Mechanisms of Insulin Signal Transduction
W. Timothy Garvey
University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
Search for more papers by this authorW. Timothy Garvey
University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA
Search for more papers by this authorAbstract
The peptide hormone insulin is secreted from pancreatic β-cells, binds to cell surface receptors, and exerts a broad spectrum of anabolic effects in multiple tissues. In mediating its pleiotrophic actions, insulin engages multiple signal transduction, pathways that affect the expression and posttranslational modification of proteins, and regulates enzymatic pathways, subcellular protein localization, and the activation state of membrane transport systems. There are three major steps that provide for divergence of insulin signal transduction, leading to different functional effects: (i) the family of insulin receptor substrate (IRS) docking molecules, (ii) activation of phosphatidylinositide 3 (PI-3) kinase, and (iii) activation of Akt/protein kinase B (PKB). Stimulation of the glucose transport system involves activation of two parallel pathways, the IRS/PI-3 kinase pathway (resulting in activation of Akt/PKB and PKC-λ/ζ) and the CAP/Cbl/TC10 pathway, that then interact with systems regulating trafficking of GLUT-4-containing vesicles and the cytoskeleton. Furthermore, multiple mechanisms modulate insulin signal transduction by affecting the serine/threonine phosphorylation state of tyrosine kinase substrates and phosphoinositides, and the tyrosine phosphorylation state of insulin receptors and IRS molecules. Thus, promulgation of the insulin action is most accurately viewed as a flexible pattern of network interactions involving a web of signal molecule cascades and effector systems. Complex patterns of interactions among signal and effector systems allow for greater plasticity in adaptive responses, and present an increasing number of targets for therapeutic intervention in treating human insulin resistance.
References
- 1 Avruch J. Insulin signal transduction through protein kinase cascades. Mol Cell Biochem 1998; 182: 31–48.
- 2 Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev 1995; 75: 473–86.
- 3 Jacobs S, Cuatrecasas P. Insulin receptor. Structure and function. Endocrinol Rev 1981; 2: 251–63.
- 4 Zhang B, Roth RA. Binding properties of chimeric insulin receptors containing the cysteine-rich domain of either the insulin-like growth factor 1 receptor or the insulin receptor related receptor. Biochemistry 1991; 30: 5113–7.
- 5 Kasuga M, Karlsson FA, Kahn CR. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 1982; 215: 185–7.
- 6 Roth RA, Cassell MP. Insulin receptor. Evidence that it is a protein kinase. Science 1983; 219: 299–301.
- 7 Frattali AL, Treadway JL, Pessin JE. Transmembrane signaling by the human insulin receptor kinase. Relationship between intramolecular beta subunit trans- and cis autophosphorylation and substrate kinase activation. J Biol Chem 1992; 267: 19521–8.
- 8 Rosen OM. Structure and function of insulin receptors. Diabetes 1989; 38: 1508–11.
- 9 Cheatham B, Kahn CR. Insulin action and the insulin signaling network. Endocrinol Rev 1995; 16: 117–42.
- 10 Danielson AG, Liu F, Hosomi Y, Shii K, Roth RA. Activation of protein kinase C alpha inhibits signaling by members of the insulin receptor family. J Biol Chem 1995; 270: 21600–5.
- 11 Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, Dull TJ, Gray A, Coussens L, Liao YC, Tsubokawa M, Mason A, Seeburg PH, Grunfeld C, Rosen OM, Ramachandran J. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 1985; 313: 756–61.
- 12 Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, Constantino A, Goldfine ID, Belfiore A, Vigneri R. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor receptor II receptor in fetal and cancer cells. Mol Cell Biol 1999; 19: 3278–88.
- 13 Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nature Genet 2001; 29: 40–7.
- 14 Taylor SI, Wertheimer E, Hone J, Levy-Toledano R, Quon MJ, Barbetti F, Suzuki Y, Roach P, Koller E, Haft CR, de la Luz M, Cama A, Accili D. Mutations in the insulin receptor gene in patients with genetic syndromes of extreme insulin resistance. In B Draznin, D LeRoith (eds), Molecular Biology of Diabetes Vol 2. Philadelphia: Humana Press; 1994: 1–23.
