Biocatalytic One-Carbon Conversion
Abstract
The review focuses on the biological machines that oxidize, reduce, and interconvert one-carbon compounds. The focus is on the unusual cofactors and enzymes in methanogens and acetogens that are involved in anaerobic one-carbon metabolism, which is key to the globla carbon cycle. A variety of autotrophic anaerobes can fix CO2 into organic carbon as well as use the reduction of CO2 as a source of energy. CO dehydrogenase, formate dehydrogenase, and formylmethanofuran dehydrogenase are metalloenzymes that reduce CO2 to the formate oxidation level (CO, formate, or formylmethyanofuran). At the formate level, the one-carbon compounds are converted to a cofactor-bound form, either the formyl- or methenyl tetrahydromethanopterin or tetrahydrofolate derivatives, before they undergo further reduction. The next stage, reduction from the formate to the formaldehyde level, is accomplished by either methylenetetrahydrofolate or methylenetetrahydromethopterin dehydrogenase. Metalloenzymes again enter the picture at the methanol oxidation level. Afer reduction of the methylene derivatives to methyltetrahydrofolate or methyltetrahydromethanopterin by a reductase, cobalamin-dependent methyltransferases attach the methyl group to the cobalt as enzyme-bound methyl-cob(III)amide. The most reduced one-carbon compounds are at the methane level. Reduction of the methyl-Co(III) derivatives to methane is accomplished by methyl coenzyme M reductase. Alternatively, the methyl group is reduced by acetyl-CoA synthase to acetyl-CoA. The oxidation of methane back to CO2 is initiated by methane monooxygenase, while there are various microbes that can use acetyl-CoA as an energy source.
Bibliography
- 1 S. W. Ragsdale, BioFactors 9, 1–9 (1997).
- 2 J. M. Shively, G. van Keulen, and W. G. Meijer, Annu. Rev. Microbiol. 52, 191–230 (1998).
- 3 G. Strauss and G. Fuchs, Eur. J. Biochem. 215, 633–643 (1993).
- 4 T. M. Wahlund and F. R. Tabita, J. Bacteriol. 179, 4859–4867 (1997).
- 5 P. E. Rouviére and R. S. Wolfe, J. Biol. Chem. 263, 7913–7916 (1988).
- 6 L. Chistoserdova, J. A. Vorholt, R. K. Thauer, and M. E. Lidstrom, Science 281, 99–102 (1998).
- 7 R. K. Thauer, Microbiology UK 144, 2377–2406 (1998).
- 8 L. M. Gloss and R. P. Hausinger, FEMS Microbiol. Lett. 48, 143–145 (1987).
- 9 C. Walsh, Acc. Chem. Res. 19, 216–221 (1986).
- 10 R. S. Wolfe, ASM News 62, 529–534 (1996).
- 11 R. I. Mackie and M. P. Bryant, in Ref. (15), pp. 331–364.
- 12 J. R. Leadbetter, T. M. Schmidt, J. R. Graber, and J. A. Breznak, Science 283, 686–689 (1999).
- 13 M. J. Wolin and T. L. Miller, in Ref. (15), pp. 365–385.
- 14 J. G. Ferry, ed. Methanogenesis: Ecology, Physiology, Biochemistry & Genetics (Microbiology Series), Chapman and Hall, London, 1993, p. 536.
- 15 H. L. Drake, ed. Acetogenesis, (Microbiology Series), Chapman and Hall, New York, 1994, p. 647.
- 16 J. S. Shieh and W. B. Whitman, J. Bacteriol. 169, 5327–5329 (1987).
- 17 R. E. Hungate, in J. R. Norris and D. W. Ribbons, eds., Methods in Microbiology, Academic Press, Inc., New York, 1969, Chapt. IV, p. 117.
- 18 W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe, Microbiol. Rev. 43, 260–296 (1979).
- 19 I. Yamamoto, T. Saiki, S.-M. Liu, and L. G. Ljungdahl, J. Biol. Chem. 258, 1826–1832 (1983).
- 20 S. Lippard, in I. T. Horvath, E. Iglesia, M. T. Klein, J. A. Lercher, A. J. Russell, and E. I. Stiefel, eds., Encyclopedia of Catalysis, John Wiley and Sons, Inc., New York, 1999.
- 21 S. W. Ragsdale and M. Kumar, Chem. Rev. 96, 2515–2539 (1996).
