Approximation Algorithm for a System of Pantograph Equations
Abstract
We show how to adapt an efficient numerical algorithm to obtain an approximate solution of a system of pantograph equations. This algorithm is based on a combination of Laplace transform and Adomian decomposition method. Numerical examples reveal that the method is quite accurate and efficient, it approximates the solution to a very high degree of accuracy after a few iterates.
1. Introduction
In 2001, the Laplace decomposition algorithm (LDA) was proposed by khuri in [2], who applied the scheme to a class of nonlinear differential equations. In this method, the solution is given as an infinite series usually converging very rapidly to the exact solution of the problem.
A major advantage of this method is that it is free from round-off errors and without any discretization or restrictive assumptions. Therefore, results obtained by LDA are more accurate and efficient. LDA has been shown to easily and accurately to approximate a solutions of a large class of linear and nonlinear ODEs and PDEs [2–4]. Ongun [5], for example, employed LDA to give an approximate solution of nonlinear ordinary differential equation systems which arise in a model for HIV infection of CD4+ T cells, Wazwaz [6] also used this method for handling nonlinear Volterra integro-differential equations, Khan and Faraz [7] modified LDA to obtain series solutions of the boundary layer equation, and Yusufoglu [8] adapted LDA to solve Duffing equation.
The numerical technique of LDA basically illustrates how Laplace transforms are used to approximate the solution of the nonlinear differential equations by manipulating the decomposition method that was first introduced by Adomian [9, 10].
2. Adaptation of Laplace Decomposition Algorithm
To provide clearly a view of the analysis presented above, three illustrative systems of pantograph equations have been used to show the efficiency of this method.
3. Test Problems
All iterates are calculated by using Matlab 7. The absolute errors in Tables 1–3 are the values of , those at selected points.
t | Exact solution | u1 | ||
---|---|---|---|---|
u1 = et | n = 2 | n = 4 | n = 6 | |
0.2 | 1.221403 | 3.240E − 3 | 1.210E − 5 | 1.254E−7 |
0.4 | 1.491825 | 5.401E − 2 | 4.238E − 4 | 3.170E − 6 |
0.6 | 1.822119 | 1.099E − 1 | 3.499E − 3 | 5.583E−5 |
0.8 | 2.225541 | 2.878E − 1 | 1.594E − 2 | 4.460E−4 |
1.0 | 2.718282 | 6.171E − 1 | 5.236E − 2 | 2.259E−3 |
u2 = e−t | u2 | |||
n = 2 | n = 4 | n = 6 | ||
0.2 | 8.187308E − 1 | 1.179E − 2 | 5.219E − 5 | 7.807E − 8 |
0.4 | 6.703201E − 1 | 9.414E − 2 | 1.668E − 3 | 1.310E − 5 |
0.6 | 5.488116E − 1 | 3.179E − 1 | 1.266E − 2 | 2.227E − 4 |
0.8 | 4.493290E − 1 | 7.558E − 1 | 5.338E − 2 | 1.668E − 3 |
1.0 | 3.678794E − 1 | 1.484E + 0 | 1.632E − 1 | 7.956E − 3 |
t | Exact solution | u1 | ||
---|---|---|---|---|
u1 = e−tcos (t) | n = 1 | n = 2 | n = 3 | |
0.2 | 8.024106E − 1 | 1.144E − 2 | 4.432E − 4 | 1.900E − 5 |
0.4 | 6.174056E − 1 | 4.990E − 2 | 4.274E − 3 | 3.656E − 4 |
0.6 | 4.529538E − 1 | 4.185E − 1 | 1.643E − 2 | 2.119E − 3 |
0.8 | 3.130505E − 1 | 2.171E − 1 | 4.274E − 2 | 7.420E − 3 |
1.0 | 1.987661E − 1 | 3.437E − 1 | 8.925E − 2 | 1.960E − 2 |
u2 = sin (t) | u2 | |||
n = 1 | n = 2 | n = 3 | ||
0.2 | 1.986693E − 1 | 2.273E − 2 | 5.174E − 4 | 1.670E − 5 |
0.4 | 3.894183E − 1 | 1.024E − 1 | 5.840E − 3 | 1.790E − 4 |
0.6 | 5.646425E − 1 | 2.575E − 1 | 2.630E − 2 | 3.282E − 4 |
0.8 | 7.173561E − 1 | 5.082E − 1 | 8.022E − 2 | 1.276E − 3 |
1.0 | 8.414710E − 1 | 8.768E − 1 | 1.965E − 1 | 1.015E − 2 |
t | Exact solution | u1 | ||
---|---|---|---|---|
u1 = −cos (t) | n = 1 | n = 2 | n = 3 | |
0.2 | 9.800658E − 1 | 2.124E − 2 | 1.525E − 4 | 8.904E − 5 |
0.4 | 9.210610E − 1 | 8.908E − 2 | 2.474E − 3 | 1.511E − 3 |
0.6 | 8.253356E − 1 | 2.074E − 1 | 3.267E − 2 | 8.051E − 3 |
0.8 | 6.967067E − 1 | 3.764E − 1 | 4.042E − 2 | 2.665E − 2 |
1.0 | 5.403023E − 1 | 5.920E − 1 | 1.934E − 1 | 6.766E − 2 |
u2 = tcos (t) | u2 | |||
n = 1 | n = 2 | n = 3 | ||
0.2 | 1.960133E − 1 | 1.329E − 3 | 1.935E − 4 | 5.496E − 6 |
0.4 | 3.684244E − 1 | 1.052E − 2 | 5.824E − 3 | 1.808E − 4 |
0.6 | 4.952014E − 1 | 3.489E − 2 | 1.139E − 2 | 1.408E − 3 |
0.8 | 5.573654E − 1 | 8.071E − 2 | 2.312E − 2 | 6.069E − 3 |
1.0 | 5.403023E − 1 | 1.528E − 1 | 1.078E − 1 | 1.890E − 2 |
u3 = sin (t) | u3 | |||
n = 1 | n = 2 | n = 3 | ||
0.2 | 1.986693E − 1 | 2.7285E − 3 | 1.4629E − 3 | 6.4558E − 5 |
0.4 | 3.894183E − 1 | 2.2245E − 2 | 1.2666E − 2 | 9.9595E − 4 |
0.6 | 5.646425E − 1 | 7.6209E − 2 | 4.5691E − 2 | 4.8397E − 3 |
0.8 | 7.173561E − 1 | 1.8264E − 1 | 1.1440E − 1 | 1.4613E − 2 |
1.0 | 8.414710E − 1 | 3.5930E − 1 | 2.3340E − 1 | 3.3917E − 2 |
Example 3.1. Consider the two-dimensional pantograph equations:
Table 1 shows the absolute error of LDA with n = 2, 4, and 6.
Example 3.2. Consider the system of multipantograph equations:
Table 2 shows the absolute error of LDA with n = 1,2, and 3.
Example 3.3. Consider the three-dimensional pantograph equations:
Table 3 shows the absolute error of LDA with n = 1,2, and 3.
4. Conclusion
The main objective of this paper is to adapt Laplace decomposition algorithm to investigate systems of pantograph equations. We also aim to show the power of the LAD method by reducing the numerical calculation without need to any perturbations, discretization, or/and other restrictive assumptions which may change the structure of the problem being solved. LDA method gives rapidly convergent successive approximations through the use of recurrence relations. We believe that the efficiency of the LDA gives it a much wider applicability.