- 15 Kahn CR, Flier JS, Bar RS, Archer JA, Gorden P, Martin MM, Roth J. The syndromes of insulin resistance and acanthosis nigricans: insulin receptor disorders in man. N Engl J Med 1976; 294: 739–45.
- 16 O'Rahilly S, Moller DE. Mutant insulin receptors in syndromes of insulin resistance. Clin Endocrinol 1992; 36: 121–32.
- 17 Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997; 278: 2975–80.
- 18 White MF. IRS proteins and the common path to diabetes. Am J Physiol 2002; 283: E413–22.
- 19 Virkamaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and the molecular mechanism of insulin resistance. J Clin Invest 1999; 103: 931–43.
- 20 Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF. The structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991; 352: 73–7.
- 21 Sun XJ, Wang LM, Zhang Y, Yenush L, Myers MG, Glasheen E, Lane WS, Pierce JH, White MF. Role of IRS-2 in insulin and cytokine signaling. Nature 1995; 377: 173–7.
- 22 Lavan BE, Lane WS, Lienhard GE. The 60-kDa phosphotyrosine protein in insulin-treated adipocytes is a new member of the insulin receptor substrate family. J Biol Chem 1997; 272: 11439–43.
- 23 Lavan BE, Fantin VR, Chang ET, Lane WS, Keller SR, Lienhard GE. A novel 160-kDa phosphotyrosine protein in insulin-treated embyronic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem 1997; 272: 21403–7.
- 24 Pelicci G, Lanfrancone L, Grignani F, McGlade J, Cavallo F, Forni G, Nicoletti I, Grignani F, Pawson T, Pelicci PG. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 1992; 70: 93–104.
- 25 Holgado-Madruga M, Emlet DR, Moscatello DK, Goodwin AK, Wong AJ. AGrb-2 associated docking protein in EGF- and insulin-receptor signaling. Nature 1996; 379: 560–3.
- 26 Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, Tsuda M, Takada T, Kasuga M. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol 1996; 16: 6887–99.
- 27 Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A. A family of proteins that inhibit signaling through tyrosine kinase receptors. Nature 1997; 386: 181–6.
- 28 Ribon V, Saltiel AR. Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-L1 adipocytes. Biochem J 1997; 324: 839–45.
- 29 Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR. CAP defines a second signaling pathway required for insulin-stimulated glucose transport. Nature 2000; 407: 202–7.
- 30 Moodie SA, Alleman-Sposeto J, Gustafson TA. Identification of the APS protein as a novel insulin receptor substrate. J Biol Chem 1999; 274: 11186–93.
- 31 Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giogetti-Peraldi S, Lebrun P, Mothe-Satney I, Peraldi P, Rocchi S, Sawka-Verhelle D, Tartare-Deckert S, Giudicelli J. Surfing the insulin signaling web. Eur J Clin Invest 2001; 31: 966–77.
- 32 Carpino N, Wisniewski D, Strife A, Marshak D, Kobayashi R, Stillman B, Clarkson B. p62dok: a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Cell 1997; 88: 197–204.
- 33 Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE. Two new substrates in insulin signaling, IRS5/DOK4 and IRS6/DOK5 J Biol Chem 2003; 278: 25323–30.
- 34 Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA 1978; 75: 2021–4.
- 35 Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horikoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aizawa S. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994; 372: 182–6.
- 36 Araki E, Lipes MA, Patti ME, Bruning JC, Haag B, Johnson RS, Kahn CR. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 1994; 372: 186–90.
- 37 Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Pervis S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391: 900–4.
- 38 Sawka-Verhelle D, Tartare-Deckert S, White MF, Van Obberghen E. Insulin receptor substrate-2 binds to the insulin receptor through its phosphotyrosine-binding domain and through a newly identified domain comprising amino acids 591-786. J Biol Chem 1996; 271: 5980–3.
- 39 Sawka-Verhelle D, Baron V, Mothe I, Filloux C, White MF, Van Obberghen E. Tyr624 and Tyr628 in insulin receptor substrate-2 mediate its association with the insulin receptor. J Biol Chem 1997; 272: 16414–20.
- 40 Egan SE, Weinberg RA. The pathway to signal achievement. Nature 1993; 365: 781–3.
- 41 Boulton TG, Hye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD. ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 1991; 65: 663–75.
