Osteomimetic properties of prostate cancer cells: A hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment
Corresponding Author
Kenneth S. Koeneman
Molecular Urology and Therapeutics Program, Department of Urology, University of Virginia Health Sciences Center, Charlottesville, Virginia
Molecular Urology and Therapeutics Program, Department of Urology, University of Virginia Health Sciences Center, Charlottesville, VA 22908Search for more papers by this authorFan Yeung
Molecular Urology and Therapeutics Program, Department of Urology, University of Virginia Health Sciences Center, Charlottesville, Virginia
Search for more papers by this authorLeland W.K. Chung
Molecular Urology and Therapeutics Program, Department of Urology, University of Virginia Health Sciences Center, Charlottesville, Virginia
Search for more papers by this authorCorresponding Author
Kenneth S. Koeneman
Molecular Urology and Therapeutics Program, Department of Urology, University of Virginia Health Sciences Center, Charlottesville, Virginia
Molecular Urology and Therapeutics Program, Department of Urology, University of Virginia Health Sciences Center, Charlottesville, VA 22908Search for more papers by this authorFan Yeung
Molecular Urology and Therapeutics Program, Department of Urology, University of Virginia Health Sciences Center, Charlottesville, Virginia
Search for more papers by this authorLeland W.K. Chung
Molecular Urology and Therapeutics Program, Department of Urology, University of Virginia Health Sciences Center, Charlottesville, Virginia
Search for more papers by this authorAbstract
BACKGROUND
Unlike most other malignancies, prostate cancer metastasizes preferentially to the skeleton and elicits osteoblastic reactions.
METHODS
We present a hypothesis, based upon results obtained from our laboratory and others, on the nature of progression of prostate cancer cells and their predilection to growth and metastasis in the bone microenvironment. We propose the hypothesis that osseous metastatic prostate cancer cells must be osteomimetic in order to metastasize, grow, and survive in the skeleton. The reciprocal interaction between prostate cancer and bone stromal growth factors, including basic fibroblast growth factor (bFGF), hepatocyte growth factor/scatter factor (HGF/SF), and especially the insulin growth factor (IGF) axis initiates bone tropism, and is enhanced by prostate secreted endothelin-1 (ET-1) and urokinase-type plasminogen activator (uPA). Growth factors and peptides that have differentiating activity, such as transforming growth factor beta (TGF-β), parathyroid hormone-related protein (PTH-rp), and the bone morphogenetic proteins (BMPs), can shift local homeostasis to produce the characteristic blastic phenotype, via interaction with prostate-secreted human kalikrein 2 (hK2), and prostate-specific antigen (PSA). This proposal asserts that altering the expression of certain critical transcription factors, such as Cbfa and MSX in prostate cancer cells, which presumably are under the inductive influences of prostate or bone stromal cells, can confer profiles of gene expression, such as osteopontin (OPN), osteocalcin (OC), and bone sialoprotein (BSP), that mimic that of osteoblasts.
RESULTS AND CONCLUSIONS
Elucidation of common proteins, presumably driven by the same promoters, expressed by both prostate cancer and bone stromal cells, could result in the development of novel preventive and therapeutic strategies for the treatment of prostate cancer skeletal metastasis. Agents developed using these strategies could have the potential advantage of interfering with growth and enhancing apoptosis in both prostate cancer and bone stromal compartments. The selective application of gene therapy strategy, driven by tissue-specific and tumor-restricted promoters for the safe delivery and expression of therapeutic genes in experimental models of prostate cancer metastasis, is discussed. Prostate 39:246–261, 1999. © 1999 Wiley-Liss, Inc.
REFERENCES
- 1Boring CC, Squires TS, Tong T, Montgomery S. Cancer statistics 1994. CA Cancer J Clin 1994; 44: 7–26. Medline
- 2Landis SH, Murray T, Bolden BA, Wingo PA. Cancer statistics. CA Cancer J Clin 1998; 48: 6–29. Medline
- 3Harada M, Iida M, Yamaguchi M, Shida K. Analysis of bone metastasis of prostatic adenocarcinoma in 137 autopsy cases. In: Kerr, Yamanaka, editors. Prostate cancer and bone metastasis. New York: Plenum Press; 1992. p 173–182.
- 4Mintz ER, Smith GG. Autopsy findings in 100 cases of prostate cancer. N Engl J Med 1934; 211: 479–487.
- 5Franks LM. The spread of prostate cancer. J Pathol Bacteriol 1956; 72: 603–611.
- 6Batson OV. The function of the vertebral veins and their role in the spread of metastasis. Ann Surg 1940; 112: 138–149.
- 7Batson OV. The function of the vertebral veins in the metastatic processes. Ann Intern Med 1942; 16: 38–45.
- 8Nishijima Y, Uchida K, Koiso K, Nemoto R. Clinical significance of the vertebral vein in prostate cancer metastasis. Adv Exp Med Biol 1992; 324: 93–100. Medline
- 9Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 1: 571–573.
