Abstract
Vitamin B12 and its coenzyme forms are prominent cobalt-containing cofactors and part of the larger class of the natural tetrapyrrolic metal complexes. Such cobalt corrinoids are an important component of human nutrition, and many (other) forms of life also depend upon them. Cobalt-containing corrinoid cofactors play basic roles in carbon fixation and energy metabolism in anaerobes, as well as in the carbon metabolism in a broad range of lower organisms. Microorganisms developed unique B12 biosynthetic means and, indeed, are the only natural sources of the B12 derivatives. Other organisms have evolved intricate strategies for the uptake and transport of the corrinoids.
The cofactor functions of cobalt corrinoids are a result of their extraordinary organometallic chemistry under physiological conditions and their redox chemistry. Coenzyme B12 (a reversible source of a free radical), methylcobalamin (a versatile methylating agent), and reduced (supernucleophilic or radicaloid) corrinoids are cofactors in a range of enzymes. These enzymes channel the specific reactivity of B12 cofactors into biological catalysis of unique reactions, involving radicals and organometallic intermediates. B12-dependent enzymes thus pose still puzzling structural and mechanistic questions, as does the recently discovered interaction of B12 cofactors with RNA.
Bibliography
- 1 J. J. R. F. da Silva and R. J. P. Williams, The Biological Chemistry of the Elements, Clarendon Press, Oxford, 1991.
- 2
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins.
Wiley-VCH,
Weinheim,
1998.
10.1002/9783527612192 Google Scholar
- 3 R. Banerjee, ed., Chemistry and Biochemistry of B12, John Wiley & Sons, New York, 1999.
- 4 S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, Calif., 1994.
- 5 B. A. Brennan, G. Alms, M. J. Nelson, L. T. Durney, and R. C. Scarrow, J. Am. Chem. Soc. 118, 9194–9195 (1996).
- 6
A. R. Battersby, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 47–61.
10.1002/9783527612192.ch02 Google Scholar
- 7 M. J. Warren, E. Raux, H. L. Schubert, and J. C. Escalante-Semerena, Nat. Prod. Rep. 19, 390–412 (2002).
- 8 A. Eschenmoser, Angew. Chem. Int. Ed. 27, 5–39 (1988).
- 9
B. Kräutler, in
A. Sigel,
H. Sigel, and
R. K. O. Sigel, eds.,
Metal–Carbon Bonds in Enzymes and Cofactors,
Vol. 6,
Royal Society of Chemistry,
Cambridge,
2009,
pp. 1–51.
10.1039/9781847559333-00001 Google Scholar
- 10
R. G. Matthews, in
A. Sigel,
H. Sigel, and
R. K. O. Sigel, eds.,
Metal–Carbon Bonds in Enzymes and Cofactors,
Vol. 6,
Royal Society of Chemistry,
Cambridge,
2009,
pp. 53–114.
10.1039/9781847559333-00053 Google Scholar
- 11
A. Sigel,
H. Sigel, and
R. K. O. Sigel, eds.,
Metal–Carbon Bonds in Enzymes and Cofactors,
Royal Society of Chemistry,
Cambridge,
2009.
10.1039/9781847559333 Google Scholar
- 12 D. Dolphin, ed., B12, Vol. I, John Wiley & Sons, New York, 1982.
- 13 K. L. Brown, Chem. Rev. 105, 2075–2149 (2005).
- 14 K. Folkers, in D. Dolphin, ed., B12, Vol. I, John Wiley & Sons, New York, 1982, pp. 1–15.
- 15 J. P. Glusker, in D. Dolphin, ed., B12. Vol. I, John Wiley & Sons, New York, 1982, pp. 23–106.
- 16 C. Kratky and B. Kräutler, in R. Banerjee, ed., Chemistry and Biochemistry of B12. John Wiley & Sons, New York, 1999, pp. 9–41.
- 17 L. Randaccio, S. Geremia, G. Nardin, and J. Würges, Coord. Chem. Rev. 250, 1332–1350 (2006).
- 18
B. Kräutler, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12 Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 3–43.
10.1002/9783527612192 Google Scholar
- 19 P. A. Butler, M.-O. Ebert, A. Lyskowski, K. Gruber, C. Kratky, and B. Kräutler, Angew. Chem Int. Ed. 45, 989–993 (2006).
- 20
B. Kräutler, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins.
Wiley-VCH,
Weinheim,
1998,
pp. 517–521.
