Interleukin-1β suppresses apoptosis in CD34 positive bone marrow cells through activation of the type I IL-1 receptor
C. Rodriguez
Clinical Research Institute of Montreal and Departments of Pharmacology and Biochemistry and the Molecular Biology Program, University of Montreal, Montreal, Québec, Canada H2W1R7
Search for more papers by this authorC. Lacasse
Clinical Research Institute of Montreal and Departments of Pharmacology and Biochemistry and the Molecular Biology Program, University of Montreal, Montreal, Québec, Canada H2W1R7
Search for more papers by this authorCorresponding Author
T. Hoang
Clinical Research Institute of Montreal and Departments of Pharmacology and Biochemistry and the Molecular Biology Program, University of Montreal, Montreal, Québec, Canada H2W1R7
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Québec, Canada H2W 1R7Search for more papers by this authorC. Rodriguez
Clinical Research Institute of Montreal and Departments of Pharmacology and Biochemistry and the Molecular Biology Program, University of Montreal, Montreal, Québec, Canada H2W1R7
Search for more papers by this authorC. Lacasse
Clinical Research Institute of Montreal and Departments of Pharmacology and Biochemistry and the Molecular Biology Program, University of Montreal, Montreal, Québec, Canada H2W1R7
Search for more papers by this authorCorresponding Author
T. Hoang
Clinical Research Institute of Montreal and Departments of Pharmacology and Biochemistry and the Molecular Biology Program, University of Montreal, Montreal, Québec, Canada H2W1R7
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Québec, Canada H2W 1R7Search for more papers by this authorAbstract
Interleukin-1 is a pleiotropic cytokine that has been shown previously to suppress active cell death in T cells. Two cell surface receptors for interleukin-1 have been identified and their genes cloned, type I (IL-RI) and type II (IL-RII) receptors. In the present study, we provide evidence for a role of interleukin-1β in the short-term suppression of cell death both in purified CD34+/Lin− bone marrow precursors and in the GM-CSF dependent cell line TF-1. Several lines of evidence suggest that the biologic effects of IL-1β are mediated by activation of type I IL-1 receptors (IL-1RI) and induction of GM-CSF production. First, neutralizing antibodies to IL-1RI but not IL-1RII drastically abrogated cell survival induced by IL-1β in CD34+/Lin− cells and TF-1 cells. Second, neutralizing antibodies against GM-CSF abrogate cell survival supported by IL-1 both in CD34+/Lin− bone marrow cells and in the cell line TF-1. Furthermore, exposure of TF-1 cells to IL-1β results in a transient accumulation of GM-CSF mRNA, with a peak at 3 h, which was dramatically decreased by neutralizing anti-IL-1RI antibodies. In contrast, neutralizing anti-IL-1RII did not change the IL-1 induced cell survival of bone marrow cells and was followed by a paradoxical increase in viable cell numbers, in c-myc and c-myb mRNA accumulation in IL-1 treated TF-1 cells. Together our results indicate that the increase in cell survival induced IL-1β occurs through binding to IL-1RI and the subsequent production of endogenous GM-CSF. IL-1RII does not appear to be involved in signal transduction in primary CD34+/Lin− cells but could negatively regulate the response to IL-1β in TF-1 cells. © 1996 Wiley-Liss, Inc.
Literature Cited
- Bagby, G. C., Shaw, G., Heinrich, M. C., Hefeneider, S., Brown, M. A., DeLoughery, T. G., Segal, G. M., and Band, L. (1990) Interleukin-1 stimulation stabilizes GM-CSF mRNA in human vascular endothelial cells: Preliminary studies on the role of the 3′ AU rich motif. Prog. Clin. Biol. Res., 352: 233–239.
- Beauchemin, V., Villeneuve, L., Rodriguez-Cimadevilla, J. C., Raiotte, D., Kenney, J. S., Clark, S. C., and Hoang, T. (1991) Interleukin-6 production by the blast cells of acute myeloblastic leukemia: Regulation by endogenous interleukin-1 and biological implications. J. Cell. Physiol., 148: 353–361.
- Bickel, M., Wahl, S. M., Mergenhagen, S. E., and Pluznik, D. H. (1988) Granulocyte-macrophage colony-stimulating factor regulation in murine T cells and its relation to cyclosporin A. Exp. Hematol., 16: 691–695.
