A composite DNA element in the promoter of the polymeric immunoglobulin receptor regulates its constitutive expression
Finn-Eirik Johansen
Laboratory of Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, The National Hospital, Rikshospitalet, Oslo, Norway
Search for more papers by this authorBård A. Bosløven
Laboratory of Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, The National Hospital, Rikshospitalet, Oslo, Norway
Search for more papers by this authorPeter Krajci
Laboratory of Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, The National Hospital, Rikshospitalet, Oslo, Norway
Search for more papers by this authorPer Brandtzaeg
Laboratory of Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, The National Hospital, Rikshospitalet, Oslo, Norway
Search for more papers by this authorFinn-Eirik Johansen
Laboratory of Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, The National Hospital, Rikshospitalet, Oslo, Norway
Search for more papers by this authorBård A. Bosløven
Laboratory of Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, The National Hospital, Rikshospitalet, Oslo, Norway
Search for more papers by this authorPeter Krajci
Laboratory of Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, The National Hospital, Rikshospitalet, Oslo, Norway
Search for more papers by this authorPer Brandtzaeg
Laboratory of Immunohistochemistry and Immunopathology (LIIPAT), Institute of Pathology, University of Oslo, The National Hospital, Rikshospitalet, Oslo, Norway
Search for more papers by this authorAbstract
The polymeric immunoglobulin receptor (pIgR), which is constitutively expressed on the basolateral surface of secretory epithelial cells, mediates external translocation of polymeric IgA and pentameric IgM (collectively called pIg) to exocrine secretions. A high level of synthesis must be maintained because the receptor is continuously cleaved to release bound secretory component (SC) in secretory IgA and secretory IgM, as well as free SC from unoccupied receptor. We have isolated the promoter of the pIgR gene and identified a short activating region that is required for the expression of pIgR promoter-driven reporter genes. This region contained an E-box and an inverted repeat sequence (IRS). Gel electrophoresis mobility shift assays with nuclear extracts from different pIgR-expressing epithelial cell lines demonstrated proteins that bind independently to both the E-box and the IRS sequence of the pIgR promoter. In addition, a DNA probe that contained both the E-box and the IRS gave rise to a larger complex that could not be competed by either element on its own. Binding was confirmed by DNase I footprinting of the E-box and IRS sequences with nuclear extracts, and by dimethyl sulfide footprinting in living HT-29 epithelial cells. Finally, a mutation in the pIgR promoter that inhibited protein binding to the E-box and the formation of the larger complex, abolished activated transcription from the reporter gene.
References
- 1 Brandtzaeg, P., Two types of IgA immunocytes in man. Nature New Biol. 1973. 243: 142–143.
- 2 Brandtzaeg, P., Mucosal and glandular distribution of immunoglobulin components: differential localization of free and bound SC in secretory epithelial cells. J. Immunol. 1974. 112: 1553–1559.
- 3 Brandtzaeg, P., Role of J chain and secretory component in receptor-mediated glandular and hepatic transport of immunoglobulins in man. Scand. J. Immunol. 1985. 22: 111–146.
- 4 Mostov, K. E. and Blobel, G., A transmembrane precursor of secretory component. The receptor for transcellular transport of polymeric immunoglobulins. J. Biol. Chem. 1982. 257: 11816–11821.
- 5 P. Brandtzaeg, P. Krajci, M. E. Lamm and C. S. Kaetzel (Eds.), Epithelial and hepatobilary transport of polymeric immunoglobulins. Academic Press, San Diego 1994.
- 6 Mostov, K. E., Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 1994. 12: 63–84.
- 7 Conley, M. E. and Delacroix, D. L., Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann. Intern. Med. 1987. 106: 892–899.
- 8 Brandtzaeg, P., Structure, synthesis and external transfer of mucosal immunoglobulins. Ann. Immunol. 1973. 124: 417–438.
- 9 Brandtzaeg, P., Nilssen, D. E., Rognum, T. O. and Thrane, P. S., Ontogeny of the mucosal immune system and IgA deficiency. Gastroenterol. Clin. North. Am. 1991. 20: 397–439.
- 10 Krajci, P., Solberg, R., Sandberg, M., Oyen, O., Jahnsen, T. and Brandtzaeg, P., Molecular cloning of the human transmembrane secretory component (poly-Ig receptor) and its mRNA expression in human tissues. Biochem. Biophys. Res. Commun. 1989. 158: 783–789.
- 11 Menge, A. C. and Mestecky, J., Surface expression of secretory component and HLA class II DR antigen on glandular epithelial cells from human endometrium and two endometrial adenocarcinoma cell lines. J. Clin. Immunol. 1993. 13: 259–264.
- 12 Sollid, L. M., Kvale, D., Brandtzaeg, P., Markussen, G. and Thorsby, E., Interferon-gamma enhances expression of secretory component, the epithelial receptor for polymeric immunoglobulins. J. Immunol. 1987. 138: 4303–4306.
