Hoberg, J. Am. Chem. Soc. 114, 3123–3125 (1992).
- 54 G. A. Molander and P. J. Nichols, J. Org. Chem. 61, 6040–6043 (1996).
- 55 G. A. Molander, P. J. Nichols, and B. C. Noll, J. Org. Chem. 63, 2292–2306 (1998).
- 56 G. A. Molander and W. H. Retsch, J. Org. Chem. 63, 5507–5516 (1998).
- 57 G. A. Molander and J. A. C. Romero, Chem. Rev. 102, 2161–2186 (2002).
- 58 G. A. Molander and J. A. C. Romero, Tetrahedron 61, 2631–2643 (2005).
- 59 G. A. Molander and W. H. Retsch, J. Am. Chem. Soc. 119, 8817–8825 (1997).
- 60 E. Schmitz, U. Heuck, and D. Habisch, J. Prakt. Chem. 471–478 (1976).
- 61 E. Schmitz, R. Urban, U. Heuck, G. Zimmermann, and E. Grüdemann, J. Prakt. Chem. 185–192 (1976).
- 62 R. Grigg, T. R. B. Mitchell, and A. Ramasubbu, J. Chem. Soc., Chem. Commun. 27–28 (1980).
- 63 R. Grigg, J. F. Malone, T. R. B. Mitchell, A. Ramasubbu, and R. M. Scott, J. Chem. Soc., Perkin Trans. 1 1745–1754 (1984).
- 64 M. A. Yukiyoshi Terada and A. Nishida, Angew. Chem., Int. Ed. 43, 4063–4067 (2004).
- 65 D. Necas, D. Ramella, I. Rudovsk, and M. Kotora, J. Mol. Catal. A: Chem. 274(1–2), 78–82 (2007).
- 66 J. H. Christian Böing, G. Franciò, and W. Leitner, Adv. Synth. Catal. 350, 1073–1080 (2008).
- 67 W. D. Kerber and M. R. Gagne, Org. Lett. 7, 3379–3381 (2005).
- 68 J. A. Feducia, A. N. Campbell, M. Q. Doherty, and M. R. Gagne, J. Am. Chem. Soc. 128, 13290–13297 (2006).
- 69 A. Paul and T. J. W. Wender, Angew. Chem., Int. Ed. 41, 4550–4553 (2002).
- 70 P. A. Wender, C. O. Husfeld, E. Langkopf, and J. A. Love, J. Am. Chem. Soc. 120, 1940–1941 (1998).
- 71 P. A. Wender, L. O. Haustedt, J. Lim, J. A. Love, T. J. Williams, and J.-Y. Yoon, J. Am. Chem. Soc. 128, 6302–6303 (2006).
- 72 P. A. Wender, A. G. Correa, Y. Sato, and R. Sun, J. Am. Chem. Soc. 122, 7815–7816 (2000).
- 73 I. Ojima, M. Tzamarioudaki, Z. Li, and R. J. Donovan, Chem. Rev. 96, 635–662 (1996).
- 74 S. Saito and Y. Yamamoto, Chem. Rev. 100, 2901–2916 (2000).
- 75 M. Lautens, W. Klute, and W. Tam, Chem. Rev. 96 (1), 49–92 (1996).
- 76 H. Kinoshita, H. Shinokubo, and K. Oshima, J. Am. Chem. Soc. 125, 7784–7785 (2003).
- 77 K. Tanaka, K. Toyoda, A. Wada, K. Shirasaka, and M. Hirano, Chem. Eur. J. 11, 1145–1156 (2005).
- 78 G. Bringmann, M. Breuning, and S. Tasler, Synthesis, 525–558 (1999).
- 79
I. Ojima, ed.,
Catalytic Asymmetric Synthesis.
2nd ed.,
Wiley-VCH,
New York,
2000.
10.1002/0471721506 Google Scholar
- 80 Z. Hua, V. C. Vassar, H. Choi, and I. Ojima, PNAS 101, 5411–5416 (2004).
- 81 T. Shibata, T. Fujimoto, K. Yokota, and K. Takagi, J. Am. Chem. Soc. 126, 8382–8383 (2004).
- 82 K. Tanaka, G. Nishida, A. Wada, and K. Noguchi, Angew. Chem., Int. Ed. 43, 6510–6512 (2004).
