Chlorophyll a Self-assembly in Polar Solvent–Water Mixtures †
Corresponding Author
Radka Vladkova
Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria
*To whom correspondence should be addressed at: Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 21, 1113 Sofia, Bulgaria. Fax: +359-2-9712493; [email protected]Search for more papers by this authorCorresponding Author
Radka Vladkova
Institute of Biophysics, Bulgarian Academy of Sciences, Sofia, Bulgaria
*To whom correspondence should be addressed at: Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bl. 21, 1113 Sofia, Bulgaria. Fax: +359-2-9712493; [email protected]Search for more papers by this authorPart of this work was presented at the 11th International Congress on Photosynthesis, 17–22 August 1998, Budapest, Hungary.
ABSTRACT
The conversion of chlorophyll a (Chl a) monomers into large aggregates in six polar solvents upon addition of water has been studied by means of absorption, fluorescence spectroscopy and fluorescence lifetime measurements for the purpose of elucidating the various environmental factors promoting Chl a self-assembly and determining the type of its organization. Two empirical solvent parameter scales were used for quantitative characterization of the different solvation properties of the solvents and their mixtures with water. The mole fractions of water f1/2 giving rise to the midpoint values of the relative fluorescence quantum yield were determined for each solvent, and then various solvent–water mixture parameters for the f1/2 values were compared. On the basis of their comparison, it is concluded that the hydrogen-bonding ability and the dipole–dipole interactions (function of the dielectric constant) of the solvent–water mixtures are those that promote Chl a self-assembly. The influence of the different nature of the nonaqueous solvents on the Chl aggregation is manifested by both the different water contents required to induce Chl monomer → aggregate transition and the formation of two types of aggregates at the completion of the transition: species absorbing at 740–760 nm (in methanol, ethanol, acetonitrile, acetone) and at 667–670 nm (in pyridine and tetrahydrofuran). It is concluded that the type of Chl organization depends on the coordination ability and the polarizability (function of the index of refraction) of the organic solvent. The ordering of the solvents with respect to the f1/2 values—methanol < ethanol < acetonitrile < acetone < pyridine < tetrahydrofuran—yielded a typical lyotropic (Hofmeister) series. On the basis of this solvent ordering and the disparate effects of the two groups of solvents on the Chl a aggregate organization, it is pointed out that the mechanism of Chl a self-assembly in aqueous media can be considered a manifestation of the Hofmeister effect, as displayed in the lipid-phase behavior (Koynova et al., Eur. J. Biophys. 25, 261–274, 1997). It relates to the solvent ability to modify the bulk structure and to distribute unevenly between the Chl–water interface and bulk liquid.
REFERENCES
- 1 Olson, J. M. (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem. Photobiol, 67, 61–75.
- 2 Paulsen, H. (1995) Chlorophyll a/b-binding proteins. Photochem. Photobiol, 62, 367–382.
- 3 Brune, D. C., T. Nozawa, R. E. Blankenship (1987) Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. Biochemistry, 26, 8644–8652.
- 4 Zhu, Y., S. Lin, B. L. Ramakrishna, P. I. van Noort, R. E. Blankenship (1996) Self quenching of chlorosome chlorophylls in water and hexanol-saturated water. Photosynth. Res, 47, 207–218.
- 5 Lippincott, J. A., J. Aghion, E. Porcile, W. F. Bertsch (1962) The preparation and characterization of chloroplast fragments having an absorbancy maximum at 7400 Å. Arch. Biochim. Biophys, 98, 17–27.
- 6 Dijkmans, H., J. Aghion (1974) Conditions de formation d'agrégats de chlorophylle a dans des solvants polaires aqueux: polarité du milieu. Plant & Cell Physiol, 15, 739–745.