10.1016/S0140-6736(00)49915-0 Google Scholar
- 10Gleave ME, Hsieh JT, Gao C, von Eschenbach AC, Chung LWK. Acceleration of human prostate cancer growth in vivo by prostate and bone fibroblasts. Cancer Res 1991; 51: 3753–3761. Medline
- 11Wu HS, Hsieh JT, Gleave ME, Brown NM, Pathak S, Chung LWK. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int J Cancer 1994; 57: 406–412. Medline
- 12Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, Hopwood VL, Pathak S, von Eschenbach A-C, Chung LWK. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 1994; 54: 2577–2581. Medline
- 13Chung LWK, Gleave ME, Hsieh JT, Hong SJ, Zhau HYE. Reciprocal mesenchyme-epithelial interaction affecting prostate tumor growth and hormone responsiveness. Cancer Surv 1991; 11: 91–121. Medline
- 14Chung LWK, Davies R. Prostate epithelial differentiation is dictated by its surrounding stroma. Mol Biol Rep 1996; 23: 13–19. Medline
- 15Wu TT, Sikes RA, Cui Q, Thalmann GN, Kao C, Murphy C, Yang H, Zhau HE, Balian G, Chung LWK. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by PSA producing tumors in athymic and SCID mice using LNCaP and lineage related metastatic sublines. Int J Cancer 1998; 77: 887–894.
Medline
10.1002/(SICI)1097-0215(19980911)77:6<887::AID-IJC15>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 16Thalmann GN, Anezinis P, Chung LWK Devoll R, Farach-Carson C. Experimental approaches to skeletal metastasis of human prostate cancer. Principles Pract Genitourin Oncol 1997; 409–416.
- 17Curatolo C, Ludovico GM, Correal M, Pagliovolo A, Abbate I, Cirrillo ME, Barletta A. Advanced prostate follow-up with PSA, PAP, osteocalcin and bone alkaline phosphatase. Eur Urol 1992; 1: 105–107.
- 18Waltregny D, Bellaheene A, Riet IV, Fisher LW, Young M, Feunandez P, Dewe W, Leval J, Castronovo V. Prognostic valve of bone sialoprotein expression in clinically localized human prostate cancer. J Natl Cancer Inst 1998; 90: 1000–1007. Medline
- 19Brown LF, Papadopoulos-Sergiou A, Berse B, Manseau EJ, Tognazzi K, Perruzzi CA, Dvorak HF, Senger DF. Osteopontin expression and distribution in human carcinomas. Am J Pathol 1994; 145: 610–624. Medline
- 20Dodds RA, Connor JR, James IE. Human osteoclasts, not osteoblasts deposit OPN. J Bone Miner Res 1995; 10: 1666–1680. Medline
- 21Urzesik WJ, Robeg PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 1994; 9: 487–497. Medline
- 22Mintz KP, Grzesik WJ, Midura RJ, Gehron Robey P, Termine JD, Fisher LW. Purification and fragmentation of nondenatured bone sialoprotein: evidence for cryptic, RGD-resistant cell attachment domain. J Bone Miner Res 1993; 8: 985–995. Medline
- 23Ross FP, Chappel J, Alvarez JI, Sander D, Butler WT, Farach-Carson MC, Mintz KA, Robey PG, Teitelbaum SL, Cheresh DA. Interactions between the bone matrix proteins OPN and BSP and the osteoclast integrin αvβ3 potentiate bone resorption. J Biochem (Tokyo); 1993; 268: 9901–9907.
- 24Boskey AL. Osteopontin and related phosphorylated sialoproteins: effects on mineralization. Ann NY Acad Sci 1995; 760: 249–256. Medline
- 25Hutenby K, Reinholt FP, Norgard M, Oldberg A, Wendel M, Henegard D. Distribution and synthesis of BSP in metaphyseal bone of young rats show a distinctly different pattern from osteopontin. Eur J Cell Biol 1994; 63: 230–239. Medline
- 26Cooper LF, Yliheikkila PK, Felton DA, Whitson SW. Spatiotemporal assessment of fetal bovine osteoblast culture differentiation indicates a role for BSP in promoting differentiation. J Bone Miner Res 1998; 13: 620–632. Medline
- 27Glowacki J, Lian JB. Impaired recruitment and differentiation of osteoclast progenitus by OC-deplete bone implants. Cell Differ 1987; 21: 247–254. Medline
- 28Roach HI. Why does bone matrix contain non-collagenous proteins? The roles of OC, osteonectin, OPN and BSP in bone mineralization and resorption. Cell Biol Int 1994; 18: 617–628. Medline
- 29Stein GS, Lian JB, Owen TA. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J 1990; 4: 3111–3123. Medline
- 30Young MF, Kerr JM, Ibaraki K, Heegaard AM, Robey PG. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop 1991; 281: 275–294.