- 42 Hausdorff SF, Frangioni JV, Birnbaum MJ. Role of p21ras in insulin-stimulated glucose transport in 3T3-L1 adipocytes. J Biol Chem 1994; 269: 21391–4.
- 43 Lazar DF, Wiese RJ, Brady MJ, Mastick CC, Waters SB, Yamauchi K, Pessin JE, Cuatracasas P, Saltiel AR. Mitogen-activated protein kinase kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem 1995; 270: 20801–7.
- 44 Fruman DA, Meyers RE, Cantley LC. Phosphoinositide kinases. Annu Rev Biochem 1998; 67: 481–507.
- 45 Backer JM, Myers MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis B, Skolnik EY, Schlessinger J, White MF. Phosphatidylinositol 3′-kinase is activated by association with IRS during insulin stimulation. EMBO J 1992; 11: 3469–79.
- 46 Cheatham B, Kahn CR. Insulin action and the insulin signaling network. Endocrinol Rev 1995; 16: 117–42.
- 47 Khan AH, Pessin JE. Insulin regulation of glucose uptake: a complex interplay of intracellular signaling pathways. Diabetologia 2002; 45: 1475–83.
- 48 Rameh LE, Cantley LC. The role of phosphoinositide 3 kinase lipid products in cell function. J Biol Chem 1999; 274: 8347–50.
- 49 Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–7.
- 50 Stralfors P. Insulin second messengers. Bioessays 1997; 19: 327–35.
- 51 Bellacosa A, Testa JR, Staal SP, Tsichlis P. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991; 254: 274–7.
- 52 Bellacosa A, Chan TO, Ahmed NN, Datta K, Malstrom S, Stokoe D, McCormick F, Feng J, Tsichlis P. Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 1998; 17: 313–25.
- 53 Kohn AD, Takeuchi F, Roth RA. Akt, a pleckstrin homology containing kinase, is activated primarily by phosphorylation. J Biol Chem 1996; 271: 21920–6.
- 54 Summers SA, Yin VP, Whiteman EL, Garza LA, Cho H, Tuttle RL, Birnbaum MJ. Signaling pathways mediating insulin-stimulated glucose transport. Ann NY Acad Sci 1999; 892: 169–86.
- 55 Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively active akt ser/thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271: 31372–8.
- 56 Calera MR, Martinez C, Liu H, Jack AK, Birnbaum MJ, Pilch PF. Insulin increases the association of akt-2 with Glut4-containing vesicles. J Biol Chem 1998; 273: 7201–4.
- 57 Kitamura T, Ogawa W, Sakaue H, Hino Y, Kuroda S, Takata M, Matsumoto M, Maeda T, Konishi H, KIKK-awa U, Kasuga M. Requirement for activation of the serine–threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport. Mol Cell Biol 1998; 18: 3708–17.
- 58 Kim YB, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activity of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest 1999; 104: 733–41.
- 59 Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB III, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 2001; 292: 1728–31.
- 60 Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 2002; 13: 444–51.
- 61 Cross DA, Alessi DR, Cohen P, Andjelkovitch M, Hemmings BA. Inhibition of glycogen synthase 3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–9.
- 62 Summers SA, Kao AW, Kohn AD, Backus GS, Roth RA, Pessin JE, Birnbaum MJ. The role of glycogen synthase 3β in insulin-stimulated glucose metabolism. J Biol Chem 1999; 274: 17934–40.
- 63 Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 1998; 95: 7772–7.
- 64 Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001; 15: 807–26.
- 65 Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999; 399: 597–601. [Erratum in. Nature 1999; 400: 792]
- 66 Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–27.
- 67 Nakae J, Park B-C, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J Biol Chem 1999; 274: 15982–5.
- 68 Biggs WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1 Proc Natl Acad Sci USA 1999; 96: 7421–6.
- 69 Standaert ML, Galloway L, Karnam P, Bandyopadhyay G, Moscat J, Farese RV. Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes: potential role in glucose transport. J Biol Chem 1997; 272: 30075–82.
- 70 Kotani K, Ogawa W, Matsumoto M, Kitamura T, Sakaue H, Hino Y, Miyake K, Sano W, Akimoto K, Ohno S, Kasuga M. Requirement of atypical protein kinase C lambda for insulin stimulation of glucose uptake but not for akt activation in 3T3-L1 adipocytes. Mol Cell Biol 1998; 18: 6971–82.