- 7 Scherz, A., V. Rosenbach-Belkin, J. R. E. Fisher 1991 Chlorophyll aggregation in aqueous solutions In Chlorophylls (Edited by H. Scheer), pp. 237–268. CRC Press, Boca Raton , FL
- 8 Katz, J. J., M. K. Bowman, T. J. Michalski, D. L. Worcester 1991 Chlorophyll aggregation: chlorophyll/water micelles as models for in vivo long-wavelength chlorophyll In Chlorophylls (Edited by H. Scheer), pp. 211–235. CRC Press, Boca Raton , FL
- 9 Love, B. B. (1962) Absorption spectra of chlorophyll a in aqueous carbitol solutions. Biochim. Biophys. Acta, 64, 318–323.
- 10 Love, B. B., T. T. Bannister (1963) Studies of colloidal chlorophyll in aqueous dioxane. Biophys. J, 3, 99–113.
- 11 Quilman, K. P. (1968) Aggregation of chlorophylls in aqueous-formamide solutions. Arch. Biochim. Biophys, 127, 31–36.
- 12 Journeaux, R., A. Hochapfel, R. Viovy (1969) Existence et nature des formes agrégées de la chlorophylle a dans les solvants binaires. II—Étude des spectres de fluorescence. J. Chim. Phys, 66, 1474–1478.
- 13 Hochapfel, A., R. Journeaux, R. Viovy (1969) Existence et nature des formes agrégées de la chlorophylle a dans les solvants binaires. I.—Étude des spectres d'absorption. J. Chim. Phys, 66, 1467–1473.
- 14
Vladkova, R.,
S. Taneva
1988
Spectral characteristics of chlorophyll a at different states of solvation In Electromagnetic Fields and Biomembranes (Edited by M. Markov and
M. Blank), pp. 267–271. Plenum Press,
New York
and
London
10.1007/978-1-4615-9507-6_46 Google Scholar
- 15 Agostiano, A., P. Cosma, M. Della Monica (1990) Spectroscopic and electrochemical characterization of chlorophyll a in different water + organic solvent mixtures. Bioelectrochem. Bioenerg, 23, 311–324.
- 16 Uehara, K., M. Mimuro, M. Tanaka (1991) Spectroscopic studies of chlorophyll a aggregates formed by aqueous dimethyl sulfoxide. Photochem. Photobiol, 53, 371–377.
- 17 Uehara, K., Y. Hioki, M. Mimuro (1993) The chlorophyll a aggregate absorbing near 685 nm is selectively formed in aqueous tetrahydrofuran. Photochem. Photobiol, 58, 127–132.
- 18 Agostiano, A., M. Della Monica, G. Palazzo, M. Trotta (1993) Chlorophyll a autoaggregation in water rich region. Biophys. Chem, 47, 193–202.
- 19 Balny, C., S. S. Brody, G. H. B. Hoa (1969) Absorption and fluorescence spectra of chlorophyll-a in polar solvents as a function of temperature. Photochem. Photobiol, 9, 445–454.
- 20 Oba, T., M. Mimuro, Z.-Y. Wang, T. Nozawa, S. Yoshida, T. Watanabe (1997) Spectral characteristics and colloidal properties of chlorophyll a′ in aqueous methanol. J. Phys. Chem. B, 101, 3261–3268.
- 21
Gutman, V.
1978
The Donor–Acceptor Approach to Molecular Interactions Plenum Press,
New York
10.1007/978-1-4615-8825-2 Google Scholar
- 22 Reichardt, C. 1979 Solvent Effects in Organic Chemistry Verlag Chemie, Weinheim
- 23 Renge, I., R. Avarmaa (1985) Specific solvation of chlorophyll a: solvent nucleophility, hydrogen bonding and steric effects on absorption spectra. Photochem. Photobiol, 42, 253–260.
- 24 Renge, I. V., Ye. V. Bitova (1987) Solvation of chlorophylls by solvents modelling the protein environs. Biophysics, 32, 403–408.
- 25 Callahan, P. M., T. M. Cotton (1987) Assignment of bacteriochlorophyll a ligation state from absorption and resonance Raman spectra. J. Am. Chem. Soc, 109, 7001–7007.