- Bradbury, D., Bowen, G., Kozlowski, R., Reilly, I., and Russel, N. (1990) Endogenous interleukin-1 can regulate the autonomous growth of the bast cells of acute myeloblastic leukemia by inducing autocrine secretion of GM-CSF. Leukemia, 4: 44–47.
- Broudy, V. C., Kaushansky, K., Harlan, J. M., and Adamson, J. W. (1987) Interleukin-1 stimulates human endothelial cells to produce granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor. J. Immunol., 139: 464–468.
- Brown, J., Greaves, M. F., and Molgaard, H. V. (1991) The gene encoding the stem cell antigen, CD34, is conserved in mouse and expressed in haemopoietic progenitor cell lines, brain, and embryonic fibroblasts. Int. Immunol., 3: 175–184.
- Burch, R. M., and Mahan, L. C. (1991) Oligonucleotides antisense to the interleukin 1 receptor mRNA block the effects of interleukin 1 in cultured murine and human fibroblasts and in mice. J. Clin. Invest., 88: 1190–1196.
- Chomczynsky, P., and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chlorophorm extraction. Anal. Biochem., 162: 156–159.
- Colotta, F., Re, F., Muzio, M., Bertini, R., Polentarutti, N., Sironi, M., Giri, J. G., Dower, S. K., Sims, J. E., and Mantovani, A. (1993) Interleukin-1 type II receptor: A decoy target for interleukin-1 regulated by interleukin-4. Science, 261: 472–475.
- De Léan, A., Munson, P. J., and Rodbard, D., (1978) Simultaneous analysis of family of sigmoidal curves: Application to bioassay, radioligand assay and physiological dose-response curves. Am. J. Physiol., 235: E97–E102.
- Delwel, R., van Buitenen, C., Salem, M., Bot, F., Gillis, S., Kaushansky, K., Altrock, B., and Löwenberg, B. (1989) Interleukin-1 stimulates proliferation of acute myeloblastic leukemia by induction of granulocyte-macrophage colony-stimulating factor release. Blood, 74: 586–593.
- Dinarello, C. A. (1991) Interleukin-1 and interleukin-1 antagonism. Blood, 77: 1627–1652.
- Freedman, A. S., Freeman, G., Whitman, J., Segil, J., Dley, J., and Nadler, M. (1988) Pre-exposure of human B cells to recombinant interleukin-1 enhances subsequent proliferation. J. Immunol., 141: 3398–3404.
- Granelly-Piperno, A., Inaba, K., and Steinman, R. M. (1984) Stimulation of lymphokine release from T lymphocytes. J. Exp. Med., 160: 1792–1802.
- Herbelin, A., Machavoine, F., Vicari, A., Schneider, E., Papiernik, M., Ziltener, H., Penit, C., and Dy, M. (1994) Endogenous granulocyte-macrophage colony-stimulating factor is involved in IL-1 and IL-7-induced murine thymocyte proliferation. J. Immunol., 153: 1973–1981.
- Hestdal, K., Ruscetti, F. W., Chizzonite, R., Oritz, M., Gooya, J. M., Longo, D. L., and Keller, J. R. (1994) Interleukin-1 (IL-1) directly and indirectly promotes hematopoietic cell growth through type I IL-1 receptor. Blood, 84: 125–132.
- Heymach, J. V., and Barres, B. A. (1995) Neuronal self-reliance. Nature, 374: 405–406.
- Hoang, T., De Léan, A., Haman, A., Beauchemin, V., Kitamura, T., and Clark, S. C. (1993) The structure and dynamics of the granulocyte macrophage colony-stimulating factor receptor defined by the ternary complex model. J. Biol. Chem., 268: 1181–11887.
- Hoang, T., Haman, A., Goncalves, O., Letendre, F., Mathieu, M., Wong, G. G., and Clark, S. C. (1988) Interleukin 1 enhances growth factor-dependent proliferation of the clonogenic cells in acute myeloblastic leukemia and of normal human primitive hemopoietic precursors. J. Exp. Med., 168: 463–474.