- 71 Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol 2002; 283: E1–11
- 72 Tsuru M, Katagiri H, Asano T, Yamada T, Ohno S, Ogihara T, Oka Y. Role of PKC isoforms in glucose transport in 3T3-L1 adipocytes: insignificance of atypical PKC. Am J Physiol 2002; 283: E338–45.
- 73 Mendez R, Kollmorgen G, White MF, Rhoads RE. Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin. Mol Cell Biol 1997; 17: 5184–92.
- 74 Isakoff SJ, Taha C, Rose E, Marcusohn J, Klip A, Skolnik EY. The inability of phosphatidylinositol 3-kinase activation to stimulate GLUT-4 translocation indicates additional signaling pathways are required for insulin-stimulated glucose uptake. Proc Natl Acad Sci USA 1995; 92: 10247–51.
- 75 Guilherme A, Czech MP. Stimulation of IRS-1-associated phosphatidylinositol 3-kinase and Akt/protein kinase B but not glucose transport by beta1-integrin signaling in rat adipocytes. J Biol Chem 1998; 273: 33119–22.
- 76 Watson RT, Pessin JE. Intracellular organization of insulin signaling and GLUT-4 translocation. Recent Prog Horm Res 2001; 56: 175–93.
- 77 Saltiel AR, Pessin JE. Insulin signaling pathways in time and space. Trends Cell Biol 2002; 12: 65–71.
- 78 Krook A, Whitehead JP, Dobson SP, Griffiths MR, Ouwens M, Baker C, Hayward AC, Sen SK, Maassen JA, Siddle K, Tavare JM, O'Rahilly S. Two naturally occurring insulin receptor tyrosine kinase domain mutants provide evidence that phosphoinositide 3-kinase activation alone is not sufficient for the mediation of insulin's metabolic and mitogenic effects. J Biol Chem 1997; 272: 30208–14.
- 79 Jiang T, Sweeney G, Rudolf MT, Klip A, Traynor-Kaplan A, Tsien RY. Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1998; 273: 11017–24.
- 80 Liu J, Kimura A, Baumann C, Saltiel A. APS facilitates c-Cbl tyrosine phosphorylation and GLUT-4 translocation in response to insulin in 3T3-L1 adipocytes. Mol Cell Biol 2002; 11: 3599–609.
- 81 Ribon V, Saltiel A. A novel, multifunctional c-Cbl binding protein in insulin receptor signaling in 3T3-L1 adipocytes. Mol Cell Biol 1998; 18: 872–9.
- 82 Bickel PE. Lipid rafts and insulin signaling. Am J Physiol 2002; 282: E1–10.
- 83 Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR. Insulin-stimulated GLUT-4 translocation requires the CAP-dependent activation of TC10. Nature 2001; 410: 944–8.
- 84 Chiang S, Hou J, Hwang J, Pessin J, Saltiel A. Cloning and functional characterization of related TC10 isoforms, a subfamily of Rho proteins involved in insulin-stimulated glucose transport. J Biol Chem 2002; 277: 13067–73.
- 85 Chang L, Adams RD, Saltiel AR. The TC10-interacting protein CIP4/2 is required for insulin-stimulated Glut4 translocation in 3T3L1 adipocytes. Proc Natl Acad Sci USA 2002; 99: 12835–40.
- 86 Kanzaki M, Watson RT, Hou JC, Stamnes M, Saltiel AR, Pessin JE. Small GTP-binding protein TC10 dif- ferentially regulates two distinct populations of filamen- tous actin in 3T3L1 adipocytes. Mol Biol Cell 2002; 13: 2334–46.
- 87 Baumann CA, Ribon V, Kanzaki M, Thurmond DC, Mora S, Shigematsu S, Bickel PE, Pessin JE, Saltiel AR. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 2000; 407: 202–7.
- 88 Kimura A, Baumann C, Chiang S, Saltiel A. The sorbin homology domain: a motif for the targeting of proteins to lipid rafts. Proc Natl Acad Sci USA 2001; 98: 9098–103.
- 89 Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR. Insulin-stimulated GLUT-4 translocation requires the CAP-dependent activation of TC10. Nature 2001; 410: 944–8.