- 83 A. Gutnov, B. Heller, C. Fischer, H.-J. Drexler, A. Spannenberg, B. Sundermann, and C. Sundermann, Angew. Chem., Int. Ed. 43, 3795–3797 (2004).
- 84 K. Tanaka, G. Nishida, M. Ogino, M. Hirano, and K. Noguchi, Org. Lett. 7, 3119–3121 (2005).
- 85 Y.-H. Wang, Z.-K. Zhang, F.-M. Yang, Q.-Y. Sun, H.-P. He, Y.-T. Di, S.-Z. Mu, Y. Lu, Y. Chang, Q.-T. Zheng, M. Ding, J.-H. Dong, and X.-J. Hao, J. Nat. Prod. 70, 1458–1461 (2007).
- 86 S. F. Seibert, E. Eguereva, A. Krick, S. Kehraus, E. Voloshina, G. Raabe, J. Fleischhauer, E. Leistner, M. Wiese, H. Prinz, K. Alexandrov, P. Janning, H. Waldmann, and G. M. Konig, Org. Biomol. Chem. 4, 2233–2240 (2006).
- 87 B. Witulski, A. Zimmermann, and N. D. Gowans, Chem. Comm. 2984–2985 (2002).
- 88 B. Witulski and A. Zimmermann, Synlett 1855–1859 (2002).
- 89 K. Tanaka, T. Osaka, K. Noguchi, and M. Hirano, Org. Lett. 9, 1307–1310 (2007).
- 90 S. Ma, Chem. Rev. 105, 2829–2872 (2005).
- 91 L. K. Sydnes, Chem. Rev. 103, 1133–1150 (2003).
- 92 R. Zimmer, C. U. Dinesh, E. Nandanan, and F. A. Khan, Chem. Rev. 100, 3067–3126 (2000).
- 93 K. M. Brummond, H. Chen, K. D. Fisher, A. D. Kerekes, B. Rickards, P. C. Sill, and S. J. Geib, Org. Lett. 4, 1931–1934 (2002).
- 94 K. M. Brummond, T. O. Painter, D. A. Probst, and B. Mitasev, Org. Lett. 9, 347–349 (2007).
- 95 P. A. Wender, F. Glorius, C. O. Husfeld, E. Langkopf, J. A. Love, J. Am. Chem. Soc. 121, 5348–5349 (1999).
- 96 P. A. Wender, F. Glorius, C. O. Husfeld, E. Langkopf, and J. A. Love, J. Am. Chem. Soc. 121, 5348–5349 (1999).
- 97 P. A. Wender, T. E. Jenkins, and S. Suzuki, J. Am. Chem. Soc. 117, 1843–1844 (1995).
- 98
M. Murakami,
M. Ubukata,
K. I. tami, and
Y. Ito,
Angew. Chem., Int. Ed.
37,
2248–2250
(1998).
10.1002/(SICI)1521-3773(19980904)37:16<2248::AID-ANIE2248>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 99 A. d. Meijere and F. E. Meyer, Angew. Chem., Int. Ed. Engl. 33, 2379–2411 (1994).
- 100 A. Heumann and M. Reglier, Tetrahedron, 9289–9346 (1996).
- 101 I. P. Beletskaya and A. V. Cheprakov, Chem. Rev. 100, 3009–3066 (2000).
- 102 J.-F. Nguefack, V. Bolitt, and D. Sinou, Tetrahedron Lett. 37, 59–62 (1996).
- 103 L. E. Overman, D. J. Ricca, and V. D. Tran, J. Am. Chem. Soc. 115, 2042–2044 (1993).
- 104 D. J. Kucera, S. J. O'Connor, and L. E. Overman, J. Org. Chem. 58, 5304–5306 (1993).
- 105 C. Y. Hong, N. Kado, and L. E. Overman, J. Am. Chem. Soc. 115, 11028–11029 (1993).
- 106 C. Y. Hong and L. E. Overman, Tetrahedron Lett. 35, 3453–3456 (1994).
- 107 T. Sugihira, C. Coperet, Z. Owczarcyk, L. S. Harring, and E. Negishi, J. Am. Chem. Soc. 116, 7923–7924 (1994).
