Mutagenicity Study
5
Walter W. Piegorsch,
Walter W. Piegorsch
University of South Carolina, Columbia, SC, USA
Search for more papers by this authorWalter W. Piegorsch,
Walter W. Piegorsch
University of South Carolina, Columbia, SC, USA
Search for more papers by this authorAbstract
Biometric methods are discussed for analyzing data from bioassays of mutagenic response. Emphasis is placed on the classic microbial system in environmental mutagenesis: the Ames/Salmonella microsome assay. The assay produces count data to quantify the mutational response; statistical issues of interest when analyzing such data include testing for extra-Poisson variability, trend testing for a dose response, and trend testing under a nonmonotone dose response.
References
- 1 Abramowitz, M. & Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th Ed. Wiley-Interscience, New York.
- 2 Ager, D. D. & Haynes, R. H. (1987). Mathematical description of the interactions between cellular inactivating agents, Radiation Research 110, 129–141.
- 3 Alvord, W. G., Driver, J. H., Claxton, J. & Creason, J. P. (1990). Methods for comparing Salmonella mutagenicity data sets using nonlinear models, Mutation Research 240, 177–194.
- 4 Astuti, E. T. & Yanagawa, T. (2002). Trend test for count data with extra-Poisson variability, Biometrics 58, 398–402.
- 5 Bernardo, J. M. (1976). Algorithm AS103. The digamma function, Applied Statistics 25, 315–317.
- 6 Bernstein, L., Kaldor, J., McCann, J. & Pike, M. C. (1982). An empirical approach to the statistical analysis of mutagenesis data from the Salmonella test, Mutation Research 97, 267–281.
- 7 Bishop, J. B. & Kodell, R. L. (1980). The heritable translocation assay: Its relationship to assessment of genetic risk for future generations, Teratogenesis, Mutagenesis, and Carcinogenesis 1, 305–322.
- 8 Bogen, K. T. (1994). Applicability of alternative models of revertant variance to Ames-test data for 121 mutagenic carcinogens, Mutation Research 322, 265–273.
- 9 Breslow, N. (1984). Extra-Poisson variability in log-linear models, Applied Statistics 33, 38–44.
- 10 Clark, S. J. & Perry, J. N. (1989). Estimation of the negative binomial parameter k by maximum quasi-likelihood, Biometrics 45, 309–316.
- 11 Collings, B. J. & Margolin, B. H. (1985). Testing goodness of fit for the Poisson assumption when observations are not identically distributed, Journal of the American Statistical Association 80, 411–418.
- 12 Collings, B. J., Margolin, B. H. & Oehlert, G. W. (1981). Analyses for binomial data, with applications to the fluctuations test for mutagenicity, Biometrics 37, 775–794.
- 13 Dean, C. B. (1992). Testing for overdispersion in Poisson and binomial regression models. Journal of the American Statistical Association 87, 451–457.
- 14 Fisher, R. A. (1950). The significance of deviations from expectation in a Poisson series, Biometrics 6, 17–24.
- 15 Fisher, R. A., Thornton, H. G. & MacKenzie, W. A. (1922). The accuracy of the plating method of estimating the density of bacterial populations, Journal of Applied Biology 9, 325–359.
- 16 Hamada, C., Wada, T. & Sakamoto, Y. (1994). Statistical characterization of negative control data in the Ames Salmonella/microsome test, Environmental Health Perspectives 102, Supplement 1, 115–119.
- 17 Haynes, R. H. (1989). Mutagenesis and mathematics: the allure of numbers, Environmental and Molecular Mutagenesis 14, 200–205.
- 18 Hollstein, M., McCann, J., Angelosanto, F. & Nichols, W. (1979). Short-term tests for carcinogens and mutagens, Mutation Research 65, 133–226.
- 19 Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives, Biometrika 41, 133–145.
- 20 Kim, B. S. & Park, C. (1992). Some remarks on testing goodness of fit for the Poisson assumption, Communications in Statistics - Theory and Methods 21, 979–995.
- 21 Kirkland, D. J. (1989). Statistical Evaluation of Mutagenicity Test Data. Cambridge University Press, Cambridge.
- 22 Krewski, D., Leroux, B. G., Bleuer, S. R. & Broekho-ven, L. H. (1993). Modeling the Ames Salmonella/micro some assay, Biometrics 49, 499–510.
- 23 Leroux, B. G. & Krewski, D. (1993). AMESFIT: A microcomputer program for fitting linear-exponential dose-response models in the Ames Salmonella assay, Environmental and Molecular Mutagenesis 22, 78–84.
- 24 Lockhart, A. -M., Piegorsch, W. W. & Bishop, J. B. (1992). Assessing overdispersion and dose response in the male dominant lethal assay, Mutation Research 272, 35–58.
- 25 Mack, G. A. & Wolfe, D. A. (1981). K-sample rank tests for umbrella alternatives, Journal of the American Statistical Association 76, 175–181.
- 26 Mahon, G. A. T., Middleton, B., Robinson, W. D., Green, M. H. L., Mitchell, I. & Tweats, D. J. (1989). Analysis of data from microbial count assays, in Statistical Evaluation of Mutagenicity Test Data, D. J. Kirkland, ed. Cambridge University Press, Cambridge, pp. 26–65.
- 27 Mann, H. B. & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other, Annals of Mathematical Statistics 18, 50–60.