- 31Kondo H, Ohyama T, Ohya K, Kasugai S. Temporal changes of mRNA expression of matrix proteins and parathyroid hormone and PTH-rp receptor in bone development. J Bone Miner Res 1997; 12: 2089. Medline
- 32Bianco P, Fisher LW, Young MF, Termine JD, Robey PG. Expression of BSP in human developing skeletal and nonskeletal tissues of revealed by immunostaining and in situ hybridization. Calcif Tissue Int 1991; 49: 421–426. Medline
- 33Chen J, Shapiro HS, Wrana JL, Reimovs S, Heevsche JNM, Sodetz J. Localization of BSP expression to sites of mineralized tissue formation in fetal rat tissues. Matrix 1991; 11: 133–143. Medline
- 34Kobayashi D, Takita H, Mizuno M, Totsuka Y, Kuboki Y. Time dependent expression of BSP in osteogenesis induced by BMP. J Biochem (Tokyo); 1996; 119: 475–481.
- 35Koeneman KS, Yeung F, Sikes RA, Chung LWK, Nelson JB. Transcriptional downregulation of PSA and enhanced growth of prostate cancer cells by co-culture with osteoblastic cells. J Urology; AVA Annual Meeting, Abstract 369, 1999; in press.
- 36Ko S, Cheon J, Kao C, Gotoh A, Shirakawa T, Sikes RA, Karsenty G, Chung LWK. Osteocalcin promoter based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res 1996; 56: 4614–4619. Medline
- 37Gardener TA, Ko SC, Kao C, Shirakawa T, Cheon J, Gotoh A, Wu TT, Sikes RA, Zhau HE, Cui O, Balian G, Chung LWK. Exploiting stromal-epithelial interaction for model development and new strategies of gene therapy for prostate cancer and osteosarcoma metastases [review]. Gene Ther Mol Biol 1998; 2: 41–58.
- 38Ducy P, Karsenty G. Two distinct osteoblast specific cis-acting elements control expression of a mouse OC gene. Mol Cell Biol 1995; 15: 1859–1869.
10.1128/MCB.15.4.1858 Google Scholar
- 39Chen J, Thomas HF, Jin H, Jian H, Sodek J. Expression of Rat BSP promoter in transgenic mice. J Bone Miner Res 1996; 11: 654–664. Medline
- 40Chen J, Sodek J, Huw TF, Raly DM. Dexamethasome stimulates luciferase gene expression through the rat bone sialoprotein gene promoter in transgenic mice. Connect Tissue Res 1996; 35: 33–39. Medline
- 41Bellahcene A, Merville MP, Castronovo U. Expression of BSP, a bone matrix protein, in human breast cancer. Cancer Res 1994; 54: 2823–2826. Medline
- 42Bellahcene A, Maloujahmoum N, Fisher LW, Pastorino H, Tagliabue E, Menard S, Castronovo V. Expression of BSP in human lung cancer. Calcif Tissue Int 1996; 61: 183–188.
- 43Kim RH, Shapiro HS, Li JJ, Wrana JL, Sode KJ. Characterization of human BSP gene and its promoter sequence. Matrix Biology 1994; 14: 31–40. Medline
- 44Li JJ, Kim RH, Zhang Q, Ogata Y, Sodek J. Characteristics of vitamin D3 receptor binding to the vitamin D response element (VDRE) in rat bone sialoprotein (BSP) promoter. Eur J Oral Sci 1998; 106: 408–417. Medline
- 45Sodek J, Kim RH, Ogata Y, Li J, Yamaguchi M, Zhang Q, Friedman LP. Regulation of bone sialoprotein gene transcription by steroid hormones. Connect Tissue Res 1995; 32: 209–217. Medline
- 46Xiao G, Qui Y, Ducy P, Karsenty G, Franceschi R. Ascorbic acid-dependent activation of the osteocalcin promoter in MC3T3-E1 pre-osteoblasts: requirement for collagen matrix synthesis and the presence of an intact OSE2 sequence. Mol Endocrinol 1997; 11: 1103–1113. Medline
- 47Ek-Rylander B, Flores M, Wendel M, Heinegard D, Anderson G. Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase: modulation of osteoclast adhesion in vitro. J Biol Chem 1994; 269: 14853–14856. Medline
- 48Ogata Y, Nisato N, Furuyama S, Cheifetz S, Kim R, Sugiya H, Sodek J. Transforming growth factor β1 regulation of bone sialoprotein gene transcription: identification of a TGF-β activation element in the rat BSP gene promoter. J Cell Biochem 1997; 65: 501–512.
