Modeling β-lactam interactions in aqueous solution through combined quantum mechanics–molecular mechanics methods
Jesús Pitarch
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
Search for more papers by this authorJuan-Luis Pascual–Ahuir
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
Search for more papers by this authorCorresponding Author
Estanislao Silla
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), SpainSearch for more papers by this authorIñaki Tuñón
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
Search for more papers by this authorManuel F. Ruiz–López
Laboratoire de Chimie Théorique, UMR CNRS-UHP 7565, Institut Nancéien de Chimie Moléculaire, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-lès-Nancy, France
Search for more papers by this authorJesús Pitarch
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
Search for more papers by this authorJuan-Luis Pascual–Ahuir
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
Search for more papers by this authorCorresponding Author
Estanislao Silla
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), SpainSearch for more papers by this authorIñaki Tuñón
Departamento de Química Física, Universidad de Valencia, 46100 Burjasot (Valencia), Spain
Search for more papers by this authorManuel F. Ruiz–López
Laboratoire de Chimie Théorique, UMR CNRS-UHP 7565, Institut Nancéien de Chimie Moléculaire, Université Henri Poincaré-Nancy I, BP 239, 54506 Vandoeuvre-lès-Nancy, France
Search for more papers by this authorAbstract
In this article, we have carried out a series of theoretical computations intended to analyze the interactions of β-lactam compounds in aqueous solution. The final aim is to rationalize the influence of the medium on β-lactam antibiotics reactivity. In particular, the hydrolysis reaction has been studied because of the considerable interest due to its relationship with resistance mechanisms developed by bacteria. The study is extended to the simplest β-lactam molecule, propiolactam or 2-azetidinone, and to the corresponding hydroxylated complex (resulting from the addition of a hydroxyl anion to the carbonyl group) that plays a crucial role in hydrolysis processes. Molecular Dynamics simulations have been carried out using a hybrid quantum mechanics–molecular mechanics potential: the solute is described using the density functional theory, whereas water solvent molecules are treated classically. This represents a sophisticated computational level which, compared to usual force-field simulations, has the advantage of allowing a detailed analysis of solute's electronic properties. The discussion of results is focused on the role played by solute–solvent hydrogen bonds and solvent fluctuations on solute's structure. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 1401–1411, 1999
References
- 1 Fleming, A. Br J Exp Pathol 1929, 10, 226.
- 2 (a) Flynn, E. H. In Cephalosporins and Penicillins: Chemistry and Biology; Academic Press: New York, 1972; (b) Blumberg, P. M.; Strominger, J. L. Bacterial Rev 1974, 38, 291; (c) Waxman, D. J.; Strominger, J. L. Annu Rev Biochem 1983, 52, 825.
- 3 Tipper, D. J.; Strominger, J. L. Proc Natl Acad Sci. USA 1965, 54, 1133.
- 4 (a) Waley, S. G. In The Chemistry of β-Lactams; M. I. Page, Ed.; Chapman & Hall: London, 1992; (b) Page, M. I.; Laws, A. P.; Slater, M. J.; Stone, J. R. Pure Appl Chem 1995, 67, 11; (c) Knowles, J. R. Acc Chem Res 1985, 18, 97; (d) Neu, H. C. Science 1992, 257, 1065; (e) Davies, J. Science 1994, 264, 375.
- 5 (a) Woodward, R. B. In The Chemistry of Penicillin; H. T. Clarke; J. R. Johnson; R. Robinson, Eds.; Princeton University Press: Princeton, 1949; (b) Strominger, J. L. Antibiotics 1967, 1, 706; (c) Page, M. I. Adv Phys Org Chem 1987, 23, 165; (d) Butler, A. R.; Freeman, K. A.; Wright, D. E. J Chem Soc Perkin Trans 1977, 2, 765.
- 6 (a) Kelly, J. A.; Knox, J. R.; Moews, P. C.; Hite, G. C.; Bartolone, J. B.; Zhao, H.; Joris, B.; Frère, J.-M. J Biol Chem 1985, 260, 6449; (b) Kelly, J. A.; Knox, J. R.; Zhao, H.; Frère, J.-M.; Ghuysen, J-.M. J Mol Biol 1989, 209, 281.
- 7 (a) Herzberg, O.; Moult, J. Science 1987, 236, 694; (b) Herzberg, O. J Mol Biol 1991, 217, 701; (c) Herzberg, O.; Kapadia, G.; Blanco, B.; Smith, T. S.; Coulson, A. Biochemistry 1991, 30, 9503.
- 8 (a) Chen, C. C. H.; Herzberg, O. J Mol Biol 1992, 224, 1103; (b) Chen, C. C. H.; Rahil, J.; Pratt, R. F.; Herzberg, O. J Mol Biol 1993, 234, 165.