- 90 Gustavsson J, Parpal S, Stralfors P, Insulin-stimulated glucose uptake involves the transition of glucose transporters to a caveolin-rich fraction within the plasma membrane: implications for type II diabetes. Mol Med 1996; 2: 367–72.
- 91 Watson RT, Shigematsu S, Chiang SH, Mora S, Kanzaki M, Macara IG, Saltiel AR, Pessin JE. Lipid raft microdomain compartmentalization of TC10 is required for insulin signaling and GLUT-4 translocation. J Cell Biol 2001; 154: 829–40.
- 92 Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol 1997; 273: E1039–51.
- 93 Goodyear LJ, AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport. Exerc Sport Sci Rev 2000; 28: 113–6.
- 94 Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 1997; 273: E1107–12.
- 95 Mu J, Brozinick JT Jr, Valladares O, Bucan M, Birnbaum MJ. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell 2001; 7: 1085–94.
- 96 Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell. Annu Rev Biochem 1998; 67: 821–55.
- 97 Garvey WT, Birnbaum MJ. Cellular insulin action and insulin resistance. Baillieres Clin Endocrinol Metab 1993; 7: 785–873.
- 98 Joost HG, Bell GI, Best JD, Birnbaum MJ, Charron MJ, Chen YT, Doege H, James DE, Lodish HF, Moley KH, Moley JF, Mueckler M, Rogers S, Schurmann A, Seino S, Thorens B. Nomenclature of GLUT/SLC2A family of sugar/polyol transport facilitators. Am J Physiol 2002; 282: E974–6.
- 99 Rea S, James DE. Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 1997; 46: 1667–77.
- 100 Mora S, Pessin JE. An adipocentric view of signaling and intracellular trafficking. Diabetes/Metab Res Rev 2002; 18: 345–56.
- 101 Bao S, Smith RM, Jarett L, Garvey WT. The effects of brefeldin A on the glucose transport system in rat adipocytes: implications regarding the intracellular locus on insulin sensitive GLUT4. J Biol Chem 1995; 270: 30199–204.
- 102 Kandror KV, Pilch PF. Compartmentalization of protein traffic in insulin-sensitive cells. Am J Physiol 1996; 271: E1–14.
- 103 Rice JE, Livingstone C, Gould GW. Trafficking, targeting and translocation of the insulin-responsive glucose transporter, GLUT4, in adipocytes. Biochem Soc Trans 1996; 24: 540–6.
- 104 Holman GD, Kasuga M. From receptor to transporter: insulin signalling to glucose transport. Diabetologia 1997; 40: 910–1003.
- 105 Malide D, Dwer NK, Blanchette-Mackie EJ, Cushman SW. Immunocytochemical evidence that GLUT4 resides in a specialized translocation post-endosomal VAMP-2 positive compartment in rat adipose cells in the absence of insulin. J Histochem Cytochem 1997; 45: 1083–96.
- 106 Aledo JC, Lavoie L, Volchuk A, Keller SR, Klip A, Hundal HS. Identification and characterization of two distinct intracellular GLUT4 pools in rat skeletal muscle. Evidence for an endosomal and an insulin-sensitive GLUT4 compartment. Biochem J 1997; 325: 727–32.
- 107 Watson RT, Pessin JE. Subcellular compartmentalization and trafficking of the insulin-responsive glucose transporter, GLUT4. Exp Cell Res 2001; 271: 75–83.
- 108 Shewan AM, Marsh BJ, Melvin DR, Martin S, Gould GW, James DE. The cytosolic C-terminus of the glucose transporter GLUT4 contains an acidic cluster endosomal targeting motif distal to the dileucine signal. Biochem J 2000; 350: 99–107.
- 109 Lee W, Jung CY. A synthetic peptide corresponding to the GLUT4 C-terminal cytoplasmic domain causes insulin-like glucose transport stimulation and GLUT4 recruitment in rat adipocytes. J Biol Chem 1997; 272: 21572–31.
- 110 Kandror KV, Pilch PF. gp160, a tissue specific marker for insulin-activated glucose transport. Proc Natl Acad Sci USA 1994; 91: 8017–21.
