Aldol Reaction – Biological and Biomimetic
Tobin J. Dickerson
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorArmando Córdova
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorDa-Wei Chen
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorKim D. Janda
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorTobin J. Dickerson
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorArmando Córdova
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorDa-Wei Chen
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorKim D. Janda
The Scripps Research Institute, La Jolla, California
Search for more papers by this authorAbstract
In order to develop new methodology for stereospecific and catalytic aldol reactions, synthetic organic chemists are now exploring the utility of biological catalysts. There has been significant progress in this field and several efficient, selective, and predictable biological catalysts are now available for the asymmetric aldol reaction. Critical to metabolism, the aldolases catalyze in vivo aldol reactions with high chemo-, regio-, diastereo-, and enantioselectivity. These enzymes are divided into four distinct areas: DHAP-dependent, pyruvate/phosphoenol pyruvate-dependent, acetaldehyde-dependent, and glycine-dependent aldolases based upon their donor dependence. Catalytic antibodies that operate via a mechanism reminiscent of a type I aldolase also have been developed. These antibodies have remarkable rate accelerations and broader substrate specificity compared to naturally occurring aldolases. However, both aldolases and catalytic antibodies share a common feature critical to their success as synthetically useful catalysts—both are capable of tolerating substrates with unprotected functional groups in aqueous solutions and give readily predictable products. This article will focus on the development of these two areas of biological aldol catalysts and discuss relevant examples as appropriate.
Bibliography
- 1 T. Mukaiyama, Org. React. 28, 203–331 (1982).
- 2
C. H. Heathcock, in
J. D. Morrison, ed.,
Asymmetric Synthesis,
Vol. 3,
Academic Press,
New York,
1984,
Chapt. 2.
10.1016/B978-0-12-507703-3.50007-5 Google Scholar
- 3 E. P. Lodge and C. H. Heathcock, J. Am. Chem. Soc. 109, 3353–3361 (1987).
- 4 D. A. Evans, J. Bartoli, and T. L. Shih, J. Am. Chem. Soc. 103, 2127–2129 (1981).
- 5
T. D. Machajewski and
C.-H. Wong,
Angew. Chem., Int. Ed. Engl.
39,
1352–1374
(2000).
10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 6
C.-H. Wong and
G. M. Whitesides, in
J. E. Baldwin, ed.,
Enzymes in Synthetic Organic Chemistry
(Tetrahedron Organic Chemistry Series, Vol. 12),
Pergamon Press,
New York,
1994.
10.1016/B978-0-08-035941-0.50005-7 Google Scholar
- 7
K. Faber,
Biotransformations in Organic Chemistry. A Textbook,
2nd ed.,
Springer-Verlag,
New York,
1995.
10.1007/978-3-642-97607-0 Google Scholar
- 8 R. A. Lerner, C. F. Barbas III, and K. D. Janda, Making Enzymes. The Harvey Lectures 92, 1–40 (1998).
- 9 B. L. Horecker, O. Tsolas, and C.-Y. Lui, in P. D. Boyer, ed., The Enzymes, Vol. VII, Academic Press, New York, 1975, p. 213.
- 10 C.-Y. Liu and T. Oshima, Arch. Biochem. Biophys. 144, 363–374 (1971).
- 11 J. Jia and co-workers, Protein Sci. 6, 119–124 (1997).
- 12 M. K. Dreyer and G. E. Schultz, J. Mol. Biol. 259, 458–466 (1996).
- 13 M. D. Bednarski and co-workers, J. Am. Chem. Soc. 111, 627–635 (1989).
- 14 M. D. Bednarski, H. J. Waldmann, and G. M. Whitesides, Tetrahedron Lett. 27, 5807–5810 (1986).
- 15 S. B. Sobolov and co-workers, Tetrahedron Lett. 35, 7751–7754 (1994).
- 16 H. J. M. Gijsen and co-workers, Chem. Rev. 96, 443–473 (1996).
- 17
R. L. Colbram and co-workers,
Carbohydr. Res.
4,
355–358
(1967).
10.1016/S0008-6215(00)80190-1 Google Scholar
- 18 F. Effenberger and A. Straub, Tetrahedron Lett. 28, 1641–1644 (1987).
