Bi-penta-bi-decaradial symmetry: A review of evolutionary and developmental trends in holothuroidea (echinodermata)
Corresponding Author
Alexander M. Kerr
Department of Ecology and Evolutionary Biology, Osborn Zoölogical Laboratories, Yale University, New Haven, Connecticut 06520-8106
Osborn Zoölogical Laboratories, Yale University, PO Box 208106, New Haven, CT 06520-8106===Search for more papers by this authorJunhyong Kim
Department of Ecology and Evolutionary Biology, Osborn Zoölogical Laboratories, Yale University, New Haven, Connecticut 06520-8106
Search for more papers by this authorCorresponding Author
Alexander M. Kerr
Department of Ecology and Evolutionary Biology, Osborn Zoölogical Laboratories, Yale University, New Haven, Connecticut 06520-8106
Osborn Zoölogical Laboratories, Yale University, PO Box 208106, New Haven, CT 06520-8106===Search for more papers by this authorJunhyong Kim
Department of Ecology and Evolutionary Biology, Osborn Zoölogical Laboratories, Yale University, New Haven, Connecticut 06520-8106
Search for more papers by this authorAbstract
Holothuroidea, comprising the sea cucumbers, is the least studied class of extant echinoderms, yet this group possesses a wealth of features of potential interest to developmental and evolutionary biologists. Holothuroids include the most morphologically derived echinoderms, including pelagic species and spheroid, plated taxa with mouth and anus adjacent at the end of a long, flexible stalk. To begin investigating this diversity of body form, we first estimated evolutionary relationships in the class Holothuroidea based on maximum parsimony analyses of 1,075 nt of the nuclear small subunit rDNA (for six species in four orders) and on 52 informative morphological characters (for the 25 extant families). Both the morphological and molecular evidence suggests almost an inversion of the prevailing higher level classification. Character-state optimizations indicated that pronounced adult bilateral symmetry evolved three times. In one group even a regain of secondary radial symmetry is found. Respiratory trees, structures unique to holothuroids, are a relatively late innovation, are ectodermally derived, and are bilaterally symmetric, supporting the possibility that the secondary gain of bilateral symmetry in holothuroids is ectodermally derived analogous to, say, the derivation of vertebrate limb dorso-ventral axis. The test of imbricating plates found in 10% of living holothuroids is apparently not homologous with that of other heavily armored echinoderms, evolving much later and at least twice. Indirectly developing larvae, auriculariae, occur in two evolutionarily disparate clades and unlike echinoids comprise a minority of clades. We suggest that this implies the parallel convergent evolution of this larval type or, more speculatively, some form of retention of developmental constraints. J. Exp. Zool. (Mol. Dev. Evol.) 285:93–103, 1999. © 1999 Wiley-Liss, Inc.
LITERATURE CITED
- Altabef M, Clarke JDW, Tickle C. 1997. Dorso-ventral ectodermal compartments and origin of apical ectodermal ridge in developing chick limb. Development 124: 4547–4556.Medline
- Arndt A, Marquez C, Lambert P, Smith MJ. 1996. Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence. Mol Phylogenet Evol 6: 425–437.Medline
- Baelev GM. 1972. Hadal bottom fauna of the world ocean. Jerusalem: Israel Program for Scientific Translations.
- Benson SC, Wilt FH. 1992. Calcification of spicules in the sea urchin embryo. In: E Bonucci, editor. Calcification in biological systems. Ann Arbor Michigan: CRC Press. p 157–178.
- Berman A, Hanson J, Leiserowitz L, Koetzle TF, Weiner S, Addadi L. 1993. Biological control of crystal texture: a widespread strategy for adapting crystal properties to function. Science 259: 776–779.
- Billett DSM. 1991. Deep-sea holothurians. Oceanogr Mar Biol Annu Rev 29: 259–317.
- Byrne M. 1994. Ophiuroidea. In: FW Harrison, editor. Microscopic anatomy of invertebrates, vol 14. New York: Wiley-Liss. p 247–343.
- Chang JT, Kim J. 1996. The measurement of homoplasy: a stochastic view. In: MJ Sanderson, editors. Homoplasy: the recurrence of similarity in evolution. San Diego: Academic Press. p 189–203.
10.1016/B978-012618030-5/50009-5 Google Scholar
- Cherbonnier G. 1947. Etude de la couronne calcaire péipharingienne, des différents organes et de la spiculation chez une holothurie dendrochirote: Cucumaria lefevrei Barrois. Bull Lab Dinard, Fr 29: 13–23.
- Cherbonnier G. 1988. Espèces nouvelles ou peu connues de Rhopalodinidae (Échinodermes, Holothuries). Bull Mus Natn Hist Nat Paris 2(10A)3: 429–448.
- Chia FS, Walker CW. 1991. Echinodermata: Asteroidea. In: AC Giese, editors. Reproduction of marine invertebrates. vol 6. Pacific Grove, CA: Boxwood Press. p 301–353.