- 111 Sollner TH, Rothman JE. Molecular machinery mediating vesicle budding, docking, and fusion. Cell Struct Funct 1996; 21: 407–12.
- 112 Pevsner J, Hsu S-C, Braun JE, Calakos N, Ting AE, Bennett MK, Scheller RH. Specificity and regulation of a synaptic vesicle docking complex. Neuron 1994; 13: 353–61.
- 113 Novick P, Zerial M. The diversity of rab proteins in vesicle transport. Curr Opin Cell Biol 1997; 9: 496–504.
- 114 Seabra M, Mules E, Hume A. Rab GTPases, intracellular traffic and disease. Trends Mol Med 2002; 8: 23–30.
- 115 Cormont M, Bortoluzzi MN, Gautier N, Mari M, Van Obberghen E, Le Marchand-Brustel Y. Potential role of Rab4 in the regulation of subcellular localization of Glut4 in adipocytes. Mol Cell Biol 1996; 16: 6879–86.
- 116 Shibata H, Omata W, Suzuki Y, Tanaka S, Kojima I. A synthetic peptide corresponding to the Rab4 hypervariable carboxyl-terminal domain inhibits insulin action on glucose transport in rat adipocytes. J Biol Chem 1996; 271: 9704–9.
- 117 Wang Q, Bilan PJ, Tsakiridis T, Hinek A, Klip A. Actin filaments participate in the relocation of phosphatidylinositol 3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3-L1 adipocytes. Biochem J 1998; 331: 917–28.
- 118 Kanzaki M, Pessin JE. Insulin-stimulated GLUT4 translocation in adipocytes is dependent upon cortical actin remodeling. J Biol Chem 2001; 276: 42436–44.
- 119 Jiang ZY, Chawla A, Bose A, Way M, Czech MP. A phosphatidylinositol 3-kinase-independent insulin signaling pathway to N-WASP/Arp2/3/F-actin required for GLUT4 glucose transporter recycling. J Biol Chem 2002; 277: 509–15.
- 120 Murphy GA, Solski PA, Jillian SA, Perez de la Ossa P, D'Eustachio P, Der CJ, Rush MG. Cellular functions of TC10, a Rho-family GTPase: regulation of morphology, signal transduction, and cell growth. Oncogene 1999; 18: 3831–45.
- 121 Semiz S, Park JG, Nicoloro SM, Furcinitti P, Zhang C, Chawla A, Leszyk J, Czech MP. Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules. EMBO J 2003; 22: 2387–99.
- 122 Olson A, Trumbly A, Gibson G. Insulin-mediated GLUT4 translocation is dependent on the microtubular network. J Biol Chem 2001; 276: 10706–14.
- 123 Huang J, Imamura T, Olefsky J. Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc Natl Acad Sci USA 2001; 98: 1 3084–9.
- 124 Hunter S, Garvey WT. Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system. Am J Med 1998; 105: 331–45.
- 125 Garvey WT, Maianu L, Huecksteadt TP, Birnbaum MJ, Molina JM, Ciaraldi TP. Pretranslational suppression of a glucose transporter protein causes cellular insulin resistance in non-insulin-dependent diabetes mellitus and obesity. J Clin Invest 1991; 87: 1072–81.
- 126 Garvey WT, Maianu L, Hancock JA, Golichowski AM, Baron A. Gene expression of GLUT4 glucose transporters in skeletal muscle from insulin-resistant patients with obesity, impaired glucose tolerance, gestational diabetes, and non-insulin-dependent diabetes mellitus. Diabetes 1992; 41: 465–75.
- 127 Garvey WT, Maianu L, Zhu J-H, Hancock JA, Golichowski AM. Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes: heterogeneity in the number and a novel abnormality in subcellular localization of GLUT4 glucose transporters. Diabetes 1993; 42: 1773–85.
- 128 Garvey WT, Maianu L, Zhu J-H, Brechtel-Hook G, Wallace P, Baron AD. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 1998; 101: 2377–86.
- 129 Maianu L, Keller SR, Garvey WT. Adipocytes express abnormalities in translocation and trafficking of vesicles containing GLUT4 and insulin-regulated aminopeptidase in type 2 diabetes. J Clin Endocrinol Metab 2001; 86: 5450–6.