- 108 F. Lutz, K. K. Tietze, and Thomas Raschke, Chem. Eur. J. 8, 401–407 (2002).
- 109 S. M. Abdur Rahman, M. Sonoda, K. Itahashi, and Y. Tobe, Org. Lett. 5, 3411–3414 (2003).
- 110 J. L. Jeffrey and R. Sarpong, Tetrahedron Lett. 50, 1969–1972 (2009).
- 111 M. G. Steinmetz and B. S. Udayakumar, J. Organomet. Chem. 378, 1–15 (1989).
- 112 K. Tamao, K. Maeda, T. Tanaka, and Y. Ito, Tetrahedron Lett. 29, 6955–6956 (1988).
- 113 S. E. Denmark and W. Pan, Org. Lett. 4, 4163–4166 (2002).
- 114 S. Diez-Gonzalez and L. Blanco, J. Organomet. Chem. 693, 2033–2040 (2008).
- 115 T. Sudo, N. Asao, and Y. Yamamoto, J. Org. Chem. 65, 8919–8923 (2000).
- 116 T. Sudo, N. Asao, and Y. Yamamoto, J. Org. Chem. 64, 2494–2499 (1999).
- 117 N. Asao, T. Sudo, and Y. Yamamoto, J. Org. Chem. 61, 7654–7655 (1996).
- 118 B. M. Trost and Z. T. Ball, J. Am. Chem. Soc. 125(1), 30–31 (2003).
- 119 L. W. Chung, Y.-D. Wu, B. M. Trost, and Z. T. Ball, J. Am. Chem. Soc. 125, 11578–11582 (2003).
- 120 S. E. Denmark and W. Pan, Org. Lett. 3(1), 61–64 (2001).
- 121 L. A. Paquette, J. Yang, and Y. O. Long, J. Am. Chem. Soc. 124, 6542–6543 (2001).
- 122 J. Yang, Y. O. Long, and L. A. Paquette, J. Am. Chem. Soc. 125, 1567–1574 (2003).
- 123 J. A. Marshall, and K. C. Ellis, Org. Lett. 5, 1729–1732 (2003).
- 124
I. Ojima,
Z. Li, and
J. Zhu, in
The Chemistry of Organic Silicon Compounds,
John Wiley & Sons,
Chichester, UK,
1998,
Vol. 2,
pp. 1687–1792.
10.1002/0470857250.ch29 Google Scholar
- 125 K. Tamao, T. Tohma, N. Inui, O. Nakamura, and Y. Ito, Tetrahedron Lett. 31, 7333–7336 (1990).
- 126 S. H. Bergens, P. Noheda, J. Whelan, and B. Bosnich, J. Am. Chem. Soc. 114, 2121–2128 (1992).
- 127 S. H. Bergens, P. Noheda, J. Whelan, and B. Bosnich, J. Am. Chem. Soc. 114, 2128–2135 (1992).
- 128 R. W. Barnhart, X. Wang, P. Noheda, S. H. Bergens, J. Whelan, and B. Bosnich, Tetrahedron 50, 4335–4346 (1994).
- 129 X. Wang and B. Bosnich, Organometallics 13, 4131–4133 (1994).
- 130 M. J. Zacuto, S. J. O. Malley, and J. L. Leighton, Tetrahedron 59, 8889–8900 (2003).
- 131 M. Zacuto and J. L. Leighton, J. Am. Chem. Soc. 122, 8587–8588 (2003).
- 132 M. J. Zacuto, S. J. O'Malley, and J. L. Leighton, J. Am. Chem. Soc. 124, 7890–79891 (2002).
- 133 J. T. Spletstoser, M. Zacuto, and J. L. Leighton, Org. Lett. 10, 5593–5596 (2008).
- 134
S. J. O'Malley and
J. L. Leighton,
Angew. Chem., Int. Ed.
40,
2915–2917
(2001).
10.1002/1521-3773(20010803)40:15<2915::AID-ANIE2915>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- 135 S. E. Denmark and T. Kobayashi, J. Org. Chem 68, 5153–5169 (2003).
- 136 W.-H. Chiou, S. Y. Lee, and I. Ojima, Can. J. Org 83, 681–692 (2005).