- 26 Seely, G. R., R. G. Jensen (1965) Effect of solvent on the spectrum of chlorophyll. Spectrochim. Acta, 21, 1835–1845.
- 27 Dähne, S., W. Becker, M. Scholz, K. Teuchner, H. Lunch, H. Schneider (1980) Impuls Fluorometer auf Laserbasis. Feingerätetechnik, 29, 463–466.
- 28 Fujiwara, M., M. Tasumi (1986) Resonance Raman and infrared studies on axial coordination to chlorophylls a and b in vitro. J. Phys. Chem, 90, 250–255.
- 29 Koyama, Y., Y. Umemoto, A. Akamatsu, K. Uehara, M. Tanaka (1986) Raman spectra of chlorophyll forms. J. Mol. Struct, 146, 273–287.
- 30 Åkerlöf, G. (1932) Dielectric constants of some organic solvent–water mixtures at various temperatures. J. Am. Chem. Soc, 54, 4125–4139.
- 31
Hasted, J. B.
1973
Dielectric properties In Water. A Comprehensive Treatise, Vol. II, Water in Crystalline Hydrates; Aqueous Solutions of Simple Nonelectrolytes (Edited by F. Franks), Chapter 7, pp. 405–458. Plenum Press,
New York
10.1007/978-1-4757-6958-6_7 Google Scholar
- 32 Palm, V. A. 1977 The Fundamentals of the Quantitative Theory of Organic Reactions Khimia Publishing House, Leningrad .
- 33 Reichardt, C., K. Dimroth (1968) Lösungsmittel und empirische Parameter zur Charakterisierung ihrer Polarität. Fortschr. Chem. Forsch, 11, 1–73.
- 34 Köhler, W., P. Frölich, R. Radeglia (1969) Korrelation der chemischen Verschiebung der Wasserprotonen im NMR-Spektrum von Aceton-, 1,4-Dioxan-, und Tetrahydrofuran-Wasser-Gemischen mit empirischen Parametern der Lösungsmittelpolarität. Z. Phys. Chem, 242, 220–224.
- 35 Vladkova, R. 1990 Influence of local environment on the spectral characteristics of chlorophylls Ph.D. Thesis, Institute of Biophysics, Bulgarian Academy of Sciences, Sofia
- 36 Szabo, A. G., D. M. Rayner (1980) Fluorescence decay of tryptophan conformers in aqueous solution. J. Am. Chem. Soc, 102, 554–563.
- 37 Suppan, P. (1990) Solvatochromic shifts: the influence of the medium on the energy of electronic states. J. Photochem. Photobiol. A Chem, 50, 293–330.
- 38
Franks, F. (Ed.) 1973
Water. A Comprehensive Treatise, Vol. II: Water in Crystalline Hydrates; Aqueous Solutions of Simple Nonelectrolytes Plenum Press,
New York
10.1007/978-1-4757-6958-6 Google Scholar
- 39 Umetsu, M., Z.-Y. Wang, M. Kobayashi, T. Nozawa (1999) Interaction of photosynthetic pigments with various organic solvents. Magnetic circular dichroism approach and application to chlorosomes. Biochim. Biophys. Acta, 1410, 19–31.
- 40 Vladkova, R. S., K. H. Mauring, I. V. Renge (1989) Specific solvation of chlorophyll b: a site-selection study at 5 K. J. Photochem. Photobiol. B Biol, 3, 25–31.
- 41
Seely, G. R.,
J. S. Connolly
1986
Fluorescence of photosynthetic pigments in vitro In Light Emission by Plants and Bacteria (Edited by Govindjee), pp. 99–133. Academic Press,
New York
10.1016/B978-0-12-294310-2.50011-1 Google Scholar
- 42 Oba, T., H. Furukawa, Z.-Y. Wang, T. Nozawa, M. Mimuro, H. Tamiaki, T. Watanabe (1998) Supramolecular structures of the chlorophyll a′ aggregate and the origin of the diastereoselective separation of chlorophyll a and a′. J. Phys. Chem. B, 102, 7882–7889.