- 13 Kvale, D., Brandtzaeg, P. and Lovhaug, D., Up-regulation of the expression of secretory component and HLA molecules in a human colonic cell line by tumour necrosis factor-alpha and gamma interferon. Scand. J. Immunol. 1988. 28: 351–357.
- 14 Phillips, J. O., Everson, M. P., Moldoveanu, Z., Lue, C. and Mestecky, J., Synergistic effect of IL-4 and IFN-gamma on the expression of polymeric Ig receptor (secretory component) and IgA binding by human epithelial cells. J. Immunol. 1990. 145: 1740–1744.
- 15 Youngman, K. R., Fiocchi, C. and Kaetzel, C. S., Inhibition of IFN-gamma activity in supernatants from stimulated human intestinal mononuclear cells prevents up-regulation of the polymeric Ig receptor in an intestinal epithelial cell line. J. Immunol. 1994. 153: 675–681.
- 16 Kvale, D. and Brandtzaeg, P., Constitutive and cytokine induced expression of HLA molecules, secretory component, and intercellular adhesion molecule-1 is modulated by butyrate in the colonic epithelial cell line HT-29. Gut 1995. 36: 737–742.
- 17 Krajci, P., Tasken, K., Kvale, D. and Brandtzaeg, P., Interferon-gamma stimulation of messenger RNA for human secretory component (poly-Ig receptor) depends on continuous intermediate protein synthesis. Scand. J. Immunol. 1993. 37: 251–256.
- 18 Piskurich, J. F., France, J. A., Tamer, C. M., Willmer, C. A., Kaetzel, C. S. and Kaetzel, D. M., Interferon-gamma induces polymeric immunoglobulin receptor mRNA in human intestinal epithelial cells by a protein synthesis dependent mechanism. Mol. Immunol. 1993. 30: 413–421.
- 19 Brandtzaeg, P., Halstensen, T. S., Huitfeldt, H. S., Krajci, P., Kvale, D., Scott, H. and Thrane, P. S., Epithelial expression of HLA, secretory component (poly-Ig receptor), and adhesion molecules in the human alimentary tract. Ann. NY Acad. Sci. 1992. 664: 157–179.
- 20 Nilsen, E. M., Lundin, K. E., Krajci, P., Scott, H., Sollid, L. M. and Brandtzaeg, P., Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon gamma. Gut 1995. 37: 766–776.
- 21 Krajci, P., Grzeschik, K. H., Geurts van Kessel, A. H., Olaisen, B. and Brandtzaeg, P., The human transmembrane secretory component (poly-Ig receptor): molecular cloning, restriction fragment length polymorphism and chromosomal sublocalization. Hum. Genet. 1991. 87: 642–648.
- 22 Krajci, P., Kvale, D., Tasken, K. and Brandtzaeg, P., Molecular cloning and exon-intron mapping of the gene encoding human transmembrane secretory component (the poly-Ig receptor). Eur. J. Immunol. 1992. 22: 2309–2315.
- 23 Krajci, P., Gedde-Dahl, T. J., Hoyheim, B., Rodge, S., Olaisen, B. and Brandtzaeg, P., The gene encoding human transmembrane secretory component (locus PIGR) is linked to D1S58 on chromosome 1. Hum. Genet. 1992. 90: 215–219.
- 24 Mostov, K. E., Friedlander, M. and Blobel, G., Structure and function of the receptor for polymeric immunoglobulins. Biochem. Soc. Symp. 1986. 51: 113–115.
- 25 Tamer, C. M., Lamm, M. E., Robinson, J. K., Piskurich, J. F. and Kaetzel, C. S., Comparative studies of transcytosis and assembly of secretory IgA in Madin-Darby canine kidney cells expressing human polymeric Ig receptor. J. Immunol. 1995. 155: 707–714.
- 26 Natvig, I., Johansen, F.-E., Nordeng, T., Haraldsen, G. and Brandtzaeg, P., Mechanism for the enhanced external transfer of dimeric IgA over Pentameric IgM: studies of diffusion, binding to the human polymeric Ig receptor and epithelial transcytosis. J. Immunol. 1997. 159: 4330–4340.
- 27 Verrijdt, G., Swinnen, J., Peeters, B., Verhoven, G., Rombauts, W. and Claessens, F., Characterization of the human secretory component gene promoter. Biochim. Biophys. Acta 1997. 1350: 147–154.
- 28 Piskurich, J. F., Youngman, K. R., Phillips, K. M., Hempen, P. M., Blanchard, M. H., France, J. A. and Kaetzel, C. S., Transcriptional regulation of the human polymeric immunoglobulin receptor gene by interferongamma. Mol. Immunol. 1997. 34: 75–91.
- 29 Zhu, Q. S., Heisterkamp, N. and Groffen, J., Unique organization of the human BCR gene promoter. Nucleic Acids Res. 1990. 18: 7119–7125.