- 137 W.-H. Chiou, N. Mizutani, and I. Ojima, J. Org. Chem 72, 1871–1882 (2007).
- 138 W.-H. Chiou, A. Schoenfelder, L. Sun, A. Mann, and I. Ojima, J. Org. Chem 72, 9418–9425 (2007).
- 139 M. Vasylyev and H. Alper, Angew. Chem., Int. Ed. 48, 1287–1290 (2009).
- 140 B. Gabriele, P. Plastina, G. Salerno, R. Mancuso, and M. Costa, Org. Lett. 9, 3319–3322 (2007).
- 141 B. Gabriele, G. Salerno, L. Veltri, R. Mancuso, Z. Li, A. Crispini, and A. Bellusci, J. Org. Chem 71, 7895–7898 (2006).
- 142 T. Morimoto, M. Fujioka, K. Fuji, K. Tsutsumi, and K. Kakiuchi, Pure Appl. Chem. 80, 1079–1087 (2008).
- 143 T. Morimoto, K. Fuji, K. Tsutsumi, K. Kakiuchi, J. Am. Chem. Soc. 124, 3806–3807 (2002).
- 144 T. Morimoto, M. Fujioka, K. Fuji, K. Tsutsumi, and K. Kakiuchi, Chem. Lett. 32, 154–155 (2002).
- 145 I. U. Khand, G. R. Knox, P. L. Pauson, and W. E. Watts, J. Chem. Soc., Perkin Trans. 1, 975–977 (1973).
- 146 I. U. Khand, G. R. Knox, P. L. Pauson, W. E. Watts, and M. I. Foreman, J. Chem. Soc., Perkin Trans. 1, 977–981 (1973).
- 147 N. E. Schore and M. C. Croudace, J. Org. Chem. 46, 5436–5438 (1981).
- 148 T. Shibata, Adv. Synth. Catal. 348, 2328–2336 (2006).
- 149 K. M. Brummond and J. L. Kent, Tetrahedron 56, 3263–3283 (2006).
- 150 M. K. Pallerla and J. M. Fox, Org. Lett. 9, 5625–5628 (2007).
- 151 K. M. Brummond and D. Gao, Org. Lett., 5, 3491–3494 (2007).
- 152 K. M. Brummond, D. Chen, and M. M. Davis, J. Org.Chem. 73, 5064–5068 (2008).
- 153 K. M. Brummond, H. Chen, K. D. Fisher, A. D. Kerekes, B. Rickards, P. C. Sill, and S. J. Geib, Org. Lett. 4, 1931–1934 (2002).
- 154 K. M. Brummond, A. D. Kerekes, and H. Wan, J. Org. Chem. 67, 5156–5163 (2002).
- 155 K. M. Brummond and D. Chen, Org. Lett. 10, 705–708 (2008).
- 156 F. Inagaki and C. Mukai, Org. Lett. 8, 1217–1220 (2008).
- 157 Y. Hayashi, N. Miyakoshi, S. Kitagaki, and C. Mukai, Org. Lett. 10, 2385–2388 (2008).
- 158 P. A. Wender, N. M. Deschamps, and G. G. Gamber, Angew. Chem., Int. Ed. 42, 1853–1857 (2003).
- 159 P. A. Wender, N. M. Deschamps, and T. J. Williams, Angew. Chem., Int. Ed. 43, 3076–3079 (2004).
- 160 P. A. Wender, M. P. Croatt, N. M. Deschamps, Angew. Chem., Int. Ed. 45, 2459–2462 (2006).
- 161 P. A. Wender, M. P. Croatt, and N. M. Deschamps, J. Am. Chem. Soc. 126, 5948–5949 (2006).
- 162 P. A. Wender, G. G. Gamber, R. D. Hubbard, and L. Zhang, J. Am. Chem. Soc. 124, 2876–2877 (2002).
- 163 H. A. Wegner, A. De Meijere, and P. A. Wender, J. Am. Chem. Soc. 127, 6530–6531 (2005).
- 164 Y. Wang, J. Wang, J. Su, F. Huang, L. Jiao, Y. Liang, D. Yang, S. Zhang, P. A. Wender, and Z.-X. Yu, J. Am. Chem. Soc. 129, 10060–10061 (2007).
