In vitro changes in plasma membrane heparan sulfate proteoglycans and in perlecan expression participate in the regulation of fibroblast growth factor 2 mitogenic activity
Xavier Guillonneau
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 75016 Paris
Search for more papers by this authorJacqueline Tassin
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 75016 Paris
Search for more papers by this authorEliane Berrou
INSERM U. 348 Hôpital Lariboisière, 75010 Paris, France
Search for more papers by this authorMarijke Bryckaert
INSERM U. 348 Hôpital Lariboisière, 75010 Paris, France
Search for more papers by this authorYves Courtois
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 75016 Paris
Search for more papers by this authorCorresponding Author
Frédéric Mascarelli
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 75016 Paris
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 29 rue Wilhem, 75016, Paris, FranceSearch for more papers by this authorXavier Guillonneau
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 75016 Paris
Search for more papers by this authorJacqueline Tassin
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 75016 Paris
Search for more papers by this authorEliane Berrou
INSERM U. 348 Hôpital Lariboisière, 75010 Paris, France
Search for more papers by this authorMarijke Bryckaert
INSERM U. 348 Hôpital Lariboisière, 75010 Paris, France
Search for more papers by this authorYves Courtois
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 75016 Paris
Search for more papers by this authorCorresponding Author
Frédéric Mascarelli
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 75016 Paris
Unité de Recherches Gérontologiques INSERM U. 118, Affiliée CNRS, Association Claude-Bernard, 29 rue Wilhem, 75016, Paris, FranceSearch for more papers by this authorAbstract
Fibroblast growth factor 1 (FGF1) and 2 (FGF2) bind to two classes of receptors: the high affinity receptors, a family of four known transmembrane tyrosine kinases (FGF R1-R4), and the low affinity receptors, cell surface and basement membrane heparan sulfate proteoglycan (HSPG). During early (first and second) passages of retinal pigmented epithelial (RPE) cells, both FGF1 and FGF2 exhibited low mitogenic activity, while in later (fifth to ninth) passages the activity of FGF1 remained constant but FGF2 activity increased two- to threefold. We have investigated aspects of FGF receptor interactions and the role of heparin/heparan sulfate which modulates FGF activity on RPE cells during in vitro senescence. Northern blot analysis demonstrated that FGF receptor type 1 (FGF R1) is the major high affinity receptor expressed in RPE cells and that its level of expression did not change during serially passage. Both the FGF R1 and the FGF low affinity receptors' binding characteristics (i.e., Kd and number of sites per cell) for FGF1 were unaffected by passage number, whereas the capacity of FGF2 binding to FGF R1 and to the low affinity receptors increased by two- and fivefold, respectively, in late passages, although the affinities were unchanged. This change in the capacity of FGF2 to bind to FGF R1 and to HSPG was not due to a switch of all the IIIc splice form of FGF R1 to the IIIb splice form since the exon IIIc was the most predominant splice form of FGF R1 during RPE cell cultures. Furthermore the ratio of the IIIb to the IIIc splice form was not modified during cell subcultures. In parallel in the older RPE cell passages, expression of perlecan, the major FGF low affinity binding site localized on the extracellular matrix of RPE cells, was much elevated compared to early RPE cell passages. Moreover, the cell surface of late passage RPE cells had 79% more HSPG than early passage cells. Therefore, it is suggested that the increase in the number of FGF low affinity receptors present on the cell surface or basement membrane could account for a part of the greater proliferative response of aged RPE cells to FGF2. © 1996 Wiley-Liss, Inc.
Literature Cited
- Adler, A. J., and Martin, K. (1983) Lysosomal enzymes in the interphotoreceptor matrix: Acid protease. Curr. Eye Res., 2: 359–366.
- Aguirre, G. D., and Stramm, L. E. (1991) The RPE: A model system for disease expression and disease correction. In: Progress in Retinal Research. N. N. Osborne and G. J. Chader, eds. Pergamon Press, Oxford, Vol. 11, pp. 153–191.
- Arruti, C. and Courtois, Y. (1978) Morphological changes and growth stimulation of bovine epithelial lens cells by a retinal extract in vitro. Exp. Cell. Res., 117–290.
- Aviezer, D., Hecht, D., Sofran, M., Eisinger, M., David, G., and Yayon, A. (1994) Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis and angiogenesis. Cell, 79: 1005–1013.
- Baird, A., Esch, F., Gospodarowicz, D., and Guillemin, R. (1985) Retina- and eye-derived endothelial cell growth factors: Partial molecular characterization and identity with acidic and basic fibroblast growth factors. Biochemistry, 24: 7855–7865.