Medline
10.1002/(SICI)1097-4644(19970615)65:4<501::AID-JCB6>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 49Pan LC, Price PA. The effect of transcriptional inhibitors on the bone gamma-carboxyglutamic acid protein response to 1,25-dihydroxyvitamin D3 in osteosarcoma cell. J Biol Chem 1984; 259: 5844–5847. Medline
- 50Malone JD, Teitelbaum SL, Griffin GL, Senior RM, Kahn AJ. Recruitment of osteoclast precursors by purified bone matrix constituents. J Cell Biol 1982; 92: 227–235. Medline
- 51Glowackiz J, Lian L. Impaired recruitment and differentiation of osteoclast progenitors by osteocalcin-deplete bone implants. Cell Differ 1987; 21: 247–254. Medline
- 52Refranco D, Glowackiz J, Cox K, Lian J. Normal bone particles are preferentially resorbed in the presence of osteocalcin-deficient bone particles in vivo. Calcif Tissue Int 1991; 49: 43–50. Medline
- 53Ritter NM, Farach-Carson MC, Butler WT. Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 1992; 7: 877–885. Medline
- 54Kesterson RA, Stanley L, Maryo F, Finegold M, Pike JW. The human OC promoter directs bone-specific vitamin D-regulatable gene expression in transgenic mice. Mol Endocrinol 1993; 7: 462–467. Medline
- 55Hauschka PV. Osteocalcin: the vitamin K-dependent Ca 2+-binding protein of bone matrix. Haemostasis 1996; 16: 258–272.
- 56Lian JB, Gunberg CM. Biochemical consideration and clinical applications. Clin Orthop 1998; 226: 267–291.
- 57Schrader M, Muller KM, Carlberg C. Specificity and flexibility of vitamin D signaling. Modulation of the activation of natural vitamin D response element by thyroid hormone. J Biol Chem 1994; 269: 5501–5504. Medline
- 58Zhuang SH, Schwartz GG, Cameron D, Burnstein KL. Vitamin D receptor content and transcriptional activity do not fully predict antiproliferative effects of vitamin D in human prostate cancer cell lines. Mol Cell Endocrinol 1997; 126: 83–90. Medline
- 59Masuyama H, Jefcoat SJ Jr, Macdonald PN. The N-terminal domain of transcription factor II B is required for direct interaction with the vitamin D receptors and participates in vitamin D-mediated transcription. Mol Endocrinol 1997; 11: 218–228. Medline
- 60Schule R, Umesono K, Mangelsdorg DJ, Bolado J, Pike JW, Evans RM. Jun-Fos and receptors for vitamin A and D recognize a common response element in the human osteocalcin gene. Cell 1990; 61: 497–504. Medline
- 61Schedlich LJ, Flanagan JL, Crofts LA, Gillies SA, Goldberg D, Morrison NA, Eisman JA. Transcriptional activation of the human osteocalcin gene by bFGF. J Bone Miner Res 1994 9: 43–152.
- 62Hoffmann HM, Beumer TL, Rahman S, McCabe LR, Banerjee C, Aslam F, Tiro JA, Wijnen AFV, Stein JL, Stein GS, Lian JB. Bone tissue specific transcription of the osteocalcin gene: role of an activator osteoblast-specific complex, and suppressor Hox proteins that bind the OC box. J Cell Biochem 1996; 61: 310–324.
Medline
10.1002/(SICI)1097-4644(19960501)61:2<310::AID-JCB14>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 63Towler DA, Rerttedge SJ, Rodan GA. Msx-2/Hox8.1: a transcription regulator of the rat osteocalcin promoter. Mol Endocrinol 1994; 8: 1484–1491. Medline
- 64McGinnis W, Levine MS, Haten E, Kuroiwa A, Gehring WJ. A conserved DNA sequence in homeotic genes of the Drosophila antennapedia and bithorac complexes. Nature 1984; 308: 428–433. Medline
- 65Hoffman HM, Catron KM, Wijnen AFV, McCabe LR, Lian JB, Stein GS, Stein JL. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins. Proc Natl Acad Sci USA 1994; 91: 12887–12891. Medline
- 66Jabs EW, Muller U, Li X, Ma L, Luo W, Hawworth IS, Klisak I, Sparkes R, Warman ML, Muliken JB, Snead ML, Maxson R. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominent craniosynostosi. Cell 1993; 75: 443–450. Medline
- 67Zhang H, Hu G, Wang H, Sciavolino P, Iler N, Shen MM, Shen C. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol Cell Biol 1997; 17: 2920–2932. Medline
- 68Ryoo HM, Hoffmann HM, Beumer T, Frekel B, Toeler DA, Stein GS, Stein JL, Wijnen AJV, Lian JB. Stage specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol 1997; 11: 1681–1694. Medline
- 69Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activation of osteoblast differentiation. Cell 1997; 89: 747–754. Medline
- 70Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Osamoto R, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of formation owing to maturational arrest of osteoblasts. Cell 1997; 89: 755–764. Medline
