New modular delivery system for diagnostic and therapeutic pre-targeting using tautomer-specific monoclonal antibody EM-6-47 and 3-substituted adenines
Kai Krüger
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorChristoph Jochum
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorKarl-Heinz Glüsenkamp
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorChrista Krüsemann
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorPetra Lorenz
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorGertrud Eberle-Adamkiewicz
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorWolfgang Drosdziok
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorDietrich W. Beelen
Department of Bone Marrow Transplantation, Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorHeinz H. Coenen
Institute of Nuclear Chemistry, Research Center Jülich GmbH, Jülich, Germany
Search for more papers by this authorCorresponding Author
Manfred F. Rajewsky
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Hufeland-Str. 55, D-45122 Essen, Germany. Fax: (49)201–723–5905Search for more papers by this authorKai Krüger
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorChristoph Jochum
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorKarl-Heinz Glüsenkamp
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorChrista Krüsemann
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorPetra Lorenz
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorGertrud Eberle-Adamkiewicz
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorWolfgang Drosdziok
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorDietrich W. Beelen
Department of Bone Marrow Transplantation, Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Search for more papers by this authorHeinz H. Coenen
Institute of Nuclear Chemistry, Research Center Jülich GmbH, Jülich, Germany
Search for more papers by this authorCorresponding Author
Manfred F. Rajewsky
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Essen, Germany
Institute of Cell Biology (Cancer Research), Center of Cancer Research and Cancer Therapy, University of Essen Medical School, Hufeland-Str. 55, D-45122 Essen, Germany. Fax: (49)201–723–5905Search for more papers by this authorAbstract
We have developed a new modular affinity system for the 2-step delivery of functional molecules to target cells. The system is based on the tautomer-specific monoclonal antibody (MAb) EM-6–47, which binds to 3- and 3,8-substituted adenines with high affinity (Ka > 109 l/mol) without cross-reacting with naturally occurring purine derivatives. This MAb serves as the hapten-specific fusion partner to produce bispecific MAbs (bs-MAbs) recognizing a target cell antigen and a low-m.w. hapten as carrier molecule for, e.g., radionuclides. Either the C-8 or the N-3 position of adenines can be used for conjugation with effector molecules; the remaining position may be substituted with different moieties to modulate the pharmacokinetics of the haptens. Different 3- and 3,8-substituted adenines conjugated to the chelates DOTA and DTPA or to the drug daunomycin were synthesized. Adenine-chelate derivatives were efficiently labeled with 111In and 90Y, while high-affinity binding of 3-substituted adenines to MAb EM-6–47 remained almost unaffected by the conjugation to radiochelates. To confirm the validity of the delivery system, a prototype bs-MAb, EM-168–47, was generated by somatic cell fusion of MAb EM-6–47 and MAb EM-168–2, the latter recognizing a surface antigen on canine hematopoietic cells. Two-step targeting assays in vitro verified the bs-MAb-mediated, dose-dependent delivery of 111In-labeled adenine-chelate derivatives to myeloid cells. This system represents a powerful tool for new pre-targeting approaches relying on bs-MAbs and low-m.w. haptens. Suitable cellular antigens can be targeted by fusing the appropriate MAbs with hapten-specific MAb EM-6–47, and tailor-made 3-substituted adenines may be labeled with diagnostic or therapeutic radionuclides, cytotoxic drugs or other functional molecules. Int. J. Cancer 77:610–619, 1998. © 1998 Wiley-Liss, Inc.
References
- Bos, S. E., Kujpers, W. H. A., Meesters-Winters, M., Pham, D. T., De Haan, A. S., VanDoornmalen, A. M., Kaspersen, F. M., VanBoeckel, C. A. A. and Gougeon-Bertrand, F., In vitro evaluation of DNA-DNA hybridization as a two-step approach in radioimmunotherapy of cancer. Cancer Res 54, 3479–3486 (1994).
- Bosslet, K., Steinstraesser, A., Hermentin, P., Kuhlmann, L., Bruynck, A., Magerstaedt, M., Seemann, G., Schwarz, A. and Sedlacek, H. H., Generation of bispecific antibodies for two phase radioimmunotherapy. Brit. J. Cancer, 63, 681–686 (1991).