- 22 S. W. Ragsdale, in R. Banerjee, ed., Vitamin B12, John Wiley and Sons, Inc., New York, 1999, pp. 633–654.
- 23 H. L. Drake, S. L. Daniel, K. Kusel, C. Matthies, C. Kuhner, and S. Braus-Stromeyer, Biofactors 6, 13–24 (1997).
- 24 J. U. Winter and R. S. Wolfe, Arch. Microbiol. 124, 73–79 (1980).
- 25 J. Winter and R. S. Wolfe, Arch. Microbiol. 121, 97–102 (1979).
- 26 T. D. Le Van, J. A. Robinson, J. Ralph, R. C. Greening, W. J. Smolenski, J. A. Leedle, and D. M. Schaefer, Appl. Environ. Microbiol. 64, 3429–3436 (1998).
- 27 M. Stephenson and L. H. Stickland, Biochem. J. 27, 1517–1527 (1933).
- 28
K. T. Wieringa,
Antonie van Leeuwenhoek
3,
263–273
(1936).
10.1007/BF02059556 Google Scholar
- 29
K. T. Wieringa,
Antonie van Leeuwenhoek
6,
251–262
(1940).
10.1007/BF02146190 Google Scholar
- 30 F. E. Fontaine, W. H. Peterson, E. McCoy, M. J. Johnson, and G. J. Ritter, J. Bacteriol. 43, 701–715 (1942).
- 31 S. Menon and S. W. Ragsdale, Biochemistry 36, 8484–8494 (1997).
- 32 E. Chabriere, M.-H. Charon, A. Volbeda, L. Pieulle, E. C. Hatchikian, and J.-C. Fontecilla-Camps, Nat. Struct. Biol. 6, 182–190 (1999).
- 33 J.-C. Fonticilla-Camps and S. W. Ragsdale, in R. Cammack, and A. G. Sykes, eds., Advances in Inorganic Chemistry, Academic Press, Inc., San Diego, in press.
- 34 S. W. Ragsdale and C. G. Riordan, J. Bioinorg. Chem. 1, 489–493 (1996).
- 35 S. W. Ragsdale, Curr. Opin. Chem. Biol. 2, 208–215 (1998).
- 36 O. Meyer, in P. R. K. and D. C. S. , eds., Microbial Gas Metabolism, Mechanistic, Metabolic, and Biotechnological Aspects, Academic Press, London, 1985, pp. 131–151.
- 37 J. Seravalli, M. Kumar, W. P. Lu, and S. W. Ragsdale, Biochemistry 34, 7879–7888 (1995).
- 38 M. Kumar, W.-P. Lu, and S. W. Ragsdale, Biochemistry 33, 9769–9777 (1994).
- 39 G. Parshall, Homogenous Catalysis, Wiley-Interscience, New York, 1980, p. 911.
- 40 Z. Lu, C. White, A. L. Rheingold, and R. H. Crabtree, Angew. Chem., Int. Ed. Engl. 32, 92–94 (1993).
- 41 Z. Lu and R. H. Crabtree, J. Am. Chem. Soc. 117, 3994–3998 (1995).
- 42 O. Meyer, K. Frunzke, and G. Mörsdorf, in J. C. Murrell and D. P. Kelly, eds., Microbial Growth on C1 Compounds, Intercept Ltd., Andover, U.K., 1993.
- 43 U. Schubel, M. Kraut, G. Mörsdorf, and O. Meyer, J. Bacteriol. 177, 2197–2203 (1995).
- 44 M. Ribbe, D. Gadkari, and O. Meyer, J. Biol. Chem. 272, 26627–26633 (1997).
- 45 D. Bonam and P. W. Ludden, J. Biol. Chem. 262, 2980–2987 (1987).
- 46 S. A. Ensign and P. W. Ludden, J. Biol. Chem. 266, 18395–18403 (1991).
- 47 R. L. Kerby, S. S. Hong, S. A. Ensign, L. J. Coppoc, P. W. Ludden, and G. P. Roberts, J. Bacteriol. 174, 5284–5294 (1992).
- 48 R. L. Kerby, P. W. Ludden, and G. P. Roberts, J. Bacteriol. 179, 2259–2266 (1997).
- 49 J. D. Fox, Y. P. He, D. Shelver, G. P. Roberts, and P. W. Ludden, J. Bacteriol. 178, 6200–6208 (1996).