- 165 G. Mehta and A. Srikrishna, Chem. Rev. 97, 671–720 (1997).
- 166 L. Jiao, C. Yuan, and Z.-X. Yu, J. Am. Chem. Soc. 130, 4421–4430 (1997).
- 167 P. A. Wender, N. M. Deschamps, and R. Sun, Angew. Chem., Int. Ed. 45, 3957–3960 (2006).
- 168 F. Lopez and B. L. Feringa, Asymm. Syn. 78–83 (2007).
- 169 L. A. Arnold, R. Naasz, A. J. Minnaard, and B. L. Feringa, J. Org. Chem. 67, 7244–7254 (2002).
- 170 D. A. Evans, T. Rovis, and J. S. Johnson, Pure Appl. Chem. 71, 1407–1415 (1999).
- 171 A. Alexakis, Trans. Metals Org. Syn. 1, 504–513 (1998).
- 172 G. H. Posner, Org. React. (New York) 19, 1–113 (1972).
- 173 T. Hayashi, Synlett 879–887 (2001).
- 174 T. G. Baik, A. L. Luis, L. C. Wang, and M. J. Krische, J. Am. Chem. Soc. 123, 5112–5113 (2001).
- 175 R. Huddleston, H.-Y. Jang, and M. J. Krische, J. Am. Chem. Soc. 125, 11488–11489 (2003).
- 176 R. R. Huddleston and M. J. Krische, Synlett, 12–21 (2003).
- 177 L. C. Wang, H. Y. Jang, Y. Roh, V. Lynch, A. J. Schultz, X. Wang, and M. J. Krische, J. Am. Chem. Soc. 124, 9448–9453 (2002).
- 178 P. K. Koech and M. J. Krische, Org. Lett. 6, 691–694 (2004).
- 179 S. Chow, M. T. Fletcher, L. K. Lambert, O. P. Gallagher, C. J. Moore, B. W. Cribb, P. G. Allsopp, and W. Kitching, J. Org. Chem. 70, 1808–1827 (2005).
- 180 H. W. Lam and P. M. Joensuu, Org. Lett. 7, 4225–4228 (2005).
- 181 H. W. Lam, G. J. Murray, and J. D. Firth, Org. Lett. 7, 5743–5746 (2005).
- 182 B. H. Lipshutz, B. Amorelli, and J. B. Unger, J. Am. Chem. Soc. 130, 14378–14379 (2008).
- 183 D. F. Cauble, J. D. Gipson, and M. J. Krische, J. Am. Chem. Soc. 125, 1110–1111 (2003).
- 184 T. Hayashi, M. Takahashi, Y. Takaya, and M. Ogasawara, J. Am. Chem. Soc. 124, 5052–5058 (2002).
- 185 H. E. Zimmerman and M. D. Traxler, J. Am. Chem. Soc. 79, 1920–1923 (1957).
- 186 B. M. Bocknack, L.-C. Wang, M. J. Krische, and J. Halpern, Proc. Natl. Acad. Sci. USA 101, 5421–5424 (2004).
- 187 M. Kitamura, T. Miki, K. Nakano, and R. Noyori, Tetrahedron Lett. 37, 5141–5144 (1996).
- 188 B. L. Feringa, R. Naasz, R. Imbos, and L. A. Arnold, Mod. Organocopper Chem. 224–258 (2002).
- 189 R. Imbos, A. J. Minnaard, and B. L. Feringa, J. Am. Chem. Soc. 124, 184–185 (2002).
- 190 B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos, A. H. M. de Vries, Angew. Chem., Int. Ed. 36, 2620–2623 (1997).
- 191 A. Alexakis, G. P. Trevitt, and G. Bernardinelli, J. Am. Chem. Soc. 123, 4358–4359 (2001).
- 192 K. Agapiou, D. F. Cauble, and M. J. Krische, J. Am. Chem. Soc. 126, 4528–4529 (2004).
- 193 B. L. Feringa, Acc. Chem. Res. 33, 346–353 (2000).
- 194 P. Chiu, C.-P. Szeto, Z. Geng, and K.-F. Cheng, Org. Lett. 3, 1901–1903 (2001).
- 195 H. W. Lam and P. M. Joensuu, Org. Lett. 7, 4225–4228 (2005).