- 19 R. L. Pederson, J. Esker, and C.-H. Wong, Tetrahedron 47, 14–15 (1991).
- 20 W.-D. Fessner and C. Walter, Angew. Chem., Int. Ed. Engl. 31, 614–616 (1992).
- 21 D. C. Crans and co-workers, Methods Enzymol. 136, 263–292 (1987).
- 22 D. C. Crans and G. M. Whitesides, J. Am. Chem. Soc. 107, 7019–7027 (1985).
- 23 C.-H. Wong, F. P. Mazenod, and G. M. Whitesides, J. Org. Chem. 48, 3493–3497 (1983).
- 24 C.-H. Wong and G. M. Whitesides, J. Org. Chem. 48, 3199–3205 (1983).
- 25 S.-H. Jung and co-workers, J. Org. Chem. 59, 7182–7184 (1994).
- 26 W.-D. Fessner and G. Sinerius, Angew. Chem., Int. Ed. Engl. 33, 209–212 (1994).
- 27 J. F. Taylor, A. A. Green, and G. T. Cori, J. Biol. Chem. 173, 591–601 (1948).
- 28 E. J. Toone and co-workers, Tetrahedron 45, 5365–5422 (1989).
- 29 J. R. Durrwachter and C.-H. Wong, J. Org. Chem. 53, 4175–4181 (1988).
- 30 K. K.-C. Liu and C.-H. Wong, J. Org. Chem. 57, 4789–4791 (1992).
- 31 R. L. Pederson, M.-J. Kim, and C.-H. Wong, Tetrahedron Lett. 29, 4645–4648 (1988).
- 32 T. Ziegler, A. Straub, and F. Effenberger, Angew. Chem., Int. Ed. Engl. 27, 716–717 (1988).
- 33 R. R. Huang, J. A. Straub, and G. M. Whitesides, J. Org. Chem. 56, 3849–3855 (1991).
- 34 T. Kajimoto and co-workers, J. Am. Chem. Soc. 113, 6678–6680 (1991).
- 35 W.-C. Chou, L. Chen, and J.-M. Fang, J. Am. Chem. Soc. 116, 6191–6194 (1994).
- 36 W.-C. Chou, C. Fotsch, and C.-H. Wong, J. Org. Chem. 60, 2916–2917 (1995).
- 37 K. Matsumoto and co-workers, Tetrahedron Lett. 34, 4935–4938 (1993).
- 38 M. Shimagaki and co-workers, Chem. Pharm. Bull. 41, 282–286 (1993).
- 39 M. Schultz, H. Waldman, and H. Kunz, Liebigs Ann. Chem. 1019 (1990).
- 40 D. C. Myles, P. J. I. Andrulis, and G. M. Whitesides, Tetrahedron Lett. 32, 4835–4838 (1991).
- 41
Y. Tagaki,
Methods Enzymol.
9,
542–545
(1966).
10.1016/0076-6879(66)09108-0 Google Scholar
- 42
T. H. Chiu,
K. L. Evans, and
D. S. Feingold,
Methods Enzymol.
42,
264–269
(1975).
10.1016/0076-6879(75)42124-3 Google Scholar
- 43 N. B. Schwartz, D. Abraham, and D. S. Feingold, Biochemistry 13, 1726–1730 (1974).
- 44 W.-D. Fessner and co-workers, Angew. Chem., Int. Ed. Engl. 30, 555–558 (1991).
- 45 W.-D. Fessner and co-workers, Tetrahedron Asymmetry 4, 1183–1192 (1993).
- 46 W.-D. Fessner and co-workers, Tetrahedron Lett. 33, 5231–5234 (1992).
- 47 W.-D. Fessner and G. Sinerius, Angew. Chem., Int. Ed. Engl. 33, 209–212 (1994).
- 48 W.-D. Fessner and G. Sinerius, Bioorg. Med. Chem. 2, 639–645 (1994).
- 49 M. A. Ghalambor and E. C. Heath, J. Biol. Chem. 237, 2427–2433 (1962).
- 50 A. Ozaki and co-workers, J. Am. Chem. Soc. 112, 4970–4971 (1990).