- 50 H. Dobbek, V. Svetlitchnyi, L. Gremer, R. Huber, and O. Meyer, Science 293, 1281–1285 (2001).
- 51 C. L. Drennan, J. Heo, M. D. Sintchak, E. Schreiter, and P. W. Ludden, Proc. Natal. Acad. Sci. U.S.A. 98, 11973–11978 (2001).
- 52 S. W. Ragsdale, J. E. Clark, L. G. Ljungdahl, L. L. Lundie, and H. L. Drake, J. Biol. Chem. 258, 2364–2369 (1983).
- 53 D. L. Roberts, J. E. James-Hagstrom, D. K. Smith, C. M. Gorst, J. A. Runquist, J. R. Baur, F. C. Haase, and S. W. Ragsdale, Proc. Natl. Acad. Sci. U.S.A. 86, 32–36 (1989).
- 54 W. B. Jeon, J. Cheng, and P. W. Ludden, J. Biol. Chem. 276, 38602–38609 (2001).
- 55 Arendsen, Seravalli, and Ragsdale, unpublished.
- 56 J. G. Ferry, Annu. Rev. Microbiol. 49, 305–333 (1995).
- 57 M. E. Anderson, V. J. DeRose, B. M. Hoffman, and P. A. Lindahl, J. Am. Chem. Soc. 115, 12204–12205 (1993).
- 58 Z. G. Hu, N. J. Spangler, M. E. Anderson, J. Q. Xia, P. W. Ludden, P. A. Lindahl, and E. Münck, J. Am. Chem. Soc. 118, 830–845 (1996).
- 59 M. Kumar, W.-P. Lu, L. Liu, and S. W. Ragsdale, J. Am. Chem. Soc. 115, 11646–11647 (1993).
- 60 W. K. Russell and P. A. Lindahl, Biochemistry 37, 10016–10026 (1998).
- 61 J. Seravalli, M. Kumar, W.-P. Lu, and S. W. Ragsdale, Biochemistry 36, 11241–11251 (1997).
- 62 V. J. DeRose, J. Telser, M. E. Anderson, P. A. Lindahl, and B. M. Hoffman, J. Am. Chem. Soc. 120, 8767–8776 (1998).
- 63 S. W. Ragsdale and L. G. Ljungdahl, Arch. Microbiol. 139, 361–365 (1984).
- 64 S. W. Ragsdale and L. G. Ljungdahl, J. Bacteriol. 157, 1–6 (1984).
- 65 S. W. Ragsdale, P. A. Lindahl, and E. Münck, J. Biol. Chem. 262, 14289–14297 (1987).
- 66 J. Hugenholtz, D. M. Ivey, and L. G. Ljungdahl, J. Bacteriol. 169, 5845–5847 (1987).
- 67 S. Menon and S. W. Ragsdale, Biochemistry 35, 15814–15821 (1996).
- 68 W. P. Lu and S. W. Ragsdale, J. Biol. Chem. 266, 3554–3564 (1991).
- 69 S. A. Ensign, Biochemistry 34, 5372–5381 (1995).
- 70 S. A. Ensign, M. R. Hyman, and P. W. Ludden, Biochemistry 28, 4973–4979 (1989).
- 71 L. C. Seefeldt, M. E. Rasche, and S. A. Ensign, Biochemistry 34, 5382–5389 (1995).
- 72 S. V. Khangulov, V. N. Gladyshev, G. C. Dismukes, and T. C. Stadtman, Biochemistry 37, 3518–3528 (1998).
- 73 W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solution, 2nd ed., Prentice-Hall, New York, 1961.
- 74 L. G. Ljungdahl and J. R. Andreesen, FEBS Lett. 54, 279–282 (1975).
- 75 J. C. Deaton, E. I. Solomon, G. D. Watt, P. J. Wetherbee, and C. N. Durfor, Biochem. Biophys. Res. Commun. 149, 424–430 (1987).
- 76 N. L. Schauer, J. G. Ferry, J. F. Honek, W. H. Orme-Johnson, and C. Walsh, Biochemistry 25, 7163–7168 (1986).
- 77 J. Nolling and J. N. Reeve, J. Bacteriol. 179, 899–908 (1997).
- 78 W. B. White and J. G. Ferry, J. Bacteriol. 174, 4997–5004 (1992).