- Clark HL. 1907. The apodous holothurians. Smithsonian Contrib Knowledge 35: 1–231.
- Cutress BM. 1996. Changes in dermal ossicles during somatic growth in Caribbean littoral sea cucumbers (Echinoidea [sic]: Holothuroidea: Aspidochirotida). Bull Mar Sci 58: 44–116.
- David B, Mooi R. 1996. Embryology supports a new theory of skeletal homologies for the phylum Echinodermata. C R Acad Sci, Paris Sér III Sci Vie 319: 577–584.
- David B, Mooi R. 1998. Major events in the evolution of echinoderms viewed by the light of embryology. In: R Mooi, editors. Echinoderms. San Francisco, Rotterdam: AA Balkema. 21–28.
- Emlet RB. 1990. World patterns of developmental mode in echinoid echinoderms. Adv Invert Reprod 5: 329–335.
- Ettensohn CA, Guss KA, Hodor PG, Malinda KM. 1997. The morphogenesis of the skeletal system of the sea urchin embryo. Prog Dev Biol 7: 225–265.
- Eyal-Giladi H. 1997. Establishment of the axis in chordates: facts and speculations. Development 124: 2285–2296.Medline
- Frizzell DL, Pawson DL. 1966. Holothurians. In: RC Moore, editor. Treatise on invertebrate paleontology. Part U. Echinodermata. 32: 641–672.
- Gilliland PM. 1993. The skeletal morphology, systematics and evolutionary history of holothurians. Spec Pap Palaeontol 47: 1–147.
- Hansen B. 1975. Part 1. Elasipoda. In: T Wolff, editor. Galathea Report Vol 13. Copenhagen: Scandinavian Science Press. p 1–262.
- Hansen TA. 1982. Modes of larval development in early tertiary neogastropods. Paleobiology 8: 367–377.
- Haszprunar G, von Salvini-Plawen L, Rieger RM. 1995. Larval planktotrophy-a primitive trait in the Bilateria?. Acta Zool 76: 141–154.
- Haude R. 1992. Fossil holothurians: sclerite aggreates as “good” species. In: L Scalera-Liaci, editors. Echinoderm research 1991. Rotterdam: AA Balkema. p 29–33.
- Hendler G. 1991. Echinodermata: Ophiuroidea. In: AC Giese, editors. Reproduction of marine invertebrates, vol 6. Pacific Grove, CA: Boxwood Press. p 355–511.
- Hotchkiss FH. 1998. A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24: 200–214.
- Huxley TH. 1878. Anatomy of invertebrate animals. London: Murray.
10.5962/bhl.title.4194 Google Scholar
- Hyman LH. 1955. The invertebrates. Vol. 5. Echinodermata. New York: McGraw Hill.
- Kerr AM, Stoffell EL, Yoon RL. 1993. Abundance distribution of holothuroids (Echinodermata: Holothuroidea) on a windward and leeward fringing coral reef, Guam, Mariana Islands. Bull Mar Sci 52: 780–791.
- Killian CE, Wilt FH. 1996. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules. J Biol Chem 271: 9150–9159.Medline
- Koehl MAR. 1982. Mechanical design of spicule-reinforced connective tissue: stiffness. J Exp Biol 98: 239–267.
- Kominami T, Takata H. 1995. Dorso-ventral axis of sea urchin embryo is established during 32–64 cell stages. Zool Sci 12(Supplement): 84
- Lafay B, Smith AB, Christen R. 1995. A combined morphological and molecular approach to the phylogeny of asteroids (Asteroidea: Echinodermata). Syst Biol 44: 190–208.
- Lambert P. 1997. Sea cucumbers of British Columbia, Southeast Alaska and Puget Sound. Vancouver: University of British Columbia Press.
- Lane DJW. 1992. Biogeographical notes on the northward extension of the known latitudinal range for the tropical stichopodid sea-cucumber Thelenota anax H.L. Clark (Echinodermata: Holothurioidea). Raffles Bull Zool 40: 175–178.
- Lowe CJ, Wray GA. 1997. Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389: 718–721.Medline
- Madsen FJ. 1961. On the zoogeography and origin of the abyssal fauna, in view of the knowledge of the Porcellanasteridae. In: T Wolff, editor. Galathea report, vol 4. Copenhagen: Scandinavian Science Press. p 177–218.
- Martin WE. 1969. A commensal sea cucumber. Science 164: 855
- Massin C. 1994. Ossicle variation in Antarctic dendrochirote holothurians (Echinodermata). Bull Inst Roy des Sci Nat Belgique, Biol 64: 129–146.
- Miller JE, Pawson DL. 1990. Swimming sea cucumbers (Echinodermata: Holothuroidea): a survey, with analysis of swimming behavior in four bathyal species. Smithsonian Contrib Mar Sci 35: 1–18.
- Mortensen T. 1937. Contributions to the study of the development and larval forms of echinoderms III. Mem Acad Roy Sci Lett Danemark, Copenhagen 9(7)1: 1–65.