- Cox, P. L., Craig, A. S., Helps, I. M., Jankowski, K. J., Parker, D., Eaton, M. A. W., Millican, A. T., Millar, K., Beeley, N. R. A. and Boyce, B. A., Synthesis of C- and N-functionalised derivatives of 1,4,7-triazacyclononane-1,4,7-triyltriacetic acid (NOTA), 1,4,7,10-tetra-azacyclododecane-1,4,7,10-tetrayltetraacetic acid (DOTA), and diethylenenetriaminepentaacetic acid (DPTA): bifunctional complexing agents for the derivatisation of antibodies. J. chem. Soc. Perkin Trans 1, 2567–2576 (1990).
- De Lau, W. B. M., VanLoon, A. E., Heije, K., Koppe, A., Valerio, D. and Bast, J. E. G., Production of hybrid hybridomas based on HATs-neomycinr double mutants. J. immunol. Meth 117, 1–8 (1989).
- Desphande, S. V., De Nardo, S. J., Kukis, D. L., Moi, M. K., McCall, M. J., De Nardo, G. L. and Meares, C. F., Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J. nucl. Med 31, 473–479 (1990).
- Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Sterwart, J. J. P., AM1: a new general purpose quantum mechanical molecular model. J. Amer. chem. Soc 107, 3902–3909 (1985).
- K. Diem and C. Lentner (eds.), Documenta Geigy: Wissenschaftliche Tabellen ( 7th ed.), pp. 672–673, G. Thieme Verlag, Stuttgart (1975).
- Eberle, G., Glüsenkamp, K.-H., Drosdziok, W. and Rajewsky, M. F., Monoclonal antibodies for the specific detection of 3-alkyladenines in nucleic acids and body fluids. Carcinogenesis, 11, 1753–1759 (1990).
- Glüsenkamp, K.-H., Drosdziok, W., Eberle, G., Jähde, E. and Rajewsky, M. F., Squaric acid diethylester: a simple and convenient coupling reagent. Z. Naturforsch 46c, 498–501 (1990).
- Glüsenkamp, K.-H., Krüger, K., Eberle, G., Drosdziok, W., Jähde, E., Gründel, O., Neuhaus, A., Boese, R., Stellberg, P. and Rajewsky, M. F., Tautomer-specific anti-(N-3-substituted)-adenine antibodies: new tools in molecular dosimetry and epidemiology. Angew. Chem. Int. Ed 32, 1640–1643 (1993).
- Goodwin, D. A., Pharmacokinetics and antibodies. J. nucl. Med 28, 1359–1362 (1987).
- Goodwin, D. A., Meares, C. F., Watanabe, N., McTigue, M., Chaovapong, W., Ransone, C. M., Renn, O., Greiner, D. P., Kukis, D. L. and Kronenberger, S. I., Pharmacokinetics of pretargeted monoclonal antibody 2D12,5 and 88Y-Janus-2-(p-nitrobenzyl)-1,4,7,10-tetraazacyclododecanetetraacetic acid (DOTA) in BALB/c mice with KHJJ mouse adenocarcinoma: a model for 90Y radioimmunotherapy. Cancer Res 54, 5937–5946 (1994).
- Grossbard, M. L., Press, O. W., Appelbaum, F. R., Bernstein, I. D. and Nadler, L. M., Monoclonal antibody-based therapies of leukemia and lymphoma. Blood, 80, 863–878 (1992).
- Hawkins, G. A., McCabe, R. P., Kim, C.-H., Subramanian, R., Bredehorst, R., McCullers, G. A., Vogel, C.-W., Hanna, M. G. and Pomato, N., Delivery of radionuclides to pretargeted monoclonal antibodies using dihydrofolate reductase and methotrexate in an affinity system. Cancer Res 53, 2368–2373 (1993).
- Hnatowich, D. J., Virzi, F. and Ruskovski, M., Investigations of avidin and biotin for imaging applications. J. nucl. Med 28, 1294–1302 (1987).
- Jain, R. K., 1995 Whitaker lecture: Delivery of molecules, particles, and cells to solid tumors. Ann. biomed. Engin 24, 457–473 (1996).
- Jochum, C., Krüger, K., Krüsemann, C., Glüsenkamp, K.-H., Jähde, E., Lübcke, W., Beelen, D. W., Schaefer, U. W. and Rajewsky, M. F., A monoclonal antibody for two-step myeloablative radioimmunotherapy prior to bone marrow transplantation. J. Cancer Res. clin. Oncol 121 (Suppl.), 51 (1995).
- Jurcic, J. G. and Scheinberg, D. A., Recent developments in the radioimmunotherapy of cancer. Curr. Opin. Immunol 6, 715–721 (1994).
- Jurisson, S., Berning, D., Wei Jia and Dangshe, M. A., Coordination compounds in nuclear medicine. Chem. Rev 93, 1137–1156 (1993).
