BEHAVIORAL PERSPECTIVES ON THE NEUROSCIENCE OF DRUG ADDICTION
Corresponding Author
Gail Winger
UNIVERSITY OF MICHIGAN
University of Michigan, Department of Pharmacology, 1302 MSRB III, Ann Arbor, Michigan 48109-0632 (e-mail: [email protected]).Search for more papers by this authorCorresponding Author
Gail Winger
UNIVERSITY OF MICHIGAN
University of Michigan, Department of Pharmacology, 1302 MSRB III, Ann Arbor, Michigan 48109-0632 (e-mail: [email protected]).Search for more papers by this authorAbstract
Neuroscientific approaches to drug addiction traditionally have been based on the premise that addiction is a process that results from brain changes that in turn result from chronic administration of drugs of abuse. An alternative approach views drug addiction as a behavioral disorder in which drugs function as preeminent reinforcers. Although there is a fundamental discrepancy between these two approaches, the emerging neuroscience of reinforcement and choice behavior eventually may shed light on the brain mechanisms involved in excessive drug use. Behavioral scientists could assist in this understanding by devoting more attention to the assessment of differences in the reinforcing strength of drugs and by attempting to develop and validate behavioral models of addiction.
REFERENCES
- Ahmed, S. H., & Koob, G. F. (1998, October 9). Transition from moderate to excessive drug intake: Change in hedonic set point. Science, 282, 298–300.
- Ahmed, S. H., Walker, J. R., & Koob, G. F. (2000). Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacology, 22, 413–421.
- Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.
- Alheid, G. F. (2003). Extended amygdala and basal forebrain. Annals of the New York Academy of Science, 985, 185–205.
- Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacology, 153, 31–43.
- Barraclough, D. J., Conroy, M. L., & Lee, D. (2004). Prefrontal cortex and decision making in a mixed-strategy game. Nature Neuroscience, 7, 404–410.
- Barrot, M., Olivier, J. D., Perrotti, L. I., DiLeone, R. J., Berton, O., Eisch, A. J., Impey, S., Storm, D. R., Neve, R. L., Yin, J. C., Zachariou, V., & Nestler, E. J. (2002). CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proceedings of the National Academy of Sciences of the United States of America, 99, 11435–11440.
- Benavides, D. R., & Bibb, J. A. (2004). Role of Cdk5 in drug abuse and plasticity. Annals of the New York Academy of Science, 1025, 335–344.
- Cardinal, R. N., & Everitt, B. J. (2004). Neural and psychological mechanisms underlying appetitive learning: Links to drug addiction. Current Opinion in Neurobiology, 14, 156–162.
- Carelli, R. M. (2002). Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs “natural” reinforcement. Physiology and Behavior, 76, 379–387.
- Centers for Disease Control and Prevention (2004). The great American smoke out — November 18, 2004. MMWR, 53, 1035–1036.
- Chang, J. Y., Janak, P. H., & Woodward, D. J. (1998). Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. Journal of Neuroscience, 18, 3098–3115.
- Chen, K., & Kandel, D. B. (1995). The natural history of drug use from adolescence to the mid-thirties in a general population sample. American Journal of Public Health, 85, 41–47.
- Colby, C. R., Whisler, K., Steffen, C., Nestler, E. J., & Self, D. W. (2003). Striatal cell type-specific overexpression of ΔFosB enhances incentive for cocaine. Journal of Neuroscience, 23, 2488–2493.
- Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.
- Cromwell, H. C., & Schultz, W. (2003). Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. Journal of Neurophysiology, 89, 2823–2838.
- Davison, M., & Baum, W. M. (2000). Choice in a variable environment: Every reinforcer counts. Journal of the Experimental Analysis of Behavior, 74, 1–24.
- Deadwyler, S. A., Hayashizaki, S., Cheer, J., & Hampson, R. E. (2004). Reward, memory and substance abuse: Functional neuronal circuits in the nucleus accumbens. Neuroscience and Biobehavioral Reviews, 27, 703–711.
- Deneau, G. A., Yangita, T., & Seevers, M. H. (1969). Self-administration of psychoactive substances by the monkey. Psychopharmacologia, 16, 30–48.
- Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America, 85, 5274–5278.
- Glimcher, P. W. (2003). The neurobiology of visual-saccadic decision making. Annual Review of Neuroscience, 26, 133–179.
- Gold, J. I., & Shadlen, M. N. (2001). Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Science, 5, 10–16.
- Gold, J. I., & Shadlen, M. N. (2002). Banburismus and the brain: Decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36, 299–308.
- Griffiths, R. R., & Balster, R. L. (1979). Opioids: Similarity between evaluations of subjective effects and animal self-administration results. Clinical Pharmacology & Therapeutics, 25, 611–617.