- 130 Tanti JF, Gremeaux T, Van Obberghen E, Le Marchand-Brustel Y. Serine-threonine phosphorylation of insulin receptor substrate-1 modulates insulin receptor signaling. J Biol Chem 1994; 269: 6051–7.
- 131 Mothe I, Van Obberghen E. Phosphorylation of insulin receptor substrate-1 on multiple serine residues, 612, 632, 662, and 731, modulates insulin action. J Biol Chem 1996; 271: 11222–7.
- 132 Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 1997; 272: 29911–8.
- 133 Liu YF, Paz K, Herschkovitz A, Alt A, Tennenbaum T, Sampson SR, Ohba M, Kuroki T, LeRoith D, Zick Y. Insulin stimulates PKC zeta-mediated phosphorylation of insulin receptor substrate-1: a self-attenuated mechanism to negatively regulate the function of IRS proteins. J Biol Chem 2001; 276: 14459–65.
- 134 Ravichandran LV, Esposito DL, Chen J, Quon MJ. Protein kinase C zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 2001; 276: 3543–9.
- 135 Hotamisligil GS, Spiegelman BM. Adipose expression of TNFα direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91.
- 136 Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNFα by human muscle: relationship to insulin resistance. J Clin Invest 1996; 97: 1111–6.
- 137 Hotamisligil GS, Peraldi P, Budvari A, Ellis RW, White MF, Spiegelman BM. IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α-induced and obesity-induced insulin resistance. Science 1996; 271: 665–8.
- 138 Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A. Tumor necrosis factor alpha-induced phosphorylation of of insulin receptor substrate-1 (IRS-1): possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem 1995; 270: 23780–4.
- 139 Peraldi P, Xu M, Spiegelman BM. Thiazolidinediones block tumor necrosis factor-alpha-induced inhibition of insulin signaling. J Clin Invest 1997; 100: 1863–9.
- 140 Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277: 1531–7.
- 141 Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM. Tumor necrosis factor (TNF)-α inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem 1996; 271: 13018–22.
- 142 Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE, Shulman GI. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 2002; 109: 1321–6.
- 143 Yuan M, Konstantopoulos N, Lee J, Hansen L, Li Z-W, Karin M, Shoelson SE. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of IKKβ. Science 2001; 293: 1673–7.
- 144 Kim JK, Kim YJ, Fillmore JJ, Chen Y, Moore I, Lee J, Yuan M, Li ZW, Karin M, Perret P, Shoelson SE, Shulman GI. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 2001; 108: 437–46.
- 145 Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am J Physiol 2003; 284: E663–70.
- 146 Ahmad F, Azevedo J, Cortright R, Dohm GL, Goldstein BJ. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 1997; 100: 449–58.
- 147 Goldstein BJ, Ahmad F, Ding W, Li PM, Zhang WR. Regulation of the insulin signaling pathways by cellular protein-tyrosine phosphatases. Mol Cell Biochem 1998; 182: 91–9.
- 148 Drake PJ, Posner BI. Insulin receptor-associated protein tyrosine phosphatases: role in insulin action. Mol Cell Biochem 1998; 182: 79–89.
- 149 Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283: 1544–8.
- 150 Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E, SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 2000; 275: 15985–91.
- 151 Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387: 917–21.
- 152 Luger A, Prager R, Gaube S, Graf H, Klauser R, Schernthaner G. Decreased peripheral insulin sensitivity in acromegalic patients. Exp Clin Endocrinol 1990; 95: 339–43.
- 153 Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science 1996; 274: 1185–8.
- 154 Goldfine ID, Maddux BA, Youngren JF, Frittitta L, Trischitta V, Dohm GL. Membrane glycoprotein PC-1 and insulin resistance. Mol Cell Biochem 1998; 182: 177–84.
- 155 Frittitta L, Spampinato D, Solini A, Nosadini R, Goldfine ID, Vigneri R, Trischitta V. Elevated PC-1 content in cultured skin fibroblasts correlates with decreased in vivo and in vitro insulin action in non-diabetic subjects: evidence that PC-1 may be an intrinsic factor in impaired insulin receptor signaling. Diabetes 1998; 47: 1095–100.
- 156 Kumakura S, Maddux BA, Sung CK. Overexpression of membrane glycoprotein PC-1 can influence insulin action at a post-receptor site. J Cell Biochem 1998; 3: 366–77.