- Barnstable, C. J., Blum, A. S., Devoto, S. H., Hicks, D., Morabito, M. A., Sparrow, J. R., and Treisman, J. E. (1988) Cell differentiation and pattern formation in the developing mammalian retina. Neurosci. Res., 8 (suppl.): S27–S41.
- Bashkin, P., Neufeld, G., Gitay-Goren, H., and Vlodavsky, I. (1992) Release of cell surface-associated basic fibroblast growth factor by glycosylphosphatidylinositol-specific phospholipase C. J. Cell. Physiol., 151: 126–137.
- Basu, P. K., Sarkar, P., Menon, I., Carre, F., and Persad, S. (1983) Bovine retinal pigment epithelial cells cultured in vitro: Growth characteristics, morphology, chromosomes, phagocytosis ability, tyrosine kinase activity, and effects of freezing. Exp. Eye Res. 36: 671–683.
- Bernfteld, M., and Hooper, K. C. (1991) Possible regulation of FGF activity by Syndecan, an integral membrane heparan sulfate proteoglycan. Ann. N. Y. Acad. Sci., 638: 182–184.
- Bost, L. M., Aotaki-Keien, A. E., and Hjelmeland, L. M. (1992) Coex-pression of FGFa and bFGF by the retinal pigment epithelium in vitro. Exp. Eye Res., 55: 727–734.
- Boulton, M. (1991) Ageing of the retinal pigment epithelium. In: Progress in Retinal Research. N. N. Osborne and G. J. Chader, Eds. Pergamon Press, Oxford, Vol. 11, pp. 125–151.
- Braunagel, S. C., Organisciak, D. T., and Wang, H. M. (1988) Characterization of pigment epithelial cell plasma membranes from normal and dystrophic rats. Invest. Ophthalmol. Vis. Sci., 29: 1066–1075.
- Burgess, W. H., and Maciag, T. (1989) The heparin binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem., 58: 575–606.
- Busch, S. J., Martin, G. A., Barnhart, R. L., Mano, M., Cardin, A. D., and Jackson, R. L. (1992) Trans repressor activity of nuclear glycosaminoglycans on fos and Jun/AP1 oncoprotein-mediated transcription. J. Cell. Biol., 116: 31–42.
- Chirgwin, J. M., Preyzyla, A. E., McDonald, R. J., and Rutter, W. J. (1978) Isolation of biological active ribonucleic acid from sources enriched in ribonuclease. Biochemistry, 18: 5294–5299.
- Clark, V. M., and Hall, M. O. (1986) RPE cells surface proteins in normal and dystrophic rats. Invest. Ophthalmol. Vis. Sci., 27: 136–145.
- Courty, J., Loret, C., Moenner, M., Chevallier, B., Lagente, O., Courtois, Y., and Barritault, D. (1985) Bovine retina contains three growth factor activities with different affinity to heparin: Eye derived growth factor I, II, III. Biochimie, 67: 265–269.
- Faktorovich, E., Steinberg, R., Yasumara, D., Matthes, M., and LaVail, M. (1990) Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature, 347: 83–86.
- Givol, D., and Yayon, A. (1992) Complexity of FGF receptors: Genetic basis for structural diversity and functional specificity FASEB J., 6: 3362–3369.
- Gospodarowicz, D., and Cheng, J. (1986) Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol., 128: 475–484.
- Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U., and Rappraeger, A. C. (1993) Activating and inhibitory heparin sequences for FGF2 (basic FGF). Distinct requirements for FGF1, FGF2 and FGF4. J. Biol. Chem., 268: 23906–23914.
- Hageman, G. S., and Johnson, L. V. (1991) Structure, composition and function of the retinal interphotoreceptor matrix. In: Progress in Retinal Research. N. N. Osborne and G. J. Chader, eds. Pergamon Press, Oxford, Vol. 10, pp. 207–250.
- Hageman, G. S., Kirchoff-Rempe, M. A., Lewis, G. P., Fisher, S. K., and Anderson, D. H. (1991) Sequestration of basic fibroblast growth factor in the primate retinal inter-photoreceptor matrix. Proc. Natl. Acad. Sci. U.S.A., 88: 67606–67610.
- Hewitt, A. T., and Newsome, D. A. (1988) Altered proteoglycans in cultured human retinitis pigmentosa retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci., 29: 720–726.
- Ishigooka, H., Kitaoka, T., Boutilier, B., Bost, M., Aotaki-Keen, E., Tablin, F., and Hjelmeland, M. (1993) Developmental expression of bFGF in the bovine retina. Invest. Ophthalmol. Vis. Sci., 34: 2813–2823.