- 51 W.-D. Fessner, in S. Servi, ed., Microbial Reagents in Organic Synthesis, Vol. 381, Kluwer Academic, Dordrecht, the Netherlands, 1992, p. 43.
- 52 C. H. von der Osten and co-workers, J. Am Chem. Soc. 111, 3924–3927 (1989).
- 53 A. Straub, F. Effenberger, and P. Fischer, J. Org. Chem. 55, 3926–3932 (1990).
- 54 K. K.-C. Liu and co-workers, J. Org. Chem. 56, 6280 (1991).
- 55 P. Z. Zhou and co-workers, Carbohydrate Res. 239, 155–166 (1993).
- 56 M. G. McGeown and F. H. Malpress, Nature 170, 575–576 (1952).
- 57 P. A. Hoffee, Arch. Biochem. Biophys. 126, 795–802 (1968).
- 58 C. F. Barbas III, Y.-F. Wang and C.-H. Wong, J. Am. Chem. Soc. 112, 2013–2014 (1990).
- 59 L. Chen, D. P. Dumas, and C.-H. Wong, J. Am. Chem. Soc. 114, 741–748 (1992).
- 60 C.-H. Wong and co-workers, J. Am. Chem. Soc. 117, 3333–3339 (1995).
- 61 H. J. M. Gijsen and C.-H. Wong, J. Am. Chem. Soc. 116, 8422–8423 (1994).
- 62 E. S. Simon, S. Grabowski, and G. M. Whitesides, J. Am. Chem. Soc. 111, 8920–8921 (1989).
- 63 Y. Uchida, Y. Tsukuda, and T. Sugimori, J. Biochem. 96, 507–522 (1984).
- 64 T. Izard and co-workers, Structure 2, 361–369 (1994).
- 65 W.-D. Fessner, C. Walter, Top. Curr. Chem. 184, 98–194 (1996).
- 66 M.-J. Kim and co-workers, J. Am. Chem. Soc. 110, 6481–6468 (1988).
- 67 W. Fitz, J.-R. Schwark, and C.-H. Wong, J. Org. Chem. 60, 3663–3670 (1995).
- 68 C.-H. Lin and co-workers, J. Am Chem. Soc. 114, 10138–10145 (1992).
- 69 U. Kragl and co-workers, Angew. Chem., Int. Ed. Engl. 30, 827–828 (1991).
- 70 M. Muhmoudian and co-workers, Enzyme Microb. Technol. 20, 393–400 (1997).
- 71 B. B. Knappmann and M. R. Kula, App. Microbiol. Biotechnol. 33, 324–329 (1990).
- 72 T. Sugai and co-workers, J. Am. Chem. Soc. 115, 413–421 (1993).
- 73 M. C. Shelton and co-workers, J. Am. Chem. Soc. 118, 2117–2125 (1996).
- 74 T. S. M. Taha and T. L. Deits, Biochem. Biophys. Res. Commun. 200, 459–466 (1994).
- 75 H. Nishihara and E. E. Dekker, J. Biol. Chem. 247, 5079–5087 (1972).
- 76 N. C. Floyd, M. H. Liebster, and N. J. Turner, J. Chem. Soc., Perkin Trans. 1, 1085–1088 (1992).
- 77 R. Brossmer and co-workers, Biochem. Biophys. Res. Commun. 96, 1282–1289 (1980).
- 78 M. D. Bednarksi and co-workers, Tetrahedron Lett. 29, 427–430 (1988).
- 79 L. M. Reimer and co-workers, J. Am. Chem. Soc. 108, 8010–8015 (1986).
- 80 K. M. Draths and J. W. Frost, J. Am. Chem. Soc. 117, 2395–2400 (1995).
- 81 L. Schirch, Adv. Enzymol. 53, 83–112 (1982).
- 82 D. Ura and co-workers, Chem. Abstr. 115, 90657q (1991).
- 83 A. Saeed and D. W. Young, Tetrahedron 48, 2507–2514 (1992).
- 84 V. P. Vassilev and co-workers, Tetrahedron Lett. 36, 4081–4084 (1995).
- 85 K. Shibata and co-workers, Tetrahedron Lett. 37, 2791–2794 (1996).