- 71Kingsley DM. The TGF-beta superfamily: new members, new receptors and new genetic tests of function in different organisms. Genes Dev 1994; 8: 133–146. Medline
- 72Akamatsu Y, Tsukumo S, Kagoshima H, Tsurushita N, Shigsada K. A simple screening for mutant DNA binding proteins: application to murine transcription factor PEBP2-alpha subunit, a founding member of the runt domain protein family. Gene 1997; 185: 11–17. Medline
- 73Grant ES, Ross MB, Ballard S, Naylor A, Habib FK. The insulin-like growth factor type I receptor stimulates growth and suppresses apoptosis in prostatic stromal cells. J Clin Endocrinol Metab 1998; 83: 3252–3257. Medline
- 74Gleave M, Hsieh J, Gao C, von Eschenbach A, Chung LWK. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res 1991; 51: 3753–3761. Medline
- 75Hsieh J, Wu H, Gleave M, von Eschenbach A, Chung LWK. Autocrine regulation of prostate-specific antigen gene expression in human prostate cancer subline. Cancer Res 1993; 53: 2852–2857. Medline
- 76Nelson JB, Chan-Tack K, Hedican S, Magnuson SR, Opgenorth TJ, Bova GS, Simons JW. Endothelin-1 production and decreased endothelin B receptor expression in advanced prostate cancer. Cancer Res 1996; 56: 663–668. Medline
- 77Nelson JB, Hedican SP, George DJ, Reddi AH, Piantadosi S, Eisenberger MA, Simons JW. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med 1995; 1: 944–949. Medline
- 78Nelson JB, Lee W, Nguyen SH, Jarrard DF, Brooks JD, Magnuson SR, Opgenorth TJ, Nelson WG, Bova GS. Methylation of the 5' CpG island of the endothelin B receptor gene is common in human prostate cancer. Cancer Res 1997; 57: 35–37. Medline
- 79Nelson JB, Nguyen SH, Wu-Wong JR, Opgenorth TJ, Dixon DB, Chung LWK, Ivanoue N. New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology 1999; in press.
- 80Kitano Y, Kurihara H, Kurihara Y, Maemura K, Ryo Y, Yazaki Y, Harii K. Gene expression of bone matrix proteins and endothelin receptors in endothelin-1 deficient mice revealed by in situ hybridization. J Bone Miner Res 1998; 13: 237–244. Medline
- 81Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGFβ and BMP. Bone [Suppl] 1996; 19: 1–12. Medline
- 82Mohan S, Baylink DJ. Bone growth factors. Clin Orthop 1991; 263: 30–48. Medline
- 83McCarthy TC, Casinghino S, Centrella M, Canalis E. Complex pattern of insulin-like growth factor binding protein expression in primary rat osteoblast enriched cultures: regulation of prostaglandin E2, growth hormone, and the insulin-like growth factors. J Cell Physiol 1994; 160: 163–175. Medline
- 84Mohan S. IGF binding proteins in bone cell regulation. Growth Regul 1993; 3: 67–70. Medline
- 85Mohan S, Nakao Y, Honda Y, Candela E, Lesev V, Dony C, Lang K, Baylin KDJ. Studies on the mechanism by which IGFBP-4 and IGFBP-5 modulate IGF action in bone cells. J Biol Chem 1995; 270: 20424–20431. Medline
- 86Li SL, Goko H, Xu ZD, Kimura G, Sun Y, Kawachi MH, Wilson TG, Wilczynski S, Fujita-Yamaguchi Y. Expression of insulin-like growth factor (IGF)-II in human prostate, breast, bladder, and paraganglioma tumors. Cell Tissue Res 1998; 291: 469–479. Medline
- 87Kimura G, Kasuya J, Giannini S, Honda Y, Mohan S, Kawachi M, Akimoto M, Fujita-Yamaguchi Y. Insulin-like growth factor (IGF) system components in human prostatic cancer cell lines: LNCaP, DU145, and PC-3 cells. Int J Urol1996; 3: 39–46. Medline
- 88Lamharzi N, Schally AV, Koppan M, Groot K. Growth hormone-releasing hormone antagonist MZ-5-156 inhibits growth of DU-145 human androgen-independent prostate carcinoma in nude mice and suppresses the levels and mRNA expression of insulin-like growth factor II in tumors. Proc Natl Acad Sci USA 1998; 95: 8864–8868. Medline
- 89Iwamura M, Sluss PM, Casamenton JB, Cockett AT. Insulin-like growth factor I: action and receptor characterization in human prostate cancer cell lines. Prostate 1993; 22: 243–252. Medline
- 90Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M. Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 1998; 279: 563–566. Medline
- 91Polychronakos C, Janthly U, Lehoux JG, Koutsilieris M. Mitogenic effects of insulin and insulin-like growth factors on PA-III rat prostate adenocarcinoma cells: characterization of the receptors involved. Prostate 1991; 19: 313–321. Medline
- 92Guidice LC, Marte SP, Irwin JC. Paracrine actions of IGF and IGF binding protein-1 in non-pregnant human endometrium and at the decidual-trophoblast interface. J Reprod Immunol 1998; 393: 133–148.