- Jeanny, J. C., Fayein, N. A., Moenner, M., Chevallier, B., Barritault, D., and Courtois, Y. (1987) Specific fixation of bovine brain and retinal acidic and basic fibroblast growth factors to mouse embryonic eye basement membranes. Exp. Cell. Res., 171: 63–75.
- Kiefer, M. C., Stephans, J. C., Crawford, K., Okina, K., and Barr, P. (1990) Ligand affinity cloning and structure of a cell surface heparan sulfate proteoglycan that binds basic fibroblast growth factor. Proc. Natl. Acad. Sci. 87: 6985–6989.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.
- Li, L., and Turner, J. E. (1988) Inherited retinal dystrophy in the RCS rat: Prevention of photoreceptor degeneration by pigment epithelial cell transplantation. Exp. Eye Res., 47: 911–917.
- Malecaze, F., Mascarelli, F., Bugra, K., Fuhrmann, G., Courtois, Y., and Hicks, D. (1993) Fibroblast growth factor receptor deficiency in dystrophic retinal pigmented epithelium. J. Cell. Physiol., 154: 631–642.
- Mascarelli, F., Raulais, D., and Courtois, Y. (1989) Fibroblast growth factor phosphorylation and receptors in rod outer segments. EMBO J., 8: 2265–2272.
- Mascarelli, F., Tassin, J., and Courtois, Y. (1991) Effects of FGFs on adult bovine Muller cells: Proliferation, binding and internalization. Growth Factors, 4: 81–95.
- Mascarelli, F., Fuhrmann, G., and Courtois, Y. (1993) AFGF binding to low and high affinity receptors induces both aFGF and aFGF receptors dimerization. Growth Factors, 8: 211–233.
- McKechnie, N. M., Boulton, M. E., Robey, H. C., Savage, F. J., and Grierson, I. (1988) The cytoskeletal elements of human retinal pigment epithelium: In vitro and in vivo. J. Cell. Sci., 91: 303–312.
- Meloche, S., Seuwen, K., Pages, G., and Pouyssegur, J. (1992) Biphasic and synergistic activation of p44 (ERK1) by growth factor: Correlation between late phase activation and mitogenicity. Mol. Endocrinol., 6: 845–854.
- Miyamoto, M., Naruo, K., Seko, C., Matsomoto, S., Kondo, T., and Kurokawa, T. (1993) Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, whcih has a unique secretion property. Mol. Cell. Biol., 13: 4251–4259.
- Moscatelli, D. (1987) High and low affinity binding sites for basic fibroblast growth factor on cultured cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J. Cell. Physiol., 131: 123–130.
- Moscatelli, D. (1992) Basic fibroblast growth factor (bFGF) dissociates rapidly from heparan sulfates but slowly from receptors. Implications for mechanisms of release from pericellular matrix. J. Biol. Chem., 267: 25803–25809.
- Moscatelli, D., and Devesly, P. (1990) Turnover of functional basic fibroblast growth factor receptors on the surface of BHK and NIH 3T3 cells. Growth Factors, 3: 25–33.
- Naruo, K., Seko, C., Kuroshima, K., Matsutani, E., Sasada, R., Kondo, T., and Kurokawa, T. (1993) Novel secretory heparin-binding factors from human glioma cells (glia-activating factors) involved in glial cell growth. J. Biol. Chem., 268: 2857–2864.
- Newsome, D. A., Pfeffer, B. A., Hewitt, T. A., Robey, P. G., and Hassell, J. R. (1988) Detection of extracellular matrix molecules synthesized in vitro by monkey and human retinal pigment epithelium: Influence of donor age and multiple passages. Exp. Eye Res., 46: 305–321.
- Nurcombe, V., Ford, M. D., Wildshut, A., and Bartlett, P. F. (1993) Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science, 260: 103–106.
- Oliver, L., Raulais, D., and Vigny, M. (1992) Acidic fibroblast growth factor in developing normal and dystrophic (mdx) mouse muscles: Distribution in degenerating and regenerating mdx myofibres. Growth Factors, 7: 97–107.
- Ornitz, D., Yayon, A., Flanagan, G., Svahn, M., Levi, E., and Leder, P. (1992) Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol., 12: 240–247.
- Partanen, J., Vainakka, S., Korhonen, J., Armstrong, E., and Alitalo, K. (1992) Diverse receptors for fibroblast growth factor. Prog. Growth Factor Res., 4: 69–83.