- 30 Ewulonu, U. K., Ravi, L. and Medof, M. E., Characterization of the decay-accelerating factor gene promoter region. Proc. Natl. Acad. Sci. USA 1991. 88: 4675–4679.
- 31 Montgomery, J. C., Venta, P. J., Eddy, R. L., Fukushima, Y. S., Shows, T. B. and Tashian, R. E., Characterization of the human gene for a newly discovered carbonic anhydrase, CA VII, and its localization to chromosome 16. Genomics 1991. 11: 835–848.
- 32 Ghosh, D., Status of the transcription factors database (TFD). Nucleic Acids Res. 1993. 21: 3117–3118.
- 33 Johansen, F. E. and Prywes, R., Two pathways for serum regulation of the c-fos serum response element require specific sequence elements and a minimal domain of serum response factor. Mol. Cell. Biol. 1994. 14: 5920–5928.
- 34 Medema, R. H., Wubbolts, R. and Bos, J. L., Two dominant inhibitory mutants of p21ras interfere with insulin-induced gene expression. Mol. Cell. Biol. 1991. 11: 5963–5967.
- 35 Navankasattusas, S., Sawadogo, M., van Bilser, M., Dang, C. V. and Chien, K. R., The basic helix-loop-helix protein upstream stimulating factor regulates the cardiac ventricular myosin light-chain 2 gene via independent cis regulatory elements. Mol. Cell. Biol. 1994. 14: 7331–7339.
- 36 Nielsen, F. C., Pedersen, K., Hansen, T. V., Rourke, I. J. and Rehfeld, J. F., Transcriptional regulation of the human cholecystokinin gene: composite action of upstream stimulatory factor, Sp1, and members of the CREB/ATF-AP-1 family of transcription factors. DAM Cell Biol. 1996. 15: 53–63.
- 37 Jackson, S. M., Gutierrez, H. A. and Hoeffler, J. P., Upstream stimulatory factor, a basic-helix-loop-helix-zipper protein, regulates the activity of the alphaglycoprotein hormone subunit gene in pituitary cells. Mol. Endocrinol. 1995. 9: 278–291.
- 38 Desbarats, L., Gaubatz, S. and Eilers, M., Disrimination between different E-box-binding proteins at an endogenous target gene of c-myc. Genes Dev. 1996. 10: 447–460.
- 39 Carter, R. S., Ordentlich, P. and Kadesch, T., Selective utilization of basic helix-loop-leucine zipper proteins at the immunoglobulin heavy-chain enhancer. Mol. Cell. Biol. 1997. 17: 18–23.
- 40 Diamond, M. I., Miner, J. N., Yishinaga, S. K. and Yamamoto, K. R., Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 1990. 249: 1266–1272.
- 41 Treisman, R., Ternary complex factors: growth factor regulated transcriptional activators. Curr. Opin. Genet. Dev. 1994. 4: 96–101.
- 42 Hill, C. S., Marais, R., John, S., Wynne, J., Dalton, S. and Treisman, R., Functional analysis of a growth factor-responsive transcription factor complex. Cell 1993. 73: 395–406.
- 43 Fodor, E., Feren, A. and Jones, A., Isolation and Genomic Analysis of the Rat Polymeric Immunoglobulin Receptor Gene Terminal Domain and Transcriptional Control Region. DNA Cell Biol. 1997. 16: 215–225.
- 44
J. Sambrook,
E. F. Fritsch and
T. Maniatis (Eds.),
Molecular Cloning: a laboratory manual.
Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.
1989.
10.1111/j.1095-8312.1996.tb01434.x Google Scholar
- 45 Kvale, D., Bartek, J., Sollid, L. M. and Brandtzaeg, P., Rapid selection of cultured cells with increased expression of a membrane marker (secretory component). Int. J. Cancer 1988. 42: 638–641.
- 46 Chirgwin, J. M., Przybyla, A. E., MacDonald, R. J. and Rutter, W. J., Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 1979. 18: 5294–5299.
- 47 Han, T. H., Lamph, W. W. and Prywes, R., Mapping of epidermal growth factor-, serum-, and phorbol esterresponsive sequence elements in the c-jun promoter. Mol. Cell. Biol. 1992. 12: 4472–4477.
- 48 Triezenberg, S., Preparation and analysis of RNA. In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith and K. Struhl (Eds.). Current Protocols in Molecular Biology. Wiley, New York 1994, pp 4.8.1–4.8.5.
- 49 Jung, H. C., Eckmann, L., Yang, S. K., Panja, A., Fierer, J., Morzycka, W. E. and Kagnoff, M. F., A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 1995. 95: 55–65.
- 50 Prywes, R. and Roeder, R. G., Inducible binding of a factor to the c-fos enhancer. Cell 1986. 47: 777–784.
- 51 Mueller, P. R. and Wold, B., In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 1989. 246: 780–786.
- 52 Pfeifer, G. P., Tanguay, R. L., Steigerwald, S. D. and Riggs, A. D., In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev. 1990. 4: 1277–1287.