- 28 Margolin, B. H. (1985). Statistical studies in genetic toxicology: a perspective from the U.S. National Toxicology Program, Environmental Health Perspectives 63, 187–194.
- 29 Margolin, B. H., Collings, B. J. & Mason, J. J. (1983). Statistical analysis and sample-size determinations for mutagenicity experiments with binomial response, Environmental Mutagenesis 5, 705–716.
- 30 Margolin, B. H., Kaplan, N. & Zeiger, E. (1981). Statistical analysis of the Ames Salmonella/microsome test, Proceedings of the National Academy of Sciences 76, 3779–3783.
- 31 Margolin, B. H., Kim, B. S. & Risko, K. J. (1989). The Ames Salmonella/microsome mutagenicity assay: issues of inference and validation, Journal of the American Statistical Association 84, 651–661.
- 32 Margolin, B. H., Resnick, M. A., Rimpo, J. Y., Archer, P., Galloway, S. M., Bloom, A. D. & Zeiger, E. (1986). Statistical analyses for in vitro cytogenetic assays using Chinese hamster ovary cells, Environmental Mutagenesis 8, 183–204.
- 33 Maron, D. M. & Ames, B. N. (1983). Revised methods for the salmonella mutagenicity test, Mutation Research 113, 173–215.
- 34 Murphy, S. A., Tice, R. R., Smith, M. G. & Margolin, B. H. (1992). Contributions to the design and analysis of in vivo SCE experiments, Mutation Research 271, 39–48.
- 35 Neyman, J. & Scott, E. L. (1966). On the use of C(a) optimal tests of composite hypotheses, Bulletin de l'Institut International de Statistique (Calcutta) 41, 477–497.
- 36 Piegorsch, W. W. (1990). Maximum likelihood estimation for the negative binomial dispersion parameter, Biometrics 46, 863–867.
- 37 Piegorsch, W. W. (1992). Nonparametric methods to assess non-monotone dose response: applications to genetic toxicology, in Order Statistics and Nonparametrics: Theory and Applications, P. K. Sen & I. A. Salama, eds. North-Holland, Amsterdam, pp. 419–430.
- 38 Piegorsch, W. W. (1993). Biometrical methods for testing dose effects of environmental stimuli in laboratory studies, Environmetrics 4, 483–505.
- 39 Piegorsch, W. W. (1994). Environmental biometry: Assessing impacts of environmental stimuli via animal and microbial laboratory studies, in Handbook of Statistics, Vol. 12: Environmental Statistics, G. P. Patil & C. R. Rao, eds. North-Holland/Elsevier, Amsterdam, pp. 535–559.
- 40 Piegorsch, W. W., Lockhart, A. -M. C., Margolin, B. H., Tindall, K. R., Gorelick, N. J., Short, J. M., Carr, G. J., Thompson, E. D. & Shelby, M. D. (1994). Sources of variability in data from a lacI transgenic mouse mutation assay, Environmental and Molecular Mutagenesis 23, 17–31.
- 41 Piegorsch, W. W., Margolin, B. H., Shelby, M. D., Johnson, A., French, J. E., Tennant, R. W. & Tindall, K. R. (1995). Study design and sample sizes for a lacI transgenic mouse mutation assay, Environmental and Molecular Mutagenesis 25, 231–245.
- 42 Piegorsch, W. W., Zimmermann, F. K., Fogel, S., Whittaker, S. G. & Resnick, M. A. (1989). Quantitative approaches for assessing chromosome loss in Saccharomyces cerevisiae: general methods for analyzing downturns in dose response, Mutation Research 224, 11–29.
- 43 Richardson, C., Williams, D. A., Amphlett, G., Phillips, B., Allen, J. A. & Chanter, D. O. (1989). Analysis of data from in vitro cytogenetic assays, in Statistical Evaluation of Mutagenicity Test Data, D. J. Kirkland, ed. Cambridge University Press, Cambridge, pp. 141–154.
- 44 Schumacher, M. & Schmoor, C. (1991). Statistical analysis of the Ames assay, in Statistics in Toxicology, L. Hothorn, ed. Springer-Verlag, Heidelberg, pp. 5–19.
- 45 Simpson, D. G. & Dallal, G. E. (1989). BUMP: a FORTRAN program for identifying dose-response curves subject to downturns, Computers and Biomedical Research 22, 36–43.
- 46 Simpson, D. G. & Margolin, B. H. (1986). Recursive nonparametric testing for dose-response relationships subject to downturns at high doses, Biometrika 73, 589–596.
- 47 Simpson, D. G. & Margolin, B. H. (1990). Nonparametric testing for dose-response curves subject to downturns: asymptotic power considerations, Annals of Statistics 18, 373–390.
- 48 Tarone, R. E. (1982). The use of historical control information in testing for a trend in Poisson means, Biometrics 38, 457–462.
- 49
van deVen, R.
(1993).
Estimating the shape parameter for the negative binomial distribution,
Journal of Statistical Computation and Simulation
46,
111–123.
10.1080/00949659308811497 Google Scholar
- 50 Waters, M. D., Stack, H. F., Brady, A. L., Lohman, P. H. M., Haroun, L. & Vainio, H. (1987). Activity profiles for genetic and related tests, Appendix I, in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Genetic and Related Effects: An Updating of Selected IARC Monographs from Volumes 1 to 42, IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, ed. International Agency for Research on Cancer, Lyon, France, pp. 687–696.