- Iscove, N. N., Shaw, A. R., and Keller, G. (1989) Net increase of pluripotential hemopoietic precursors in suspension culture in response to IL-1 and IL-3. J. Immunol., 142: 2332–2337.
- Jubinsky, P. T., and Stanley, E. R. (1985) Purification of hemopoietin 1: A multilineage hemopoietic growth factor. Proc. Natl. Acad. Sci. USA, 82: 2764–2768.
- Kitamura, T., Takaku, F., and Miyajima, A. (1991) IL-1 up-regulates the expression of cytokine receptors on a factor-dependent human hemopoitic cell line, TF-1. Int. Immunol., 3: 571–577.
- Kitamura, T., Tange, T., Terasawa, T., Chiba, S., Kuwaki, T., Miyagawa, K., Piao, Y.-F., Miyazono, K., Urabe, A., and Takaku, F. (1989) Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell. Physiol., 140: 323–328.
- Lachman, L. B., Brown, D. C., and Dinarello, C. A. (1987) Growth promoting effect of recombinant interleukin 1 and tumor necrosis factor in a human astrocytoma cell line. J. Immunol., 138: 2913–2916.
- Leung, K., Betts, J. C., Xu, L., and Nabel, G. J. (1994) The cytoplasmic domain of the interleukin-1 receptor is required for nuclear factor-kB signal transduction. J. Biol. Chem., 269: 1579–1582.
- Löwenthal, J. W., and MacDonald, H. R. (1986) Binding and internalization of interleukin 1 by T cells: direct evidence for high and low-affinity classes of interleukin 1 receptor. J. Exp. Med., 164: 1060–1074.
- McConkey, D. J., Hartzell, P., Show, S. C., Orrenius, S., and Jondal, M. (1990) Interleukin 1 inhibits T cell receptor-mediated apoptosis in immature thymocytes. J. Biol. Chem., 265: 3009–3011.
- McMahan, C. J., Slack, J. L., Mosley, B., Cosman, D., Lupton, S. D., Brunton, L. L., Grubin, C. E., Wignall, J. M., Jenkins, N. A., Brannan, C. I., Copeland, N. G., Huebner, K., Croce, C. M., Cannizzarro, L. A., Benjamin, D., Dower, S. K., Spriggs, M. K., and Sims, J. E. (1991) A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. EMBO J., 10: 2821–2832.
- Mochizuki, D. Y., Eisenman, J. R., Conlon, P. J., Larsen, A. D., and Tushinski, F. J. (1987) Interleukin-1 regulates hemopoietic activity, a role previously ascribed to hemopoietin 1. Proc. Natl. Acad. Sci. USA, 84: 5267–5270.
- Moore, M. A. S., and Warren, J. D. J. (1987) Synergy of interleukin 1 and granulocytic colony-stimulating factor: In vivo stimulation of stem-cell recovery and hemopoietic regeneration following 5-fluorouracil treatment of mice. Proc. Natl. Acad. Sci. USA, 84: 7134–7137.
- Mosley, B., Dower, S. K., Gillis, K., and Cosman, D. (1987) Determination of the minimum polypeptide lengths of the functionally active sites of human interleukins 1β and 1β. Proc. Natl. Acad. Sci. USA, 84: 4572–4576.
- Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65: 55–58.
- Muñoz, E., Zubiaga, A. M., Sims, J. E., and Huber, B. T. (1991) IL-1 signal transduction pathways. J. Immunol., 146: 136–143.
- Patil, R. R., and Borch, R. F. (1995) Granulocyte-macrophage colony-stimulating factor expression by human fibroblasts is both upregulated and subsequently downregulated by interleukin-1. Blood, 85: 80–86.
- Raines, E. R., Dower, S. K., and Ross, R. (1989) Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science, 243: 393–395.
- Rajotte, D., Haddad, P., Haman, A., Cragoe, E. J., Jr., and Hoang, T. (1992) Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor and interleukin-3. J. Biol. Chem., 267: 9980–9987.
- Re, F., Muzio, M., De Rossi, M., Polentarutti, N., Giri, J. G., Mantovani, A., and Colotta, F. (1994) The type II “receptor” as a decoy target for interleukin 1 in polymorphonuclear leukocytes: Characterization of induction by dexamethasone and ligand binding properties of the released decoy receptor. J. Exp. Med., 179: 739–743.