- 43 Alfano, A. J., F. E. Lytle, M. S. Shoewell, F. K. Fong (1985) Excited singlet-state lifetimes of hydrated chlorophyll aggregates. J. Chem. Phys, 82, 758–764.
- 44 Kratky, C., J. D. Dunitz (1977) Ordered aggregation states of chlorophyll a and some derivatives. J. Mol. Biol, 113, 431–442.
- 45 Kadoshnikova, I. G., B. A. Kiselev (1979) Colloidal solutions of chlorophyll. Electric charge of the particles. Biofizika, 24, 811–814.
- 46 Heithier, H., K. Ballschmiter, H. Möhwald (1983) Liquid-crystalline phase transition of monomolecular layers of chlorophyll a. Photochem. Photobiol, 37, 201–205.
- 47
Ke, B.
1966
Some properties of chlorophyll monolayers and crystalline chlorophyll In The Chlorophylls (Edited by L. P. Vernon and
G. R. Seely), pp. 253–279. Academic Press,
New York
.
10.1016/B978-1-4832-3289-8.50014-X Google Scholar
- 48 Cacace, M. G., E. M. Landau, J. J. Ramsden (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q. Rev. Biophys, 30, 241–277.
- 49 Collins, K. D., M. W. Washabaugh (1985) The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys, 18, 323–422.
- 50 Koynova, R., J. Brankov, B. Tenchov (1997) Modulation of lipid phase behavior by kosmotropic and chaotropic solutes. Experiment and thermodynamic theory. Eur. Biophys. J, 25, 261–274.
- 51 Searle, G. F. W., C. J. Tredwell, J. Barber, G. Porter (1979) Picosecond time-resolved fluorescence study of chlorophyll organization and excitation energy distribution in chloroplasts from wild-type barley and a mutant lacking chlorophyll b. Biochim. Biophys. Acta, 545, 496–507.
- 52 Garab, G., J. Kieleczawa, J. C. Sutherland, C. Busramante, G. Hind (1991) Organization of pigment–protein complexes into macrodomains in the thylakoid membranes of wild-type and chlorophyll b-less mutant of barley as revealed by circular dichroism. Photochem. Photobiol, 54, 273–281.
- 53 Baba, K., S. Itoh, G. Hastings, S. Hoshina (1996) Photoinhibition of Photosystem I electron transfer activity in isolated Photosystem I preparations with different chlorophyll contents. Photosynth. Res, 47, 121–130.
- 54 Preiss, S., G. F. Peter, S. Anandan, J. P. Thornber (1993) The multiple pigment-proteins of the photosystem I antenna. Photochem. Photobiol, 57, 152–157.
- 55 Holzwarth, A. R. 1991 Excited-state kinetics in chlorophyll systems and its relationship to the functional organization of the photosystems In Chlorophylls (Edited by H. Scheer), pp. 1125–1151. CRC Press, Boca Raton , FL
- 56 Clayton, R. K. 1965 Molecular Physics of Photosynthesis, Chapter 12, pp. 149–164 Blaisdell Publ. Co., New York
- 57 Ikegami, I., S. Katoh (1991) Antenna chlorophyll a has a structural role in stabilizing the functional conformation of P-700-chlorophyll–protein complexes. Biochim. Biophys. Acta, 1059, 275–280.
- 58 Zhu, Y., B. L. Ramakrishna, P. I. van Noort, R. E. Blankenship (1995) Microscopic and spectroscopic studies of untreated and hexanol-treated chlorosomes from Chloroflexus aurantiacus. Biochim. Biophys. Acta, 1232, 197–207.
- 59 Komsa-Penkova, R., R. Koynova, G. Kostov, B. G. Tenchov (1996) Thermal stability of calf skin collagen type I in salt solutions. Biochim. Biophys. Acta, 1297, 171–181.