- 157 Youngren JF, Maddux BA, Sasson S, Sbraccia P, Tapscott EB, Swanson MS, Dohm GL, Goldfine ID. Skeletal muscle content of membrane glycoprotein PC-1 in obesity: relationship to muscle glucose transport. Diabetes 1996; 10: 1324–8.
- 158 O'Brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA. Insulin-regulated gene expression. Biochem Soc Trans 2001; 29: 552–8.
- 159 Lochhead PA, Coghlan M, Rice SQ, Sutherland C. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphoenolpyruvate carboxykinase gene expression. Diabetes 2001; 50: 937–46.
- 160 Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrinol Rev 2001; 22: 153–83.
- 161 Paradis S, Ruvkun G. Caenorhabditis elegans: Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 1998; 12: 2488–98.
- 162 Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 1998; 47: 187–99.
- 163 Tang ED, Nunez G, Barr FG, Guan KL. Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 1999; 274: 16741–6.
- 164 Nakae J, Park B-C, Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a wortmannin-sensitive pathway. J Biol Chem 1999; 274: 15982–5.
- 165 Guo S, Rena G, Cichy S, He X, Cohen P, Unterman T. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999; 274: 17184–92.
- 166 Hall RK, Yamasaki T, Kucera T, Waltner-Law M, O'Brien R, Granner DK. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin: the role of winged helix/forkhead proteins. J Biol Chem 2000; 275: 30169–75.
- 167 Yeagley D, Guo S, Unterman T, Quinn PG. Gene- and activation-specific mechanisms for insulin inhibition of basal and glucocorticoid-induced insulin-like growth factor binding protein-1 and phosphoenolpyruvate carboxykinase transcription: roles of forkhead and insulin response sequences. J Biol Chem 2001; 276: 33705–10.
- 168 Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92: 829–39.
- 169 Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 Nature 2001; 413: 131–8.
- 170 Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1 Nature 2001; 413: 179–83. [Erratum in Nature 2001; 413: 652]
- 171 Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 2003; 423: 550–5.
- 172 Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs W, Wright C, White M, Arden K, Accili D. The transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic β-cell growth. J Clin Invest 2002; 110: 1839–47.
- 173 Nakae J, Kitamura T, Kitamura Y, Biggs WH, Arden KC, Accili D. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 2003; 4: 119–29.
- 174 Wang X, Sato R, Brown MS, Hua X, Goldstein JL. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell 1994; 77: 53–62.
- 175 Hua X, Wu J, Goldstein JL, Brown MS, Hobbs HH. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p11.2 and 22q13. Genomics 1995; 25: 667–73.
- 176 Tontonoz P, Kim JB, Graves RA, Spiegelman BM. ADD1: a novel helix-loop-helix transcription factor associated with adipocytes determination and differentiation. Mol Cell Biol 1993; 13: 4753–9.
- 177 Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 1999; 96: 11041–8.
- 178 Horton JD, Bashmakov Y, Shimomura Y, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc Natl Acad Sci USA 1998; 95: 5987–92.
- 179 Kim JB, Sarraf P, Wright M, Yao K, Mueller M, Solanes G, Lowell BB, Spiegelman B. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J Clin Invest 1998; 101: 1–9.
- 180 Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, Le Liepvre X, Berthelier-Lubrano C, Spiegelman B, Kim JB, Ferre P, Foufelle F. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol 1999; 19: 3760–8.
- 181 Matsumoto M, Ogawa W, Teshigawara K, Inoue H, Miyake K, Sakaue H, Kasuga M. Role of the insulin receptor 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes. Diabetes 2002: 51: 1672–80.
- 182 Foufelle F, Ferre P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002; 366: 377–91.
- 183 Sawka-Verhelle D, Filloux C, Tartare-Deckert S, Mothe I, Van Obberghen E. Identification of Stat 5B as a substrate of the insulin receptor. Eur J Biochem 1997; 250: 411–7.
- 184 Sawka-Verhelle D, Tartare-Deckert S, Decaux JF, Girard J, Van Obberghen E. Stat 5B, activated by insulin in a JaK-independent fashion, plays a role in glucokinase gene transcription. Endocrinology 2000; 141: 1977–88.