- Rodriguez-Cimadevilla, J. C., Beauchemin, V., Villeneuve, L., Letendre, F., Shaw, A., and Hoang, T. (1990) Coordinate secretion of interleukin-1β and granulocyte-macrophage colony-stimulating factor by the blast cells of acute myeloblastic leukemia: role of interleukin-1 as an endogenous inducer. Blood, 76: 1481–1489.
- Rodriguez-Tarduchy, G., Collins, M., and Lopez-Rivas, A. (1990) Regulation of apoptosis in interleukin-3-dependent hemopoietic cells by interleukin-3 and calcium ionophores. EMBO J., 9: 2997–3002.
- Rossof, P. M., Savage, N., and Dinarello, C. A. (1988) Interleukin-1 stimulates diacylglycerol production in T lymphocytes by a novel mechanism. Cell, 54: 73–80.
- Schmidt, J. A., Mizel, S. B., Cohen, D., and Green, I. (1982) Interleukin-1, a potent regulator of fibroblast proliferation. J. Immunol., 128: 2177–2182.
- Seelentag, W., Mermod, J. J., and Vassali, P. (1989) Interleukin-1 and tumor necrosis alpha additively increase the levels of granulocyte-macrophage and granulocyte colony stimulating factor mRNA in human fibroblasts. Eur. J. Immunol., 19: 209–212.
- Sgonc, R., Boeck, G., Dietrich, H., Gruber, J., Recheis, H., and Wick, G. (1994) Simultaneous determination of cell surface antigens and apoptosis. Trends in Genetics, 10: 41–42.
- Shieh, J. H., Peterson, R. H. F., and Moore, M. A. S. (1991) IL-1 modulation of cytokine receptors on bone marrow cells. J. Immunol., 147: 1273–1278.
- Simmons, P. J., and Torok-Storb, B. (1991) CD34 expression by stromal precursors in normal human adult bone marrow. Blood, 78: 2848–2853.
- Sims, J. E., Gayle, M. A., Slack, J. L., Alderson, M. R., Bird, T. A., Giri, J. G., Colotta, F., Re, F., Mantovani, A., Shanebeck, K., Grabstein, K. H., and Dower, S. K. (1993) Interleukin 1 signaling occurs exclusively via the type I receptor. Proc. Natl. Acad. Sci. USA, 90: 6155–6159.
- Sims, J. E., March, C. J., Cosman, D., Widmer, M. B., MacDonald, H. R., McMahan, C. J., Grubin, C. E., Wignall, J. M., Jackson, J. L., Call, S. M., Friend, D., Alpert, A. R., Gillis, S., Urdal, D. L., and Dower, S. K. (1988) cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science, 241: 585–589.
- Springs, M. K., Lioubin, P. J., Slack, J., Dower, S. K., Jonas, U., Cosman, D., Sims, J. E., and Bauer, J. (1990) Induction on an interleukin-1 receptor (IL-1R) on monocytic cells. J. Biol. Chem., 265: 22499–22505.
- Stylianou, E., O'Neill, L. A. J., Rawlinson, L., Edbrooke, M. R., Woo, P., and Sakklatvala, J. (1992) Interleukin-1 induces NF-kB through its type I but not its type II receptor in lymphocytes. J. Biol. Chem., 267: 15836–15841.
- Williams, G. T., Smith, C. A., Sponcer, E., Dexter, T. M., and Taylor, D. R. (1990) Hemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature, 343: 76–79.
- Wong, G. G., Witek, J. A. S., Temple, P. A., Wilkens, R. M., Leary, A. C., Luxenberg, D. P., Jones, S. S., Brown, E. L., Day, R. M., Orr, E. C., Shoemaker, C., Golde, D. W., Kaufman, R. J., Hewick, R. M., Wang, E. A., and Clark, S. C. (1985) Human GM-CSF: Molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science, 228: 810–815.
- Yang, Y. C., Tsai, S., Wong, G. C., and Clark, S. C. (1988) Interleukin-1 regulation of hemopoietic growth factor production by human stromal fibroblasts. J. Cell. Physiol., 134: 292–296.