- Pfeffer, B. A. (1991) Improved methodology for cell culture of human and monkey retinal pigment epithelium. In: Progress in Retinal Research. N. N. Osborne and G. J. Chader, eds. Pergamon Press, Oxford, Vol. 10, pp. 251–291.
- Plouët, J., Olivie, M., Courtois, Y., and Barritault, D. (1984) A highly reliable and sensitive assay for the purification of cellular growth factors. J. Cell Mol. Biol., 30: 105–110.
- Plouët, J., Mascarelli, F., Lagente, O., Dorey, C., Lorans, G., Faure, P. P., and Courtois, Y. (1986) Eye-derived growth factor: A component of rod outer segment implicated in phototransduction. In: Retinal Signal Systems Degeneration and Transplants. E. Agardh and B. Ehinger, eds. Elsevier Science, New York, pp. 311–322.
- Plouët, J., Mascarelli, F., Loret, M., Faure, J. P., and Courtois, Y. (1988) Regulation of eye derived growth factor binding to membranes by light ATP or GTP in photoreceptor outer segment. EMBO J., 7: 373–376.
- Rappraeger, A., and Yeaman, C. (1989) A quantitative solid-phase assay for identifying radiolabelled glycoaminoglycans in crude cell extracts. Anal. Biochem., 98: 132–135.
- Rappraeger, A. C., Krufka, A., and Olwin, B. B. (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science, 252: 1705–1708.
- Reiland, J., and Rappraeger, A. C. (1993) Heparan sulfate proteoglycan and FGF receptor target FGF2 to different intracellular destinations. J. Cell Sci., 105: 1085–1093.
- Rifkin, D., and Moscatelli, D. (1989) Recent developments in the biology of basic fibroblast growth factor. J. Cell Biol., 109: 1–6.
- Rusnati, M., Urbinati, C., and Presta, M. (1993) Internalization of basic fibroblast growth factor (bFGF) in cultured endothelial cells: Role of the low affinity heparin-like bFGF receptor. J. Cell. Physiol., 154: 152–161.
- Saksela, O., Moscatelli, D., Sommer, A., and Rifkin, D. B. (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell. Biol., 107: 743–751.
- Scatchard, G. (1949) The attraction of proteins for small molecules and ions. Ann. N. Y. Acad. Sci., 51: 660–672.
- Schweigerer, L., Malerstein, B., Neufeld, G., and Gospodarowicz, D. (1987) Basic fibroblast growth factor is synthesized in cultured retinal pigment epithelial cells. Biochem. Biophys. Res. Comm., 143: 934–960.
- Spivak-Kroizman, T., Lemmon, M. A., Dikic, J. E., Ladbury, J. E., Pinchasi, D., Huang, J., Jaye, N., Crumley, G., Schleissinger, J. and Lax, I. (1994) Heparin-induced oligomerization of FGF molecules is responsible for FGF receptor dimerization, activation and cell proliferation. Cell, 79: 1015–1024.
- Sternfeld, M. D., Robertson, J. E., Shipley, G. D., Tsai, J., and Robertson, J. T. (1989) Cultured human retinal pigment epithelial cells express basic fibroblast growth factor and its receptor. Curr. Eye Res., 8: 1029–1037.
- Tanaka, A., Miyanoto, K., Minamino, N., Takeda, M., Sato, B., Matsuo, H., and Matsumoto, K. (1992) Cloning and characterization of an androgen-induced growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells. Proc. Natl. Acad. Sci. U.S.A., 89: 8928–8932.
- Vigny, M., Oliver-Hartman, M. P., Lavigne, M., Fayein, N. A., Jeanny, J. C., Laurent, M., and Courtois, Y. (1987) Specific binding to fibroblast growth factor to basement membrane-like structures and to purified heparan sulfate proteoglycan of the EHS tumor. J. Cell. Physiol., 137: 321–328.
- Vlodavsky, I., Arias, Y., Atzman, R., and Fuks, Z. (1982) Tumor cell attachment to the ocular endothelium and subsequent degradation of the subendothelial extracellular matrix. Exp. Cell Res., 140: 149–159.
- Yanagihita, M. (1992) Glycosylphosphoinositol anchored and core protein-internalized heparan sulfate proteoglycan in rat ovarian granulosa cell have distinct secretory, intracellular degratative pathways. J. Cell. Biochem., 267: 9505–9511.
- Yayon, A., Klagsbrun, M., Esko, J. D., Leder, P., and Ornitz, D. M. (1991) Cell surface heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell, 64: 841–848.