- 79 J. L. Johnson, N. R. Bastian, N. L. Schauer, J. G. Ferry, and K. V. Rajagopalan, FEMS Microbiol. Lett. 61, 213–216 (1991).
- 80 N. L. Schauer and J. G. Ferry, J. Bacteriol. 165, 405–411 (1986).
- 81 J. B. Jones, G. L. Dilworth, and T. C. Stadtman, Arch. Biochem. Biophys. 195, 255–260 (1979).
- 82 J. C. Boyington, V. N. Gladyshev, S. V. Khangulov, T. C. Stadtman, and P. D. Sun, Science 275, 1305–1308 (1997).
- 83 J. A. Leigh, K. L. Rinehart Jr., and R. S. Wolfe, Biochemistry 24, 995–999 (1985).
- 84 J. A. Vorholt and R. K. Thauer, Eur. J. Biochem. 248, 919–924 (1997).
- 85 A. Wasserfallen, Biochem. Biophys. Res. Commun. 199, 1256–1261 (1994).
- 86 P. A. Bertram and R. K. Thauer, Eur. J. Biochem. 226, 811–818 (1994).
- 87 T. A. Bobik and R. S. Wolfe, Proc. Natl. Acad. Sci. U.S.A. 85, 60–63 (1988).
- 88 A. Hochheimer, R. Hedderich, and R. K. Thauer, Arch. Microbiol. 170, 389–393 (1998).
- 89 A. Hochheimer, R. A. Schmitz, R. K. Thauer, and R. Hedderich, Eur. J. Biochem. 234, 910–920 (1995).
- 90 J. A. Vorholt, M. Vaupel, and R. K. Thauer, Mol. Microbiol. 23, 1033–1042 (1997).
- 91 A. Hochheimer, D. Linder, R. K. Thauer, and R. Hedderich, Eur. J. Biochem. 242, 156–162 (1996).
- 92 J. C. Escalante-Semerena, K. L. Rinehart Jr., and R. S. Wolfe, J. Biol. Chem. 259, 9447–9455 (1984).
- 93 M. I. Donnelly and R. S. Wolfe, J. Biol. Chem. 261, 16653–16659 (1986).
- 94 J. Kunow, S. Shima, J. A. Vorholt, and R. K. Thauer, Arch. Microbiol. 165, 97–105 (1996).
- 95 S. Shima, D. S. Weiss, and R. K. Thauer, Eur. J. Biochem. 230, 906–913 (1995).
- 96 U. Ermler, M. Merckel, R. Thauer, and S. Shima, Structure 5, 635–646 (1997).
- 97 S. W. Ragsdale, CRC Crit. Rev. Biochem. Mol. Biol. 26, 261–300 (1991).
- 98 K. Lewinski, Y. Hui, C. G. Jakob, C. R. Lovell, and L. Lebioda, J. Mol. Biol. 229, 1153–1156 (1993).
- 99
L. D'Ari,
E. Cheung,
J. C. Rabinowitz,
J. M. Bolduc,
J. Y. Huang, and
B. L. Stoddard,
Proteins
27,
319–321
(1997).
10.1002/(SICI)1097-0134(199702)27:2<319::AID-PROT18>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 100 J. M. Song and J. C. Rabinowitz, FEBS Lett. 376, 229–232 (1995).
- 101 S. Song, H. Jahansouz, and R. H. Himes, FEBS Lett. 332, 150–152 (1993).
- 102 D. H. Buttlaire, C. A. Balfe, M. F. Wendland, and R. H. Himes, Biochem. Biophys. Acta 567, 453 (1979).
- 103 R. E. MacKenzie, in R. L. Blakley and S. J. Benkovic, eds., Folates and Pterins, John Wiley & Sons, Inc., New York, 1984, pp. 256–306.
- 104 M. Poe and S. J. Benkovic, Biochemistry 19, 4576–4582 (1980).
- 105 J. E. Clark and L. G. Ljungdahl, J. Biol. Chem. 257, 3833–3836 (1982).
- 106 M. I. Donnelly, J. C. Escalante-Semerena, K. L. Rinehart Jr., and R. S. Wolfe, Arch. Biochem. Biophys. 242, 430–439 (1985).
- 107 B. Mukhopadhyay and L. Daniels, Can. J. Microbiol. 35, 499–507 (1989).