- Mortensen T. 1938. Contributions to the study of the development and larval forms of echinoderms IV. Mem Acad Roy Sci Lett Danemark, Copenhagen 9(7)3: 1–59.
- Parsley RL. 1994. Mitrocycstitid functional morphology, evolution and their relationships with other primitive echinoderm classes. In: B David, editors. Echinoderms through time. Rotterdam: A.A. Balkema. p 167–172.
- Paul CRC, Smith AB. 1984. The early radiation and phylogeny of echinoderms. Biol Rev 59: 443–481.
- Pawson DL. 1980. Holothuroidea echinoderms: notes for a short course. Univ Tennessee Dept Geol Sci Stud Geol 3: 175–189.
- Pawson DL. 1984. Holothuroidea. In: RSK Barnes, editor. A synoptic classification of living organisms. Sunderland, MA: Sinauer Associates. p 234–246.
- Pawson DL, Fell JB. 1965. Revised classification of the dendrochirote holothurians. Brevioria 214: 1–7.
- Raff RA. 1996. The shape of life: genes, development, and the evolution of animal form. Chicago: University of Chicago Press.
10.7208/chicago/9780226256573.001.0001 Google Scholar
- Reddi AH. 1998. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotech 16: 247–252.Medline
- Reid DG, Rumbak E, Thomas RH. 1996. DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina. Philos Trans R Soc Lond B Biol Sci 351: 877–895.Medline
- Schulter D, Price T, Mooers AO, Ludwig D. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51: 1699–1711.
- Semon R. 1888. Die Entwicklung der Synapta digitata und die Stammesgeschichte der Echinodermen. Jena Z. Naturw 22: 1–135.
- Semper C. 1868. Holothurien. Reisen im archipel der Philippinen. 2. Wissenschaftliche Resultate. Weisbaden.
- Shick JM. 1983. Respiratory gas exchange in echinoderms. In: M Jangoux, editors. Echinoderm Studies I. Rotterdam: AA Balkema. p 67–110.
- Slack JMW. 1991. From eggs to embryo: regional specification in early development. Cambridge: Cambridge University Press.
10.1017/CBO9780511525322 Google Scholar
- Smiley S. 1986. Metamorphosis of Stichopus californicus (Echinodermata: Holothuroidea) and its phylogenetic implications. Biol Bull 171: 611–631.
- Smiley S. 1994. Holothuroidea. In: FW Harrison, editor. Microscopic anatomy of invertebrates, vol 14. New York: Wiley-Liss. p 401–471.
- Smiley S, McEuen FS, Chaffee C, Krishnan S. 1991. Echinodermata: Holothuroidea. In: AC Giese, editors. Reproduction of marine invertebrates, vol 6. Pacific Grove, CA: Boxwood Press. p 663–750.
- Smith AB. 1990. Biomineralization in echinoderms. In: JG Carther, editor. Skeletal biomineralization: patterns, processes and evolutionary trends, vol I. New York: Von Nostrand Reinhold. p 413–440.
- Smith AB, Littlewood DTJ, Wray GA. 1995. Comparing patterns of evolution: larval and adult life history stages and small subunit ribosomal RNA of post-Paleozoic echinoids. Philos Trans R Soc Lond B Biol Sci 349: 11–18.
- Strathmann RR. 1978. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32: 894–906.
- Strathmann RR. 1993. Hypotheses on the origins of marine larvae. Annu Rev Ecol Syst 24: 89–117.
- Strathmann RR, Eernisse DJ. 1994. What molecular phylogenies tell us about the evolution of larval forms. Amer Zool 34: 502–512.
- Stricker SA. 1985. The ultrastructure and formation of the calcareous ossicles in the body wall of the sea cucumber Leptosynapta clarki (Echinodermata, Holothuroida). Zoomorphology 105: 209–222.
- Stricker SA. 1986. The fine structure and development of calcified skeletal elements in the body wall of holothurian echinoderms. J Morphol 188: 273–288.
- Théel H. 1885. Report on the Holothurioidea dredged by H.M.S. Challenger during the years 1873-76. Part II.
- Tyler PA, Billet DSM. 1987. The reproductive ecology of elasipodid holothurians from the N.E. Atlantic. Biol Oceanogr 5: 273–296.
- Wiedemeyer WL. 1994. Biology of small juveniles of the tropical holothurian Actinopyga echinites: growth, mortality, and habitat preferences. Mar Biol 120: 81–93.
- Willmer P. 1990. Invertebrate relationships: patterns in animal evolution. Cambridge: Cambridge Univ Press.
10.1017/CBO9780511623547 Google Scholar
- Wray GA. 1996. Parallel evolution of nonfeeding larvae in echinoids. Syst Biol 45: 308–322.
- Zeller R, Duboule D. 1997. Dorso-ventral limb polarity and origin of the ridge: on the fringe of independence?. Bioessays 19: 541–546.Medline