- Hassani, O. K., Cromwell, H. C., & Schultz, W. (2001). Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. Journal of Neurophysiology, 85, 2477–2489.
- Heimer, L. (2003). A new anatomical framework for neuropsychiataric disorders and drug abuse. American Journal of Psychiatry, 160, 1726–1739.
- Herrnstein, R. J. (1961). Relative and absolute strength of response as a function of frequency of reinforcement. Journal of the Experimental Analysis of Behavior, 4, 267–272.
- Higgins, S. T., Budney, A. J., Bickel, W. K., Hughes, J. R., Foerg, F., & Badger, G. (1993). Achieving cocaine abstinence with a behavioral approach. American Journal of Psychiatry, 150, 763–769.
- Higgins, S. T., Heil, S. H., & Lussier, J. P. (2004). Clinical implications of reinforcement as a determinant of substance use disorders. Annual Review of Psychology, 55, 431–461.
- Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 96, 651–656.
- Kalivas, P. W. (2004). Recent understanding in the mechanisms of addiction. Current Psychiatry Reports, 6, 347–351.
- Kalivas, P. W., Churchill, L., & Klitenick, M. A. (1993). The circuitry mediating the translation of motivational stimuli into adaptive motor responses. In P. W. Kalivas, & C. D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 237–287). Boca Raton, FL: CRC Press.
- Katz, J. L., & Higgins, S. T. (2003). The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology, 168, 21–30.
- Koob, G. F., & Le Moal, M. (1997, October 3). Drug abuse: Hedonic homeostatic dysregulation. Science, 278, 52–58.
- LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.
- Leon, M. I., & Shadlen, M. N. (1999). Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24, 415–425.
- Lubman, D. I., Yucel, M., & Pantelis, C. (2004). Addiction, a condition of compulsive behavior? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction, 99, 1491–1502.
- McClung, C. A., & Nestler, E. J. (2003). Regulation of gene expression and cocaine reward by CREB and FosB. Nature Neuroscience, 6, 1208–1215.
- Nestler, E. J. (2004). Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends in Pharmacological Science, 25, 210–218.
- Phillips, P. M., Stuber, G. D., Heien, M. L., Wightman, R. M., & Carelli, R. M. (2003). Subsecond dopamine release promotes cocaine seeking. Nature, 422, 614–681.
- Platt, M. L., & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400, 233–238.
- Robbins, T. W., & Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion in Neurobiology, 6, 228–236.
- Robins, L. N. (1994). The Nathan B. Eddy Lecture: Challenging conventional wisdom about drug abuse. NIDA Research Monograph, 140, 30–45.
- Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Research and Brain Research Reviews, 18, 247–291.
- Robinson, T. E., & Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction, 95, S91–S117.
- Robinson, T. E., & Kolb, B. (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47 (1), 33–46.
- Roesch, M. R., & Olson, C. R. (2003). Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. Journal of Neurophysiology, 90, 1766–1789.
- Roesch, M. R., & Olson, C. R. (2004, April 9). Neuronal activity related to reward value and motivation in primate frontal cortex. Science, 304, 307–310.
- Roitman, M. F., Stuber, G. D., Phillips, P. E. M., Wightman, R. M., & Carelli, R. M. (2004). Dopamine operates as a subsecond modulator of food seeking. The Journal of Neuroscience, 24, 1265–1271.
- Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.
- Schultz, W. (2004). Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Current Opinion in Neurobiology, 14, 139–147.
- Skinner, B. F. (1974). About behaviorism. New York: Alfred A. Knopf.
- Skinner, B. F. (1991). The behavior of organisms: An experimental analysis. Acton, MA: Copley Publishing Group, (Original work published 1938.).
- Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004, June 18). Matching behavior and the representation of value in the parietal cortex. Science, 304, 1782–1787.
- Szumlinski, K. K., Dehoff, M. H., Kang, S. H., Frys, K. A., Lominac, K. D., Klugmann, M., et al. (2004). Homer proteins regulate sensitivity to cocaine. Neuron, 43, 401–413.
- Tremblay, L., & Schultz, W. (1999). Relative reward preference in primate orbital frontal cortex. Nature, 398, 704–708.
- Watanabe, M., Cromwell, H. C., Tremblay, L., Hollerman, J. R., Hikosaka, K., & Schultz, W. (2001). Behavioral reactions reflecting differential reward expectations in monkeys. Experimental Brain Research, 140, 511–518.
- Watanabe, M., Hikosaka, K., Sakagami, M., & Shrakawa, S. (2002). Coding and monitoring of motivational context in the primate prefrontal cortex. Journal of Neuroscience, 22, 2391–2400.