- 86 R. B. Herbert and B. Wilkinson, Can. J. Chem. 72, 114–117 (1994).
- 87 P. G. Schultz and R. A. Lerner, Science 269, 1835–1842 (1995).
- 88 J.-L. Reymond and Y. Chen, Tetrahedron Lett. 36, 2575–2578 (1995).
- 89 J.-L. Reymond and Y. Chen, J. Org. Chem. 60, 6970–6979 (1995).
- 90 J.-L. Reymond, Angew. Chem., Int. Ed. Engl. 34, 2285–2287 (1995).
- 91 T. Koch, J.-L. Reymond, and R. A. Lerner, J. Am. Chem. Soc. 117, 9383–9387 (1995).
- 92 P. Wirsching and co-workers, Science 270, 1775–1782 (1995).
- 93 J. Wagner, R. A. Lerner, and C. F. Barbas III, Science 270, 1797–1800 (1995).
- 94 T. Hoffman and co-workers, J. Am. Chem. Soc. 120, 2768–2779 (1997).
- 95 C. F. Barbas III and co-workers, Science 278, 2085–2092 (1997).
- 96 M. G. Finn, R. A. Lerner, and C. F. Barbas III, J. Am. Chem. Soc. 120, 2963–2964 (1998).
- 97 B. List and co-workers, Chem. Eur. J. 4, 881–885 (1998).
- 98 S. C. Sinha, C. F. Barbas III, and R. A. Lerner, Proc. Natl. Acad. Sci. USA 95, 14603–14608 (1998).
- 99 D. Shabat and co-workers, Tetrahedron Lett. 40, 1437–1440 (1999).
- 100 G. Zhong and co-workers, J. Am. Chem. Soc. 119, 8131–8132 (1997).
- 101 C.-H. Lin and co-workers, Proc. Natl. Acad. Sci. USA 94, 11773–11776 (1997).
- 102 R. Björnestedt and co-workers, J. Am. Chem. Soc. 118, 11720–11724 (1996).
- 103 B. List, R. A. Lerner, and C. F. Barbas III, Org. Lett. 1, 59–61 (1999).
- 104 D. Shabat and co-workers, Proc. Natl. Acad. Sci. USA 96, 6925–6930 (1999).
- 105 B. List and co-workers, J. Am. Chem. Soc. 121, 7283–7291 (1999).
- 106 G. Zhong and co-workers, Angew. Chem., Int. Ed. Engl. 37, 2481–2484.
- 107
J. M. Turner and co-workers,
Chem. Eur. J.
6,
2772–2774
(2000).
10.1002/1521-3765(20000804)6:15<2772::AID-CHEM2772>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 108
G. Zhong,
R. A. Lerner, and
C. F. Barbas III,
Angew. Chem., Int. Ed. Engl.
38,
3738–3741
(1999).
10.1002/(SICI)1521-3773(19991216)38:24<3738::AID-ANIE3738>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- 109 S. C. Sinha and co-workers, Org. Lett. 1, 1623–1626 (1999).
- 110 H. Shulman and co-workers, J. Am. Chem. Soc. 122, 10743–10753.
- 111 H. Shulman and E. Keinan, Bioorg. Med. Chem. Lett. 9, 1745–1750 (1999).
- 112 F. Tanaka, M. Oda, and I. Fujii, Tetrahedron Lett. 39, 5057–5060 (1998).
- 113 Y.-Q. Mu and R. A. Gibbs, Bioorg. Med. Chem. 5, 1327–1337 (1997).
- 114 M. E. Flannagan and co-workers, J. Am. Chem. Soc. 118, 6078–6079 (1996).
- 115 N. Jourdain, R. Pérez Carlón, and J.-L. Reymond, Tetrahedron Lett. 39, 9415–9418 (1998).
- 116 R. Pérez Carlón, N. Jourdain, and J.-L. Reymond, Chem. Eur. J. 6, 4154–4162 (2000).
- 117 B. List, C. F. Barbas III, and R. A. Lerner, Proc. Natl. Acad. Sci. USA 95, 15351–15355 (1998).
- 118 H. Shulman and co-workers, Bioorg. Med. Chem. Lett. 10, 2353–2356 (2000).