- Kodama, M., Koike, T., Mahatma, A. B. and Kimura, E., Thermodynamic and kinetic studies of lanthanide complexes of 1,4,7,10,13-pentaazacyclopentadecane-N,N′,N‴,N‴,N‴-pentaacetic acid and 1,4,7,10,13,16-hexaazacyclooctadecane-N,N′,N″,N‴,N‴,N‴-hexaacetic acid. Inorg. Chem 30, 1270–1273 (1991).
- Kranenborg, M. H. G. C., Boerman, O. C., Oosterwijk-Wakka, J. C., De Weijert, M. C. A., Corstens, F. H. M. and Oosterwijk, E., Development and characterization of anti-renal cell carcinoma x antichelate bispecific monoclonal antibodies for two-phase targeting of renal cell carcinoma. Cancer Res 55 (Suppl.), 5864–5867 (1995).
- Krüger, K., Chemische, radiochemische und immunologische Grundlagen eines neuartigen Zweistufen-Transportsystems zur Radioimmuntherapie und -diagnostik maligner Erkrankungen. Ph. D. Dissertation, University of Essen, Essen, Germany (1996), Cuvillier Verlag, Göttingen (1997).
- Lindahl, T. and Nyberg, B., Rate of depurination of native deoxyribonucleic acid. Biochemistry, 11, 3610–3618 (1972).
- Mello, A. M., Pauwels, E. K. J. and Cleton, F. J., Radioimmunotherapy: no news from the newcomer. J. Cancer Res. clin. Oncol 120, 121–130 (1994).
-
Montgomery, J. A. and
Thomas, H. J.,
On the alkylation of adenine (1).
J. heterocycl. Chem
1,
115–120
(1964).
10.1002/jhet.5570010301 Google Scholar
- Müller, R., Calculation of average antibody affinity in anti-hapten sera from data obtained by competitive radioimmunoassay. J. Immunol. Meth 34, 345–352 (1980).
- Paganelli, G., Magnani, P., Zito, F., Villa, E., Sudati, F., Lo Palco, L., Rosetti, C., Malcovati, M., Chiolerio, F., Seccamani, E., Siccardi, A. G. and Fazio, F., Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res 51, 5960–5966 (1991).
- Parker, D., Tumor targeting with radiolabeled macrocycle–antibody conjugates. Chem. Soc. Rev 19, 271–291 (1990).
- Reilly, R. M., Sandhu, J., Alvarez-Diez, T. M., Gallinger, S., Kirsh, J. and Stern, H., Problems of delivery of monoclonal antibodies. Clin. Pharmacokinet 28, 126–142 (1995).
- Rosebrough, S. F., Two-step immunological approaches for imaging and therapy. J. nucl. Med 40, 234–251 (1997).
- Saga, T., Weinstein, J. N., Jeong, J. M., Heya, T., Lee, J. T., Le, N., Paik, C. H., Sung, C. and Neumann, R. D., Two-step targeting of experimental lung metastases with biotinylated antibody and radiolabeled streptavidin. Cancer Res 54, 2160–2165 (1994).
- Schumacher, J., Klivenyi, G., Matys, R., Stadler, M., Regiert, T., Hauser, H., Doll, J., Maier-Borst, W. and Zöller, M., Multistep tumor targeting in nude mice using bispecific antibodies and a gallium chelate suitable for immunoscintigraphy with positron emission tomography. Cancer Res 55, 115–123 (1995).
- Sharkey, R. M., Karacay, H., Griffiths, G. L., Behr, T. M., Blumenthal, R. D., Mattes, M. J., Hansen, H. J. and Goldenberg, D. M., Development of a streptavidin-anti-carcinoembryonic antigen antibody, radiolabeled biotin pretargeting method for radioimmunotherapy of colorectal cancer. Studies in a human colon cancer xenograft model. Bioconj. Chem 8, 595–604 (1997).
- Stimmel, J. B., Stockstill, M. E. and Kull, F. C., Yttrium-90 chelation properties of tetraazatetraacetic macrocycles, diethylenetriaminepentaacetic acid analogues, and a novel terpyridine acyclic chelator. Bioconj. Chem 6, 219–225 (1995).
- Sung, C., VanOsdol, W. W., Saga, T., Neumann, R. D., Dedrick, R. L. and Weinstein, J. N., Streptavidin distribution in metastatic tumors pretargeted with biotinylated monoclonal antibody: theoretical and experimental pharmacokinetics. Cancer Res 54, 2166–2175 (1994).