- 108 M. Vaupel, H. Dietz, D. Linder, and R. K. Thauer, Eur. J. Biochem. 236, 294–300 (1996).
- 109 B. W. te Brommelstroet, C. M. Hensgens, W. J. Geerts, J. T. Keltjens, C. van der Drift, and G. D. Vogels, J. Bacteriol. 172, 564–571 (1990).
- 110 P. L. Hartzell, G. Zvilius, J. C. Escalante-Semerena, and M. I. Donnelly, Biochem. Biophys. Res. Commun. 133, 884–890 (1985).
- 111 B. Schworer, J. Breitung, A. R. Klein, K. O. Stetter, and R. K. Thauer, Arch. Microbiol. 159, 225–232 (1993).
- 112 J. A. Vorholt, L. Chistoserdova, M. E. Lidstrom, and R. K. Thauer, J. Bacteriol. 180, 5351–5356 (1998).
- 113 C. Zirngibl, W. Van Dongen, B. Schworer, R. Von Bunau, M. Richter, A. Klein, and R. K. Thauer, Eur. J. Biochem. 208, 511–520 (1992).
- 114 J. Schleucher, C. Griesinger, B. Schworer, and R. K. Thauer, Biochemistry 33, 3986–3993 (1994).
- 115 C. Afting, A. Hochheimer, and R. K. Thauer, Arch. Microbiol. 169, 206–210 (1998).
- 116 H. M. Katzen and J. M. Buchanan, J. Biol. Chem. 240, 825 (1965).
- 117 J. E. Clark and L. G. Ljungdahl, J. Biol. Chem. 259, 10845–10889 (1984).
- 118 E. Y. Park, J. E. Clark, DerVartanian, and L. G. Ljungdahl, in F. Miller, ed., Chemistry and Biochemistry of Flavoenzymes, CRC Press, Boca Raton, Fla., 1991, pp. 389–410.
- 119 G. Wohlfarth, G. Geerligs, and G. Diekert, Eur. J. Biochem. 192, 411–417 (1990).
- 120 C. A. Sheppard, E. E. Trimmer, and R. G. Matthews, J. Bacteriol. 181, 718–725 (1999).
- 121 B. D. Guenther, C. A. Sheppard, P. Tran, R. Rozen, R. G. Matthews, and M. L. Ludwig, Nat. Struct. Biol. 6, 359–365 (1999).
- 122 K. Ma, D. Linder, K. O. Stetter, and R. K. Thauer, Arch. Microbiol. 155, 593–600 (1991).
- 123 B. W. te Brommelstroet, C. M. Hensgens, J. T. Keltjens, C. van der Drift, and G. D. Vogels, J. Biol. Chem. 265, 1852–1857 (1990).
- 124 M. A. Varoni and R. G. Matthews, Biochemistry 23, 5272 (1984).
- 125 M. A. Vanoni, S. C. Daubner, D. P. Ballou, and R. G. Matthews, J. Biol. Chem. 258, 11510 (1983).
- 126 R. G. Matthews, R. V. Banerjee, and S. W. Ragsdale, BioFactors 2, 147–152 (1990).
- 127 P. Frosst, H. J. Blom, R. Milos, P. Goyette, C. A. Sheppard, R. G. Matthews, G. J. Boers, M. den Heijer, L. A. Kluijtmans, L. P. van den Heuvel, and R. Rozen, Nat. Genet. 10, 111–113 (1995).
- 128 K. Sauer and R. K. Thauer, in R. Banerjee, ed., Chemistry and Biochemistry of B12, Vol. 1, John Wiley and Sons, Inc., New York, 1999, pp. 655–680.
- 129 R. Banerjee, ed. Vitamin B12, Vol. 1, John Wiley and Sons, Inc., New York, 1999, pp. 921.
- 130 B. A. Blaylock, Arch. Biochem. Biophys. 124, 314–324 (1968).
- 131 C. L. Drennan, S. Huang, J. T. Drummond, R. G. Matthews, and M. L. Ludwig, Science 266, 1669–1674 (1994).
- 132 M. M. Dixon, S. Huang, R. G. Matthews, and M. Ludwig, Structure 4, 1263–1275 (1996).
- 133 T. Doukov, J. Seravalli, J. Stezowski, and S. W. Ragsdale, Structure 8, 817–830 (2000).
