Volume 206, Issue 2 pp. 575-582
Original Paper

Quantum Interference Effects in Highly Doped n-ZnSe Epitaxy Layers Grown by MBE

H. Shao

H. Shao

Physikalisches Institut der Universität Würzburg, Lehrstuhl EPIII, Am Hubland, D-97074 Würzburg, Germany

Search for more papers by this author
J. GerschützS. Scholl

S. Scholl

Physikalisches Institut der Universität Würzburg, Lehrstuhl EPIII, Am Hubland, D-97074 Würzburg, Germany

Search for more papers by this author
H. Schäfer

H. Schäfer

Physikalisches Institut der Universität Würzburg, Lehrstuhl EPIII, Am Hubland, D-97074 Würzburg, Germany

Search for more papers by this author
B. Jobst

B. Jobst

Physikalisches Institut der Universität Würzburg, Lehrstuhl EPIII, Am Hubland, D-97074 Würzburg, Germany

Search for more papers by this author
D. Hommel

D. Hommel

Physikalisches Institut der Universität Würzburg, Lehrstuhl EPIII, Am Hubland, D-97074 Würzburg, Germany

Search for more papers by this author
G. Landwehr

G. Landwehr

Physikalisches Institut der Universität Würzburg, Lehrstuhl EPIII, Am Hubland, D-97074 Würzburg, Germany

Search for more papers by this author

Abstract

Magnetotransport investigations of quantum interference effects at temperatures down to 0.35 K in a series of highly n-doped MBE-grown ZnSe epitaxy layers with electron densities from 8.2×1017 to 7.5×1018 cm—3 are presented. We observed a negative magnetoresistance in all samples studied. The change of magnetoconductivity Δσxx(B) shows a linear dependence on the square root of the magnetic field. The slope of the √B dependence approaches the universal value predicted by weak localization (WL) theory when the temperature is reduced to 0.35 K and the electron density is well on the metallic side of the metal–insulator transition (MIT). The temperature exponent of the estimated phase coherence time τφ is around unity.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.