Eight novel mutations and consequences on mRNA and protein level in pyruvate kinase-deficient patients with nonspherocytic hemolytic anemia
Christian Willaschek
Universitäts-Kinderklinik, Göttingen, Germany
Search for more papers by this authorAndreas Ohlenbusch
Universitäts-Kinderklinik, Göttingen, Germany
Search for more papers by this authorHilary Muirhead
Department of Biochemistry and Molecular Recognition Centre, University of Bristol, Bristol, UK
Search for more papers by this authorCorresponding Author
Max Lakomek
Universitäts-Kinderklinik, Göttingen, Germany
Universitäts-Kinderklinik, Robert-Koch-Str. 40, D-37075 Göttingen, GermanySearch for more papers by this authorChristian Willaschek
Universitäts-Kinderklinik, Göttingen, Germany
Search for more papers by this authorAndreas Ohlenbusch
Universitäts-Kinderklinik, Göttingen, Germany
Search for more papers by this authorHilary Muirhead
Department of Biochemistry and Molecular Recognition Centre, University of Bristol, Bristol, UK
Search for more papers by this authorCorresponding Author
Max Lakomek
Universitäts-Kinderklinik, Göttingen, Germany
Universitäts-Kinderklinik, Robert-Koch-Str. 40, D-37075 Göttingen, GermanySearch for more papers by this authorAbstract
Pyruvate kinase (PK) deficiency (PKD) is an autosomal recessive disorder with the typical manifestation of nonspherocytic hemolytic anemia. We analyzed the mutant enzymes of 10 unrelated patients with PKD, whose symptoms ranged from a mild, chronic hemolytic anemia to a severe anemia, by sequence analysis for the presence of alterations in the PKLR gene. In all cases the patients were shown to be compound heterozygous. Eight novel mutations were identified: 458T→C (Ile153Thr), 656T→C (Ile219Thr), 877G→A (Asp293Asn), 991G→A (Asp331Asn), 1055C→A (Ala352Asp), 1483G→A (Ala495Thr), 1649A→T (Asp550Val), and 183-184ins16bp. This 16 bp duplication produces a frameshift and subsequent stop codon resulting in a drastically reduced mRNA level, and probably in an unstable gene product. Surprisingly, the existence of M2-type PK could be demonstrated in the patient's red blood cells. The study of different polymorphic sites revealed, with one exception, a strict linkage of the 1705C, 1738T, IVS5(+51)T, T(10) polymorphisms and the presence of 14 ATT repeats in intron 11. Our analyses show the consequences of a distorted structure on enzyme function and we discuss the correlations between the mutations identified and the parameters indicative for enzyme function. Hum Mutat 15:261–272, 2000. © 2000 Wiley-Liss, Inc.
REFERENCES
- Akli S, Chelly J, Mezard C, Gandy S, Kahn A, Poenaru L. 1990. A “G” to “A” mutation at position -1 of a 5′ splice site in a late infantile form of Tay-Sachs disease. J Biol Chem 265: 7324–7330.
- Allen SC, Muirhead H. 1996. Refined three-dimensional structure of cat-muscle (M1) pyruvate kinase at a resolution of 2.6 Å. Acta Cryst D 52: 499–504.
- Baronciani L, Beutler E. 1995. Molecular study of pyruvate kinase deficient patients with hereditary nonspherocytic hemolytic anemia. J Clin Invest 95: 1702–1709.
- Baronciani L, Bianchi P, Zanella A. 1998. Hematologically important mutations: red cell pyruvate kinase (2nd update). Blood Cells Mol Dis 24: 273–279.
- Bowman HS, McKusick VA, Dronamraju KR. 1965. Pyruvate kinase deficient hemolytic anemia in an Amish isolate. Am J Hum Genet 17: 1–8.
- Huang CH, Reid M, Daniels G, Blumenfeld OO. 1993. Alteration of splice site selection by an exon mutation in the human glycophorin A gene. J Biol Chem 268: 25902–25908.
- Ibsen KH. 1977. Interrelationships and functions of the pyruvate kinase isozymes and their variant forms: a review. Cancer Res 37: 341–353.
- Jurica MS, Mesecar A, Heath PJ, Shi W, Nowak T, Stoddard BL. 1998. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 6: 195–210.
- Kanno H, Fujii H, Hirono A, Miwa S. 1991. cDNA cloning of human R-type pyruvate kinase and identification of a single amino acid substitution (Thr384→Met) affecting enzymatic stability in a pyruvate kinase variant (PK Tokyo) associated with hereditary hemolytic anemia. Proc Natl Acad Sci USA 88: 8218–8221.
- Kanno H, Ballas SK, Miwa S, Fujii H, Bowman HS. 1994a. Molecular abnormality of erythrocyte pyruvate kinase deficiency in the Amish. Blood 83: 2311–2316.
- Kanno H, Wei DC, Chan LC, Mizoguchi H, Ando M, Nakahata T, Narisawa K, Fujii H, Miwa S. 1994b. Hereditary hemolytic anemia caused by diverse point mutations of pyruvate kinase gene found in Japan and Hong Kong. Blood 84: 3505–3509.
- Kanno H, Fujii H, Miwa S. 1994c. Molecular heterogeneity of pyruvate kinase deficiency identified by single strand conformational polymorphism (SSCP) analysis. Blood (Suppl 1) 84: 13a.
- Kanno H, Fujii H, Wei DC, Chan LC, Hirono A, Tsukimoto I, Miwa S. 1997. Frame shift mutation, exon skipping, and a two-codon deletion caused by splice site mutations account for pyruvate kinase deficiency. Blood 89: 4213–4218.