- 134 J. Maupin-Furlow and J. G. Ferry, J. Bacteriol. 178, 340–346 (1996).
- 135 P. E. Jablonski, W.-P. Lu, S. W. Ragsdale, and J. G. Ferry, J. Biol. Chem. 268, 325–329 (1993).
- 136 D. A. Grahame, J. Biol. Chem. 266, 22227–22233 (1991).
- 137 S.-I. Hu, E. Pezacka, and H. G. Wood, J. Biol. Chem. 259, 8892–8897 (1984).
- 138 T. Lienard, B. Becher, M. Marschall, S. Bowien, and G. Gottschalk, Eur. J. Biochem. 239, 857–864 (1996).
- 139 U. Deppenmeier, V. Muller, and G. Gottschalk, Arch. Microbiol. 165, 149–163 (1996).
- 140 G. M. Leclerc and D. A. Grahame, J. Biol. Chem. 271, 18725–18731 (1996).
- 141 S. Menon and S. W. Ragsdale, Biochemistry 37, 5689–5698 (1998).
- 142 S. Menon and S. W. Ragsdale, J. Biol. Chem. 274, 11513–11518 (1999).
- 143 P. J. H. Daas, R. W. Wassenaar, P. Willemsen, R. J. Theunissen, J. T. Keltjens, C. Vanderdrift, and G. D. Vogels, J. Biol. Chem. 271, 22339–22345 (1996).
- 144 R. W. Wassenaar, J. T. Keltjens, and C. van der Drift, Eur. J. Biochem. 258, 597–602 (1998).
- 145 F. Kaufmann, G. Wohlfarth, and G. Diekert, Eur. J. Biochem. 253, 706–711 (1998).
- 146 R. G. Matthews, in R. Banerjee, ed., Vitamin B12, John Wiley and Sons, Inc., New York, 1999, pp. 681–706.
- 147 R. V. Banerjee, S. R. Harder, S. W. Ragsdale, and R. G. Matthews, Biochemistry 29, 1129–1135 (1990).
- 148 J. T. Jarrett, D. M. Hoover, M. L. Ludwig, and R. G. Matthews, Biochemistry 37, 12649–12658 (1998).
- 149 K. Sauer and R. K. Thauer, Eur. J. Biochem. 249, 280–285 (1997).
- 150 K. Peariso, C. W. Goulding, S. Huang, R. G. Matthews, and J. E. PennerHahn, J. Am. Chem. Soc. 120, 8410–8416 (1998).
- 151 J. Seravalli, R. K. Shoemaker, M. J. Sudbeck, and S. W. Ragsdale, Biochemistry 5736–5745 (1999).
- 152 J. Seravalli, S. Y. Zhao, and S. W. Ragsdale, Biochemistry, 5728–5735 (1999).
- 153 S. W. Ragsdale and H. G. Wood, J. Biol. Chem. 260, 3970–3977 (1985).
- 154 W. K. Russell, C. M. V. Stalhandske, J. Q. Xia, R. A. Scott, and P. A. Lindahl, J. Am. Chem. Soc. 120, 7502–7510 (1998).
- 155 M. Kumar and S. W. Ragsdale, J. Am. Chem. Soc. 114, 8713–8715 (1992).
- 156 W. Shin, M. E. Anderson, and P. A. Lindahl, J. Am. Chem. Soc. 115, 5522–5526 (1993).
- 157 D. P. Barondeau and P. A. Lindahl, J. Am. Chem. Soc. 119, 3959–3970 (1997).
- 158 S. Menon and S. W. Ragsdale, Biochemistry 35, 12119–12125 (1996).
- 159 J. Q. Xia, Z. G. Hu, C. V. Popescu, P. A. Lindahl, and E. Munck, J. Am. Chem. Soc. 119, 8301–8312 (1997).
- 160 M. S. Ram, C. G. Riordan, G. P. A. Yap, L. LiableSands, A. L. Rheingold, A. Marchaj, and J. R. Norton, J. Am. Chem. Soc. 119, 1648–1655 (1997).
- 161 Y. R. Dai, D. W. Reed, J. H. Millstein, P. L. Hartzell, D. A. Grahame, and E. DeMoll, Arch. Microbiol. 169, 525–529 (1998).
- 162 J. A. Vorholt, D. Hafenbradl, K. O. Stetter, and R. K. Thauer, Arch. Microbiol. 167, 19–23 (1997).