10.1002/9783527612192.ch34 Google Scholar
- 21 E. Stupperich and H. J. Eisinger, Arch. Microbiol. 151, 372–377 (1989).
- 22
R. Konrat,
M. Tollinger, and
B. Kräutler, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 349–368.
10.1002/9783527612192.ch23 Google Scholar
- 23 M. F. Summers, L. G. Marzilli, and A. Bax, J. Am. Chem. Soc. 108, 4285–4294 (1986).
- 24 S. Van Doorslaer, G. Jeschke, B. Epel, D. Goldfarb, R. A. Eichel, B. Kräutler, and A. Schweiger, J. Am. Chem. Soc. 125, 5915–5927 (2003).
- 25 B. Kräutler, W. Keller, and C. Kratky, J. Am. Chem. Soc. 111, 8936–8938 (1989).
- 26 J. Halpern, Science 227, 869–875 (1985).
- 27
G. Kontaxis,
D. Riether,
R. Hannak,
M. Tollinger, and
B. Kräutler,
Helv. Chim. Acta
82,
848–869
(1999).
10.1002/(SICI)1522-2675(19990609)82:6<848::AID-HLCA848>3.0.CO;2-L CAS Web of Science® Google Scholar
- 28
R. G. Finke, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 383–402.
10.1002/9783527612192.ch25 Google Scholar
- 29 B. Kräutler, in R. Banerjee, ed., Chemistry and Biochemistry of B12, John Wiley & Sons, New York, 1999, pp. 315–339.
- 30 J. M. Pratt, Inorganic Chemistry of Vitamin B12, Academic Press, New York, 1972.
- 31 B. Kräutler, Helv. Chim. Acta 70, 1268–1278 (1987).
- 32
B. Kräutler and
S. Ostermann, in
K. M. Kadish,
K. M. Smith, and
R. Guilard, eds.,
The Porphyrin Handbook,
Vol. 11,
Elsevier Science,
Oxford,
2003,
pp. 229–276.
10.1016/B978-0-08-092385-7.50013-6 Google Scholar
- 33 P. J. Craig and F. Glockling, eds., The Biological Alkylation of Heavy Elements, Royal Society of Chemistry, London, 1988.
- 34
H. Mosimann and
B. Kräutler,
Angew. Chem. Int. Ed.
39,
393–200
(2000).
10.1002/(SICI)1521-3773(20000117)39:2<393::AID-ANIE393>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 35 R. D. Woodyer, G. Li, H. Zhao, and W. A. van der Donk, Chem. Commun., 359–361 (2007).
- 36
P. K. Galliker,
O. Gräther,
M. Rümmler,
W. Fitz, and
D. Arigoni, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 447–458.
10.1002/9783527612192.ch29 Google Scholar
- 37 J. M. Pratt, in D. Dolphin, ed., B12, Vol. I, John Wiley & Sons, New York, 1982, pp. 325–392.
- 38 R. J. Sension, D. A. Harris, and A. G. Cole, J. Phys. Chem. B 109, 21954–21962 (2005).
- 39 D. Lexa and J. M. Savéant, Acc. Chem. Res. 16, 235–243 (1983).
- 40 L. Auer, C. Weymuth, and R. Scheffold, Helv. Chim. Acta 76, 810–818 (1993).
- 41 S. Busato and R. Scheffold, Helv. Chim. Acta 77, 92–99 (1994).
- 42 R. Scheffold, S. Abrecht, R. Orlinski, H. R. Ruf, P. Stamouli, O. Tinembart, L. Walder, and C. Weymuth, Pure Appl. Chem. 59, 363–372 (1987).
- 43 B. Steiger, A. Ruhe, and L. Walder, Anal. Chem. 62, 759–766 (1990).
- 44 H. Shimakoshi, M. Tokunaga, T. Baba, and Y. Hisaeda, Chem. Commun., 1806–1807 (2004).
- 45
R. Keese,
T. Darbre,
U. V. Arx,
S. Muller,
A. Wolleb Gygi,
D. Hirschi,
V. Siljegovic,
M. Pfammatter,
A. Amolins, and
T. Otten, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 289–301.
10.1002/9783527612192.ch19 Google Scholar
- 46 G. N. Schrauzer and E. Deutsch, J. Am. Chem. Soc. 91, 3341–3350 (1969).