- 93Wahl S. TGF-β: the good, the bad, and the ugly. J Exp Med 1994; 180: 1587–1590. Medline
- 94Harris SE, Bonewald LF, Harris MA, Sabatini M, Dallas S, Feng JQ, Ghosh-Choudhury N, Wozney J, Mundy GR. Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J Bone Miner Res 1994; 9: 855–863. Medline
- 95Canalis E, Pash J, Varghese S. Skeletal growth factors. Crit Rev Eukaryotic Gene Expression 1993; 3: 155–166.
- 96Knutsen R, Honda Y, Strong DD, Sampath TK, Baylink DJ, Mohan S. Regulation of insulin-like growth factor system components by osteogenic protein-1 in human bone cells. Endocrinology 1995; 136: 857–865. Medline
- 97Barnes J, Anthony CT, Wall N, Steiner MS. Bone morphogenetic protein-6 expression in normal and malignant prostate. World J Urol 1995; 13: 337–343. Medline
- 98Hamdy FC, Autzen P, Robinson MC, Horne CH, Neal DE, Robson CN. Immunolocalization and messenger RNA expression of bone morphogenetic protein-6 in human benign and malignant prostatic tissue. Cancer Res 1997; 57: 4427–4431. Medline
- 99Weber KL, Bolander ME, Rock MG, Pritchard D, Sarkar G. Evidence for the upregulation of osteogenic protein-1 mRNA expression in musculoskeletal neoplasms. J Orthop Res 1998; 16: 8–14. Medline
- 100Harris SE, Boyce B, Feng JQ, Mahy P, Harris M, Mundy GR. Antisense BMP3 constructs decrease new bone formation in a prostate cancer model. J Bone Miner Res [Suppl] 1992; 7: 92.
- 101Ide H, Yoshida T, Matsumoto N, Aoki K, Osada Y, Sugimura T, Terada M. Growth regulation of human prostate cancer cells by bone morphogenetic protein-2. Cancer Res 1997; 57: 5022–5027. Medline
- 102Oliver LJ, Rifkin DB, Gabrilowe J, Hannocks MJ, Wilson EL. Long-term human bone marrow stromal cells in the presence of bFGF. Growth Factors 1990; 3: 231. Medline
- 103Trippel SB, Wroblewski J, Makower A-M, Whelan MC, Shoen-field D, Doctrow SR. Regulation of growth plate chondrocytes by insulin-like GF-I and bFGF. J Bone Joint Surg [Am] 1993; 75: 177–189. Medline
- 104Matuo Y, Nishi N, Matsui S, Sandberg AA, Isaacs JT, Wada F. Heparin binding affinity of rat prostate growth factor in normal and cancerous prostate: partial purification and characterization of rat prostate growth factor in the Dunning tumor. Cancer Res 1987; 47: 188–192. Medline
- 105Mansson PE, Adams P, Kan M, McKeehan WL. HBGF1 gene expression in normal rat prostate and two transplantable rat prostate tumors. Cancer Res 1989; 49: 2485–2494. Medline
- 106Izbicka E, Dunstan CR, Hom D, Harris M, Harris S, Adams R, Mundy GR. Effects of human tumor cell lines on local new bone formation in vivo. Calcif Tissue Int 1997; 60: 210–215. Medline
- 107Izbicka E, Dunstan C, Esparza J, Jacobs C, Sabatini M, Mundy GR. Human amniotic tumor which induces new bone formation in vivo produces a growth regulatory activity in vitro for osteoblasts identified as an extended form of basic fibroblast growth factor (bFGF). Cancer Res 1996; 56: 633–636. Medline
- 108Harley MM, Lee SK, Raisz LA, Bernecher P, Lorenzo J. bFGF induces osteoclast formation in murine bone marrow cultures. Bone 1998; 22: 309–316. Medline
- 109Inaba M, Kogama H, Hino M, Terada M, Nishizawa Y, Nishino T, Morii H. Regulation of release of HGF from human promyelocytic leukemia cells, HL-60, by vitamin D3. Blood 1993; 82: 53–59. Medline
- 110Fuller K, Owens J, Chambers TJ. The effect of HGF on the behavior of osteoclasts. Biochem Biophys Res Commun 1995; 212: 334–340. Medline
- 111Takebayashi T, Iawamoto M, Jikko A, Matsumura J, Enomoto-Iwamoto M, Myokai F, Vamaai T, Matsumoto K, Nakamura T. HGF/SF modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes. J Cell Biol 1995; 129: 1411–1419. Medline
- 112Grumbles RM, Howell DS, Wenger L, Altmar RD, Howard GA, Roos BA. HGF and its actions in growth plate chondrocytes. Bone 1996; 19: 255–261. Medline
- 113Kurimoto S, Moriyama N, Horie S, Sakai M, Kameyama S, Alkimoto Y, Hirano H, Kawabe K. Co-expression of HGF and its receptor in human prostate cancer. Histochem J 1998; 30: 27–32. Medline
- 114Nishimura K, Kitamura M, Takada S, Nonomura N, Tsujimura A, Matsumiya K, Mitei T, Matsumoto K, Okuyama A. Regulation of invasive potential of human prostate cancer cell lines by HGF. Int J Urol 1998; 5: 276–281. Medline
- 115Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmes RT, Day ML. HGF and its receptor c-met in prostate carcinoma. Am J Pathol 1995; 147: 386–396. Medline
- 116Pisters LL, Troncoso P, Zhau HYE, Li W, von Eschenbach AC, Chung LW. c-met proto-oncogene expression in benign and malignant human prostate tissues. J Urol 1995; 154: 293–298. Medline
- 117Tsuka H, Mori H, Li B, Kanamaru H, Matsukawa S, Okada K. Enhanced HGF levels in human prostate cancer treated with endocrine therapy. Int J Oncol 1998; 13: 159–176.