- Lakomek M, Winkler H, de Maeyer G, Schröter W. 1989. On the diagnosis of erythrocyte enzyme defects in the presence of high reticulocyte counts. Br J Haematol 72: 445–451.
- Lakomek M, Neubauer B, von der Lühe A, Hoch G, Winkler H, Schröter W. 1992. Erythrocyte pyruvate kinase deficiency: relations of residual enzyme activity, altered regulation of defective enzymes and concentrations of high-energy phosphates with the severity of clinical manifestation. Eur J Haematol 49: 82–92.
- Lakomek M, Huppke P, Neubauer B, Pekrun A, Winkler H, Schröter W. 1994. Mutations in the R-type pyruvate kinase gene and altered enzyme kinetic properties in patients with hemolytic anemia due to pyruvate kinase deficiency. Ann Hematol 68: 253–260.
- Larsen TM, Laughlin LT, Holden HM, Rayment I, Reed GH. 1994. Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+, and pyruvate. Biochemistry 33: 6301–6309.
- Lenzner C, Nürnberg P, Jacobasch G, Thiele BJ. 1997. Complete genomic sequence of the human PK-L/R-gene includes four intragenic polymorphisms defining different haplotype backgrounds of normal and mutant PK-genes. DNA Seq 8: 45–53.
- Lind B, van Solinge WW, Schwartz M, Thorsen S. 1993. Splice site mutation in the human protein c gene associated with venous thrombosis: demonstration of exon skipping by ectopic transcript analysis. Blood 82: 2423–2432.
- Manco L, Ribeiro ML, Almeida H, Freitas O, Abade A, Tamagnini G. 1999. PK-LR gene mutations in pyruvate kinase deficient Portuguese patients. Br J Haematol 105: 591–595.
- Mattevi A, Valentini G, Rizzi M, Speranza ML, Bolognesi M, Coda A. 1995. Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition. Structure 3: 729–741.
- Mattevi A, Bolognesi M, Valentini G. 1996. The allosteric regulation of pyruvate kinase. FEBS Lett 389: 15–19.
- Miwa S, Nakashima K, Ariyoshi K, Shinohara K, Oda E, Tanaka T. 1975. Four new pyruvate kinase (PK) variants and a classical type PK deficiency. Br J Haematol 29: 157–169.
- Miwa S, Boivin P, Blume KG, Arnold H, Black JA, Kahn A, Staal GE, Nakashima K, Tanaka KR, Paglia DE, Valentine WN, Yoshida A, Beutler E. 1979. Recommended methods for the characterization of red cell pyruvate kinase variants. Br J Haematol 43: 275–286.
- Muirhead H, Clayden DA, Barford D, Lorimer CG, Fothergill-Gilmore LA, Schiltz E, Schmitt W. 1986. The structure of cat muscle pyruvate kinase. EMBO J 5: 475–481.
- Noguchi T, Inoue H, Tanaka T. 1986. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 261: 13807–13812.
- Noguchi T, Yamada K, Inoue H, Matsuda T, Tanaka T. 1987. The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters. J Biol Chem 262: 14366–14371.
- Rijksen G, Veerman AJP, Schipper-Kester GPM, Staal GEJ. 1990. Diagnosis of pyruvate kinase deficiency in a transfusion-dependent patient with severe hemolytic anemia. Am J Hematol 35: 187–193.
- Satoh H, Tani K, Yoshida MC, Sasaki M, Miwa S, Fujii H. 1988. The human liver-type pyruvate kinase (PKL) gene is on chromosome 1 at band q21. Cytogenet Cell Genet 47: 132–133.
- Takegawa S, Fujii H, Miwa S. 1983. Change of pyruvate kinase isozymes from M2- to L-type during development of the red cell. Br J Haematol 54: 467–474.
- Tani K, Fujii H, Nagata S, Miwa S. 1988a. Human liver type pyruvate kinase: complete amino acid sequence and the expression in mammalian cells. Proc Natl Acad Sci USA 85: 1792–1795.
- Tani K, Tsutsumi H, Takahashi K, Ogura H, Kanno H, Hayasaka K, Narisawa K, Nakahata T, Akabane T, Morisaki T, Fujii H, Miwa S. 1988b. Two homozygous cases of erythrocyte pyruvate kinase (PK) deficiency in Japan: PK Sendai and PK Shinshu. Am J Hematol 28: 186–190.
- van Solinge WW, Kraaijenhagen RJ, Rijksen G, van Wijk R, Stoffer BB, Gajhede M, Nielsen FC. 1997. Molecular modelling of human red blood cell pyruvate kinase: structural implications of a novel G1091 to A mutation causing severe nonspherocytic hemolytic anemia. Blood 90: 4987–4995.
- Walker D, Chia WN, Muirhead H. 1992. Key residues in the allosteric transition of Bacillus stearothermophilus pyruvate kinase identified by site-directed mutagenesis. J Mol Biol 228: 265–276.
- Zanella A, Bianchi P, Baronciani L, Zappa M, Bredi E, Vercellati C, Alfinito F, Pelissero G, Sirchia S. 1997. Molecular characterization of PK-LR gene in pyruvate kinase-deficient Italian patients. Blood 89: 3847–3852.
- Zarza R, Alvarez R, Pujades A, Nomdedeu B, Carrera A, Estella J, Remacha A, Sánchez JM, Morey M, Cortes T, Pérez Lungmus G, Bureo E, Vives Corrons JL. 1998. Molecular characterization of the PK-LR gene in pyruvate kinase deficient Spanish patients. Br J Haematol 103: 377–382.