- 47 N. Bresciani Pahor, M. Forcolin, L. G. Marzilli, L. Randaccio, M. F. Summers, and P. J. Toscano, Coord. Chem. Rev. 63, 1–125 (1985).
- 48 C. L. Drennan, S. Huang, J. T. Drummond, R. G. Matthews, and M. L. Ludwig, Science 266, 1669–1674 (1994).
- 49 M. L. Ludwig and R. G. Matthews, Ann. Rev. Biochem. 66, 269–313 (1997).
- 50 E. N. G. Marsh, D. E. Holloway, and H. P. Chen, in B. Kräutler, D. Arigoni, and B. T. Golding, eds., Vitamin B12 and B12-Proteins, Wiley-VCH, Weinheim, 1998, pp. 253–264.
- 51 W. Friedrich, Vitamins, Walter de Gruyter, Berlin, 1988.
- 52
E. Nexø, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 461–475.
10.1002/9783527612192.ch30 Google Scholar
- 53 G. Wohlfahrt and G. Diekert, in R. Banerjee, ed., Chemistry and Biochemistry of B12, John Wiley & Sons, New York, 1999, pp. 871–893.
- 54 B. Kräutler, W. Fieber, S. Ostermann, M. Fasching, K. H. Ongania, K. Gruber, C. Kratky, C. Mikl, A. Siebert, and G. Diekert, Helv. Chim. Acta 86, 3698–3716 (2003).
- 55 K. M. McCauley, D. A. Pratt, S. R. Wilson, J. Shey, T. J. Burkey, and W. A. van der Donk, J. Am. Chem. Soc. 127, 1126–1136 (2005).
- 56 C. H. Hagemeier, M. Krüer, R. K. Thauer, E. Warkentin, and U. Ermler, Proc. Natl. Acad. Sci. USA 103, 18917–18922 (2006).
- 57 K. Sauer and R. K. Thauer, in R. Banerjee. (Ed), Chemistry and Biochemistry of B12, John Wiley & Sons, New York, 1999, pp. 655–679.
- 58 S. W. Ragsdale, Chem. Rev. 106, 3317–3337 (2006).
- 59 B. Jaun, and R. K. Thauer, in A. Sigel, H. Sigel, and R. K. O. Sigel, eds., Metal–Carbon Bonds in Enzymes and Cofactors. Metal Ions in Life Sciences, Vol. 6, Royal Society of Chemistry, Cambridge, 2009, pp. 115–132.
- 60 A. Eschenmoser, Ann. N. Y. Acad. Sci. 471, 108–129 (1986).
- 61 C. L. Drennan, R. G. Matthews, and M. L. Ludwig, Curr. Opin. Struct. Biol. 4, 919–929 (1994).
- 62 W. Buckel and B. T. Golding, Ann. Rev. Microbiol. 60, 27–49 (2006).
- 63
P. A. Frey and
A. D. Hegeman,
Enzymatic Reaction Mechanisms,
Oxford University Press,
New York,
2007.
10.1093/oso/9780195122589.001.0001 Google Scholar
- 64 J. Rétey, Angew. Chem. Int. Ed. 29, 355–361 (1990).
- 65
J. Stubbe,
S. Licht,
G. Gerfen,
D. Silva, and
S. Booker, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins,
Wiley-VCH,
Weinheim
1998,
pp. 321–331.
10.1002/9783527612192.ch21 Google Scholar
- 66
J. Rétey, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12-Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 273–288.
10.1002/9783527612192.ch18 Google Scholar
- 67
P. R. Evans and
F. Mancia, in
B. Kräutler,
D. Arigoni, and
B. T. Golding, eds.,
Vitamin B12 and B12 Proteins,
Wiley-VCH,
Weinheim,
1998,
pp. 217–226.
10.1002/9783527612192.ch13 Google Scholar
- 68 F. Mancia, G. A. Smith, and P. R. Evans, Biochemistry 38, 7999–8005 (1999).
- 69 R. Reitzer, K. Gruber, G. Jogl, U. G. Wagner, H. Bothe, W. Buckel, and C. Kratky, Structure 7, 891–902 (1999).
- 70 N. Shibata, J. Masuda, T. Tobimatsu, T. Toraya, K. Suto, Y. Morimoto, and N. Yasuoka, Structure 7, 997–1008 (1999).