- 118Pentyala SN, Whyard TC, Waltzer WC, Meek AG, Hod Y. Androgen induction of urokinase gene expression in LNCaP cells is dependent on their interaction with the extracellular matrix. Cancer Lett 1998; 130: 12–16.
- 119Rabbani SA. Metalloproteases and urokinase in angiogenesis and tumor progression. In Vivo 1998; 12: 135–142. Medline
- 120Jankun J, Keck RW, Skrzypczak-Jankun E, Swiercz R. Inhibitors of urokinase reduce size of prostate cancer xenografts in severe combined immunodeficient mice. Cancer Res 1997; 57: 559–563. Medline
- 121Rabbani SA, Xing RH. Role of urokinase and its receptor in invasion and metastasis of hormone dependent malignancies. Int J Oncol 1998; 12: 911–920. Medline
- 122Festuccia C, Teti A, Bianco P, Guerra F, Vicentini C, Villanova I, Sciortino G, Bologna M. Human prostate tumor cells in culture produce growth and differentiation factors active on osteoblasts: a new biological and clinical parameter of prostatic carcinoma. Oncol Res 1997; 9: 419–431. Medline
- 123Goltzman D. Mechanisms of the development of osteoblastic metastasis. Cancer [suppl] 1997; 80: 1581–1587.
Medline
10.1002/(SICI)1097-0142(19971015)80:8+<1581::AID-CNCR8>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 124Koutsilieris M, Reyes-Moreno C, Sourla A, Dimitriadou V, Choki I. Growth factors mediate glucocorticoid receptor function and dexamethasone induced regression of osteoblastic lesions in hormone refractory prostate cancer. Anticancer Res 1997; 17: 1461–1466. Medline
- 125Janvier R, Sourla A, Koutsilieris M, Doillon CJ. Stromal fibroblasts are required for PC-3 human prostate cancer cells to produce capillary-like formation of endothelial cells in a three-dimensional co-culture system. Anticancer Res 1998; 17: 1551–1558.
- 126Sourla A, Doillon C, Koutsilieris M. Three-dimensional type I collagen gel system containing MG-63 osteoblast-like cells as a model for studying local bone reaction caused by metastatic cancer cells. Anticancer Res 1996; 16: 2773–2780. Medline
- 127Reyes-Moreno C, Koutsilieris M. Glucocorticoid receptor function possibly modulates cell-cell interactions in osteoblastic metastasis on rat skeleton. Clin Exp Metastasis 1997; 15: 205–217. Medline
- 128Frenette G, Deperthes D, Tremblay PR, Lazure C, Dube JY. Purification of enzymatically active kallikrein, hK2, from human seminal plasma. Biochim Biophys Acta 1997; 1334: 109–115. Medline
- 129Herrala A, Kurkela R, Porvari K, Isomaki R, Henttu P, Vihko P. Human prostate-specific glandular kallikrein is expressed as an active and inactive protein. Clin Chem 1997; 43: 279–284. Medline
- 130Saedi MS, Hill TM, Kuus-Reichel K, Kumar A, Payne J, Mikolajczyk SD, Wolfert RL, Rittenhouse HG. The precursor form of hK2, a kallikrein homologous to PSA, is present in human sera and is increased in prostate cancer and benign hyperplasia. Clin Chem 1998; 44: 2115–2119. Medline
- 131Nelson PS, Ng WL, Schummer M, True LD, Liu AY, Bumgarnerr RE, Ferguson C, Dimak A, Hood L. An expressed sequence tag database of the human prostate: sequence analysis of 1168 cDNA clones. Genomics 1998; 47: 12–25. Medline
- 132Lovgren J, Rajakoski K, Karp M, Lundwall A Lilja H. Activation of the zymogen form of prostate-specific antigen by hK2. Biochem Biophys Res Commun 1997; 238: 549–555. Medline
- 133Kumar A, Goel AS, Hill TM, Mikolajczyk SD, Millar LS, Kuus-Reichel K, Saedi MS. Expression of hK2 in mammalian cells. Cancer Res 1996; 56: 5397–5402. Medline
- 134Takkayama TK, Fujikawa K, Davie EW. Characterization of the precursor of PSA. Activation by typsin and hK2. J Biol Chem 1997; 272: 21582–21588. Medline
- 135Iwamura M, Wu G, Abrahamson P, St Agnes P, Cockett A, Defteos L. Parathyroid hormone-related protein is expressed by prostatic neuroendocrine cells. Urology 1994; 43: 667–674. Medline
- 136Iwamura M, Abrahamson P, Foss K, Wu G, Cockett A, Defteos L. Parathyroid hormone-related protein: a potential autocrine growth regulator in human prostate cancer cell lines. J Urol 1994; 43: 675–679.