- 9 (a) Jelsch, C.; Lenfant, F.; Masson, J. M.; Samama, J. P. FEBS Lett 1992, 299, 135; (b) Jelsch, C.; Mourey, L.; Masson, J. M.; Samama, J. P. Proteins Struct Funct Genet 1993, 16, 364.
- 10 (a) Knox, J. R.; Moews, P. C. J Mol Biol 1990, 220, 435; (b) Moews, P. C.; Knox, J. R.; Dideberg, O.; Charlier, P.; Frère, J.-M. Proteins Struct Funct Genet 1990, 7, 156; (c) Knox, J. R.; Moews, P. C.; Escobar, W. A.; Fink, A. L. Protein Eng 1993, 6, 11.
- 11 Dideberg, O.; Charlier, P.; Wery, J. P.; Dehottay, P.; Dusart, J.; Erpicum, T., Frère, J.-M.; Ghuysen, J.-M. Biochem J 1987, 245, 911.
- 12 Samraoni, B.; Sutton, B. J.; Todd, R. J.; Artymiuk, P. J.; Waley, S. G.; Phillips, D. C. Nature 1986, 320, 378.
- 13 Sutton, B. J.; Artymiuk, P. J.; Cordero–Bordoa, A. E.; Little, C.; Phillips, D. C.; Waley, S. G. Biochem J 1987, 248, 181.
- 14 Oefner, G.; D'Arcy, A.; Daly, J. J.; Gubernator, K.; Charnas, R. L.; Heinze, I.; Hubschwerlen, C.; Winkler, F. K. Nature 1990, 343, 284.
- 15 (a) Fisher, J.; Belsaco, J. G.; Khosla, S.; Knowles, J. R. Biochemistry 1980, 19, 2895; (b) Dalbadie–McFarland, G.; Neitzel, J. J.; Richards, J. H. Biochemistry 1986, 25, 332; (c) Martin, M. T.; Waley, S. G. Biochem J 1988, 254, 923; (d) Healey, W. J.; Labgold, M. R.; Richards, J. H. Proteins Structs Funct Genet 1989, 6, 275; (e) Cartwright, S. J.; Tan, A. K.; Fink, A. L. Biochemistry 1989, 263, 905; (f) Ellerby, L. M.; Escobar, W. A.; Fink, A. L.; Mitchinson, C.; Wells, J. A.; Biochemistry 1990, 29, 5797; (g) Virden, R.; Tan, A. K.; Fink, A. L. Biochemistry 1990, 29, 145; (h) Christensen, H.; Martin, M. T.; Waley, S. G. Biochem. J 1990, 266, 853; (i) Jacob, F.; Joris, B.; Dideberg, O.; Dusart, J.; Ghuisen, J.-M.; Frère, J.-M. Protein Eng 1990, 4, 79; (j) Adachi, H.; Ohta, T.; Matsuzawa, H. J. Biol Chem 1991, 266, 3186; (k) Escobar, W. A.; Tan, A. K.; Fink, A. L. Biochemistry 1991, 30, 10783.
- 16 Herzberg, O.; Moult, J. Curr Opin Struct Biol 1991, 1, 946.
- 17 (a) Herzberg, O.; Moult, J. Science 1987, 236, 694; (b) Gibson, R. M.; Christensen, H.; Waley, S. G. Biochem J 1990, 272, 613; (c) Knap, A. K.; Pratt, R. F. Biochem J 1991, 273, 85; (d) Lamotte-Brasseur, J.; Dive, G.; Dideberg, O.; Charlier, P.; Frère, J.-M.; Ghuysen, J. M. Biochem J 1991, 279, 213; (e) Damblon, C.; Raquet, X.; Lian, L.-Y.; Lamotte–Brasseur, J.; Fonze, E.; Charlier, P.; Roberts, G. C. K.; Frère, J.-M. Proc Nat Acad Sci USA 1996, 93, 1747; (f) Vijayakumar, S.; Ravishanker, G.; Pratt, R. F.; Beveridge, D. L. J Am Chem Soc 1995, 117, 1722.
- 18 Strynadka, N. C. J.; Adachi, H.; Jensen, S. E.; Johns, K.; Sielecki, A.; Betzel, C.; Sutoh, K.; James, M. N. G. Nature 1992, 359, 700.
- 19 Wladkowski, B. D.; Chenoweth, S. A.; Sanders, J. N.; Krauss, M.; Stevens, W. J. J Am Chem Soc 1997, 119, 6423.
- 20 (a) Wolfe, S.; Kim, C.-K.; Yang, K. Can J Chem 1994, 72, 1033; (b) Wolfe, S.; Jin, H.; Yang, K.; Kim, C.-K.; McEarchern, E. Can J Chem 1994, 72, 1051.