- 71 M. D. Sintchak, G. Arjara, B. A. Kellogg, J. Stubbe, and C. L. Drennan, Nat. Struct. Biol. 9, 293–300 (2002).
- 72 W. Buckel, C. Kratky, and B. T. Golding, Chem. Eur. J. 12, 352–362 (2006).
- 73 S. Gschösser, R. B. Hannak, R. Konrat, K. Gruber, C. Mikl, C. Kratky, and B. Kräutler, Chem. Eur. J. 11, 81–93 (2005).
- 74 M. Fukuoka, Y. Nakanishi, R. B. Hannak, B. Kräutler, and T. Toraya, FEBS J. 272, 4787–4796 (2005).
- 75 K. Gruber and C. Kratky, Curr. Opin. Chem. Biol. 6, 598–603 (2002).
- 76 T. Toraya, Chem. Rev. 103, 2095–2127 (2003).
- 77 R. Banerjee, Chem. Rev. 103, 2083–2094 (2003).
- 78 W. Buckel and B. T. Golding, Chem. Soc. Rev. 25, 329–337 (1996).
- 79 E. N. G. Marsh, and C. L. Drennan, Curr. Opin. Chem. Biol. 5, 499–505 (2001).
- 80
K. Gruber,
R. Reitzer, and
C. Kratky,
Angew. Chem. Int. Ed.
40,
3377–3380
(2001).
10.1002/1521-3773(20010917)40:18<3377::AID-ANIE3377>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 81 K. Burkhardt, N. Philippon, and J. A. Robinson, in B. Kräutler, A. Arigoni, and B. T. Golding, eds., Vitamin B12 and B12-Proteins, Wiley-VCH, Weinheim, 1998, pp. 265–271.
- 82 P. A. Frey, A. D. Hegeman, and G. H. Reed, Chem. Rev. 106, 3302–3316 (2006).
- 83 P. A. Frey and O. T. Magnusson, Chem. Rev. 103, 2129–2148 (2003).
- 84
A. Abend,
R. Nitsche,
V. Bandarian,
E. Stupperich, and
J. Retey,
Angew. Chem. Int. Ed.
37,
625–627
(1998).
10.1002/(SICI)1521-3773(19980316)37:5<625::AID-ANIE625>3.0.CO;2-4 CAS Web of Science® Google Scholar
- 85 C. B. Grissom, Chem. Rev. 95, 3–24 (1995).
- 86 J. Stubbe, D. G. Nocera, C. S. Yee, and M. C. Y. Chang, Chem. Rev. 103, 2167–2201 (2003).
- 87 J. Stubbe and W. A. van der Donk, Chem. Rev. 98, 705–762 (1998).
- 88 A. Nahvi, N. Sudarsan, M. S. Ebert, X. Zou, K. L. Brown, and R. R. Breaker, Chem. Biol. 9, 1043–1049 (2002).
- 89 A. Nahvi, J. E. Barrick, and R. R. Breaker, Nucl. Acids Res. 32, 143–150 (2004).
- 90 W. C. Winkler and R. R. Breaker, Ann. Rev. Microbiol. 59, 487–517 (2005).
- 91 S. Gschösser, K. Gruber, C. Kratky, C. Eichmüller, and B. Kräutler, Angew. Chem. Int. Ed. 44, 2284–2288 (2005).
- 92 S. Gschösser and B. Kräutler, Chem. Eur. J. 14, 3605–3619 (2008).
- 93 M. Fasching, H. Perschinka, C. Eichmüller, S. Gschösser, and B. Kräutler, Chem. Biodiv. 2, 178–197 (2005).
- 94 G. F. Joyce, Nature 418, 214–221 (2002).
- 95 J. Stubbe, Curr. Opin. Struct. Biol. 10, 731–736 (2000).
Forfurther reading
- B. Zagalak and B. Friedrich, eds., in Proceedings of the 3rd European Symposium on Vitamin B12 and Intrinsic Factor, Walter de Gruyter, Berlin, 1979.
- H.-B. Kraatz and N., eds., Concepts and Models in Bioinorganic Chemistry, Wiley-VCH, Weinheim, 2006.
- G. Simonneaux, ed., Bioorganometallic Chemistry. Topics in Organometallic Chemistry, Vol. 17, Springer-Verlag, Berlin, 2006.
- L. Randaccio, S. Geremia, and J. Wuerges, J. Organomet. Chem. 692, 1198–1215 (2007).