- 137Blomme E, Sugimoto Y, McCauley L, Lin Y, Capen C, Rosol T. Stromal and epithelial cells of the canine prostate express parathyroid hormone-related protein but not the PTH/PTH-rp receptor. Prostate 1998; 36: 110–120.
Medline
10.1002/(SICI)1097-0045(19980701)36:2<110::AID-PROS6>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 138Li X, Drucker D. Growth factor-like properties of parathyroid hormone-related peptide in transfected rodent cell lines. Cancer Res 1993; 53: 2980–2986. Medline
- 139Morris CA, Mitnick M, Weir E, Horowitz M, Kreider B, Insogna KL. The parathyroid hormone-related protein stimulated in osteoblast-like cells to secrete a 9000 Dalton bone resorbing protein. Endocrinology 1990; 126: 1783–1785. Medline
- 140Iwamura M, Hellman J, Cockett A, Lilja H, Gershagen S. Alteration of the hormonal bioactivity of parathyroid hormone-related protein as a result of limited proteolysis by prostate-specific antigen. Urology 1996; 48: 317–325. Medline
- 141Cramer S, Chen Z, Peehl D. Prostate-specific antigen cleaves parathyroid hormone-related protein in the PTH-like domain: inactivation of PTH-rp-stimulated cyclic AMP accumulation in mouse osteoblasts. J Urol 1996; 156: 526–531. Medline
- 142Centrella M, Canalis E, McCarthy T, Stewart A, Orlof J, Insogna K. Parathyroid hormone-related protein modulates the effect of transforming growth factor-β and deoxyribonucleic acid in collagen synthesis and fetal red bone cells. Endocrinology 1989; 125: 199–208. Medline
- 143Bittner K, Vischer P, Bartholmes P, Bruchner P. Role of subchondrial vascular system in endochondrial ossification: endothelial cells specifically derepress late differentiation in resting chondrocytes in vitro. Exp Cell Res 1998; 238: 491–497. Medline
- 144Thomas R, Winston A, Raman V, Reddi A. Androgen-dependent gene expression of bone morphogenic protein-7 in mouse prostate. Prostate 1998; 37: 236–245.
Medline
10.1002/(SICI)1097-0045(19981201)37:4<236::AID-PROS5>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 145Reddi AH. Bone morphogenic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokin Growth Factor Rev 1997; 8: 11–20.
- 146Suzuki F. Effects of various growth factors on a chrondrocyte differentiation model. In: Karr JP, H Yamanaka, editors. Prostate cancer and bone metastasis. New York: Plenum Press; 1992. p 101–106.
10.1007/978-1-4615-3398-6_10 Google Scholar
- 147Mundy R. Mechanisms of bone metastasis. Cancer [Suppl] 1997; 80: 1546–1556.
Medline
10.1002/(SICI)1097-0142(19971015)80:8+<1546::AID-CNCR4>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 148Charhon SA, Chapuy MC, Delviny EE, Valentin-Opran A, Edovard CM, Meunior PJ. Histomorphometric analysis of sclerotic bone metastasis from prostate carcinoma with special reference to osteomalacia. Cancer 1983; 51: 918–924.
Medline
10.1002/1097-0142(19830301)51:5<918::AID-CNCR2820510526>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 149Zhau HE, Goodwin TJ, Chang S, Baker TL, Chung LWK. Establishment of a three-dimensional human prostate organoid coculture under microgravity-simulated conditions: evaluation of androgen-induced growth and PSA expression. In Vitro Cell Dev Biol Anim 1997; 33: 375–380. Medline
- 150Rhee HW, Chang S, Zhau HE, Pathak S, Multani AS, Visakorpi T, Gardner TA, Chung LWK. Permanent phenotypic and genomic changes of a human prostate cell line LNCaP through cellular interaction with prostate or bone fibroblasts in vivo or under microgravity-simulated growth conditions. Cancer Detect Prev 1999; in press.
- 151Albo D, Berger DH, Tuszynski GP. The effect of thrombospondin-1 and TGF-β on pancreatic cancer cell invasion. J Surg Res 1998; 76: 86–90. Medline
- 152Roth JJ, Albo D, Rothman VL, Longaker MT, Granick MS, Long CD, Solomon MP, Tuszynski GP. Thrombospondin-1 and its CSVTCG-specific receptor in wound healing and cancer. Ann Plast Surg 1998; 40: 494–501. Medline
- 153Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N. Thrombospondin-1 is a major activator of TGF-β in vivo. Cell 1998; 93: 1159–1170. Medline