- 21 (a) Frau, J.; Donoso, J.; Muñoz, F.; Garcia Blanco, F. J Comput Chem 1992, 13, 681; (b) Frau, J.; Donoso, J.; Muñoz, F.; Garcia Blanco, F. Theochem 1997, 390, 255.
- 22 (a) Petrolongo, C.; Ranghino, G.; Scordamaglia, R. Chem Phys 1980, 45, 279; (b) Petrolongo, C.; Pescatori, E.; Ranghino, G.; Scordamaglia, R. Chem Phys 1980, 45, 291.
- 23 (a) Pitarch, J.; Ruiz–López, M. F.; Pascual–Ahuir, J. L.; Silla, E.; Tuñón, I. J Phys Chem B 1997, 101, 3581; (b) Pitarch, J.; Ruiz–López, M. F.; Silla, E.; Pascual–Ahuir, J. L.; Tuñón, I. J Am Chem Soc 1998, 120, 2146.
- 24 Fischer, J. Antimicrobial Drug Resistance: β-Lactam Resistant to Hydrolysis by the β-lactamases; Academic Press: New York, 1984.
- 25 Monard, G. Thesis, Laboratoire de Chimie Théorique, Université Henri Poincaré-Nancy I ( 1998).
- 26 Pitarch, J.; Pascual–Ahuir, J. L.; Silla, E.; Tuñón, I.; Millot, C.; Ruiz–López, M. F.; Bertrán, J. Theor Chem Acc, 1999, 101, 336.
- 27
(a)
Rinaldi. D.;
Rivail, J. L.;
Theoret Chim Acta
1973,
32, 57;
(b)
Rivail, J. L.;
Rinaldi, D.
Chem Phys
1976,
18, 233;
(c)
Rinaldi, D.;
Ruiz–López, M. F.;
Rivail, J. L.
J Chem Phys
1983,
78, 834;
(d)
Rivail, J. L.;
Rinaldi, D.;
Ruiz–López, M. F.
Theoretical and Computational Models for Organic Chemistry;
S. L. Formoshinho,
L. Arnaut,
I. Csizmadia, Eds.;
Kluwer:
Dordrecht,
1991;
10.1007/978-94-011-3584-9_5 Google Scholar(e) Rinaldi, D.; Pappalardo, R. R. SCRFPAC, QCPE (Indiana University, Bloomington, IN, 1992) Program No. 622.
- 28 Ruiz–López, M. F.; Bohr, F.; Martins Costa, M. T. C.; Rinaldi, D. Chem Phys Lett 1994, 221, 109.
- 29 Vosko, S. H.; Wilk, L.; Nusair, M. Can J Phys 1980, 58, 1200.
- 30 (a) St-Amant, A.; Salahub, D. R. Chem Phys Lett 1990, 169, 387; (b) Salahub, D. R.; Fournier, R.; Mlynarski, P.; Papai, I., St-Amant, A., Ushio, J. In Theory and Applications of Density Functional Approaches to Chemistry; J. Labanowski; J. Andzelm, Eds. Springer Verlag: Berlin, 1991.
- 31 Jorgensen, W. L. In Biochemical and Organic Simulation System (BOSS), Version 3.5; Yale University: New Haven, CT, 1994.
- 32 Jorgensen, W. L.; Chandrashekar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J Chem Phys 1983, 79, 926.
- 33 Tuñón, I.; Martins–Costa, M. T. C.; Millot, C.; Ruiz–López, M. F. J Chem Phys 1997, 106, 3633.
- 34
(a)
Nosé, S.
Mol Phys
1984,
52, 255;
(b)
Hoover, W. G.
Phys Rev
1985,
31 A, 1695;
10.1103/PhysRevA.31.1695 Google Scholar(c) Nosé, S. Mol Phys 1986, 57, 187.
- 35 Andersen, H. C. J Comp Chem 1983, 52, 24.
- 36 Wiberg, K. B.; Breneman, C. M. J Am Chem Soc 1992, 114, 831.
- 37 Antonczak, S.; Ruiz–López, M. F.; Rilvail, J. L. J Am Chem Soc 1985, 116, 3912.
- 38 Tuñón, I.; Silla, E.; Millot, C.; Martins–Costa, M. T. C.; Ruiz–López, M. F. J Phys Chem 1998, 102, 8673.
- 39 Gao, J.; Freindorf, M. J Phys Chem 1997, 101, 3182.
- 40 Murphy, B. P.; Pratt, R. F. Biochem J 1988, 256, 669.
- 41 Maveyraud, L.; Massova, I.; Birck, C.; Miyashita, K.; Samama, J.-P.; Mobashery, S. J Am Chem Soc 1996, 118, 7435.
- 42 Jacob, F.; Joris, B.; Lepage, S.; Dusart, J.; Frère, J. M.; Biochem J 1990, 271, 399.