- 163 J. N. Butt, M. Filipiak, and W. R. Hagen, Eur. J. Biochem. 245, 116–122 (1997).
- 164 J. Hirst, A. Sucheta, B. A. C. Ackrell, and F. A. Armstrong, J. Am. Chem. Soc. 118, 5031–5038 (1996).
- 165 J. Hirst, B. A. C. Ackrell, and F. A. Armstrong, J. Am. Chem. Soc. 119, 7434–7439 (1997).
- 166 R. Thauer, Anton Leeuwenhoek Int. J. Gen. Microbiol. 71, 21–32 (1997).
- 167 Y.-C. Horng, D. F. Becker, and S. W. Ragsdale, Biochemistry 40, 12875–12885 (2001).
- 168
R. K. Thauer,
R. Hedderich, and
R. Fischer, in
J. G. Ferry, ed.,
Methanogenesis,
Chapman and Hall,
New York,
1993,
pp. 209–252.
10.1007/978-1-4615-2391-8_5 Google Scholar
- 169 B. Jaun and A. Pfaltz, J. Chem. Soc., Chem. Commun. 17, 1327–1329 (1986).
- 170 C. Holliger, A. J. Pierik, E. J. Reijerse, and W. R. Hagen, J. Am. Chem. Soc. 115, 5651–5656 (1993).
- 171 S.-K. Lin and B. Jaun, Helvetica Chimica Acta 74, 1725–1738 (1991).
- 172 S.-K. Lin and B. Jaun, Helv. Chim. Acta 75, (1992).
- 173 B. Jaun, in H. Sigel and A. Sigel, eds., Metal Ions in Biological Systems, Marcel Dekker, New York, 1993, pp. 287–337.
- 174 V. Pelmenschikov, M. R. A. Blomberg, P. E. M. Siegbahn, and R. H. Crabtree, J. Am. Chem. Soc. 124, 4039–4049 (2002).
- 175 D. F. Becker and S. W. Ragsdale, Biochemistry 37, 2639–2647 (1998).
- 176 M. Goubeaud, G. Schreiner, and R. K. Thauer, Eur. J. Biochem. 243, 110–114 (1997).
- 177 U. Ermler, W. Grabarse, S. Shima, M. Goubeaud, and R. K. Thauer, Science 278, 1457–1462 (1997).
- 178 A. Berkessel, Biorg. Chem. 19, 101–115 (1991).
- 179 Y. Ahn, J. A. Krzycki, and H. G. Floss, J. Am. Chem. Soc. 113, 4700–4701 (1991).
- 180 L. P. Wackett, J. F. Honeck, T. P. Begley, V. Wallace, W. H. Orme-Johnson, and C. T. Walsh, Biochemistry 26, (1987).
- 181 J. Ellermann, R. Hedderich, R. Böcher, and R. K. Thauer, Eur. J. Biochem. 172, 669–677 (1988).
- 182 E. Setzke, R. Hedderich, S. Heiden, and R. K. Thauer, Eur. J. Biochem. 220, 139–148 (1994).
- 183 R. Hedderich, J. Koch, D. Linder, and R. K. Thauer, Eur. J. Biochem. 225, 253–261 (1994).
- 184 A. Kunkel, M. Vaupel, S. Heim, R. K. Thauer, and R. Hedderich, Eur. J. Biochem. 244, 226–234 (1997).
- 185 M. Simianu, E. Murakami, J. M. Brewer, and S. W. Ragsdale, Biochemistry 37, 10027–10039 (1998).
- 186 C. R. Staples, E. Gaymard, A. L. StrittEtter, J. Telser, B. M. Hoffman, P. Schurmann, D. B. Knaff, and M. K. Johnson, Biochemistry 37, 4612–4620 (1998).
- 187 C. W. Peer, M. H. Painter, M. E. Rasche, and J. G. Ferry, J. Bacteriol. 176, 6974–6979 (1994).
- 188 S. Bäumer, E. Murakami, J. Brodersen, G. Gottschalk, S. W. Ragsdale, and U. Deppenmeier, FEBS Lett. 428, 295–298 (1998).
- 189 H. J. Abken, M. Tietze, J. Brodersen, S. Bäumer, U. Beifuss, and U. Deppenmeier, J. Bacteriol. 180, 2027–2032 (1998).