Many nonuniversal archaeal ribosomal proteins are found in conserved gene clusters
Jiachen Wang
Department of Biochemistry and Cell Biology Rice University Houston TX 77251, USA , rice.edu
Search for more papers by this authorIndrani Dasgupta
Department of Biochemistry and Cell Biology Rice University Houston TX 77251, USA , rice.edu
Search for more papers by this authorCorresponding Author
George E. Fox
Department of Biochemistry and Cell Biology Rice University Houston TX 77251, USA , rice.edu
Search for more papers by this authorJiachen Wang
Department of Biochemistry and Cell Biology Rice University Houston TX 77251, USA , rice.edu
Search for more papers by this authorIndrani Dasgupta
Department of Biochemistry and Cell Biology Rice University Houston TX 77251, USA , rice.edu
Search for more papers by this authorCorresponding Author
George E. Fox
Department of Biochemistry and Cell Biology Rice University Houston TX 77251, USA , rice.edu
Search for more papers by this authorAbstract
The genomic associations of the archaeal ribosomal proteins, (r-proteins), were examined in detail. The archaeal versions of the universal r-protein genes are typically in clusters similar or identical and to those found in bacteria. Of the 35 nonuniversal archaeal r-protein genes examined, the gene encoding L18e was found to be associated with the conserved L13 cluster, whereas the genes for S4e, L32e and L19e were found in the archaeal version of the spc operon. Eleven nonuniversal protein genes were not associated with any common genomic context. Of the remaining 19 protein genes, 17 were convincingly assigned to one of 10 previously unrecognized gene clusters. Examination of the gene content of these clusters revealed multiple associations with genes involved in the initiation of protein synthesis, transcription or other cellular processes. The lack of such associations in the universal clusters suggests that initially the ribosome evolved largely independently of other processes. More recently it likely has evolved in concert with other cellular systems. It was also verified that a second copy of the gene encoding L7ae found in some bacteria is actually a homolog of the gene encoding L30e and should be annotated as such.
References
- R1 Allen T., Shen P., Samsel L., Liu R., Lindahl L., and Zengel J.M., Phylogenetic analysis of L4-mediated autogenous control of the S10 ribosomal protein operon, J. Bacteriol.(1999) 181, 6124–6132.
- R2 Archambault J. and Friesen J.D., Genetics of eukaryotic RNA polymerases I, II, and III, Microbiol. Rev.(1993) 57, 703–724.
- R3 Armache K.J., Kettenberger H., and Cramer P., Architecture of initiation-competent 12-subunit RNA polymerase II, Proc. Natl. Acad. Sci. USA. (2003) 100, 6964–6968.
- R4 Ban N., Nissen P., Hansen J., Moore P.B., and Steitz T.A., The complete atomic structure of the large ribosomal subunit at 2.4 A resolution., Science. (2000) 289, 905–920.
- R5 Bokov K. and Steinberg S.V., A hierarchical model for evolution of 23S ribosomal RNA, Nature. (2009) 457, 977–980.
- R6 Bushnell D.A. and Kornberg R.D., Complete, 12-subunit RNA polymerase II at 4.1-A resolution: implications for the initiation of transcription., Proc. Natl. Acad. Sci. USA. (2003) 100, 6969–6973.
- R7 Ceccarelli E., Bocchetta M., Creti R., Sanangelantoni A.M., Tiboni O., and Cammarano P., Chromosomal organization and nucleotide sequence of the genes for elongation factors EF-1 alpha and EF-2 and ribosomal proteins S7 and S10 of the hyperthermophilic archaeum Desulfurococcus mobilis, Mol. Gen. Genet.(1995) 246, 687–696.
- R8 Ceci M., Gaviraghi C., Gorrini C., Sala L.A., Offenhauser N., Marchisio P.C., and Biffo S., Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly, Nature. (2003) 426, 579–584.
- R9 Cerretti D.P., Dean D., Davis G.R., Bedwell D.M., and Nomura M., The spc ribosomal protein operon of Escherichia coli: sequence and cotranscription of the ribosomal protein genes and a protein export gene, Nucleic Acids Res.(1983) 11, 2599–2616.
- R10 Coenye T. and Vandamme P., Organisation of the S10, spc and alpha ribosomal protein gene clusters in prokaryotic genomes, FEMS Microbiol. Lett.(2005) 242, 117–126.
- R11 Collins B.M., Harrop S.J., Kornfeld G.D., Dawes I.W., Curmi P.M., and Mabbutt B.C., Crystal structure of a heptameric Sm-like protein complex from archaea: implications for the structure and evolution of snRNPs, J. Mol. Biol.(2001) 309, 915–923.
- R12 Cramer P., Multisubunit RNA polymerases, Curr. Opin. Struct. Biol.(2002) 12, 89–97.
- R13 Cramer P., Bushnell D.A., and Kornberg R.D., Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution., Science. (2001) 292, 1863–1876.
- R14 Dandekar T., Snel B., Huynen M., and Bork P., Conservation of gene order: a fingerprint of proteins that physically interact, Trends Biochem. Sci.(1998) 23, 324–328.
- R15 Darst S.A., Bacterial RNA polymerase, Curr. Opin. Struct. Biol.(2001) 11, 155–162.
- R16 Daubin V., Moran N.A., and Ochman H., Phylogenetics and the cohesion of bacterial genomes, Science. (2003) 301, 829–832.
- R17 Durand D. and Sankoff D., Tests for gene clustering, J. Comput. Biol.(2003) 10, 453–482.
- R18 Fox G.E. and Naik A.K., The evolutionary history of the translation machinery, 2004, Kluwer Academic/Plenum, New York, 92–105.
- R19 Hartman H., Favaretto P., and Smith T.F., The archaeal origins of the eukaryotic translational system, Archaea. (2006) 2, 1–9.
- R20 Herve du Penhoat C., Atreya H.S., Shen Y., Liu G., Acton T.B., Xiao R., Li Z., Murray D., Montelione G.T., and Szyperski T., The NMR solution structure of the 30S ribosomal protein S27e encoded in gene RS27_ARCFU of Archaeoglobus fulgidis reveals a novel protein fold, Protein Sci.(2004) 13, 1407–1416.
- R21 Hury J., Nagaswamy U., Larios-Sanz M., and Fox G.E., Ribosome origins: the relative age of 23S rRNA domains, Orig. Life Evol. Biosph.(2006) 36, 421–429.
- R22 Isono S., Thamm S., Kitakawa M., and Isono K., Cloning and nucleotide sequencing of the genes for ribosomal proteins S9 (rpsI) and L13 (rplM) of Escherichia coli, Mol. Gen. Genet.(1985) 198, 279–282.
- R23 Klein D.J., Moore P.B., and Steitz T.A., The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit, J. Mol. Biol.(2004) 340, 141–177.
- R24 Klenk H.P., Meier T.D., Durovic P., Schwass V., Lottspeich F., Dennis P.P., and Zillig W., RNA polymerase of Aquifex pyrophilus: implications for the evolution of the bacterial rpoBC operon and extremely thermophilic bacteria, J. Mol. Evol.(1999) 48, 528–541.
- R25 Kromer W.J. and Arndt E., Halobacterial S9 operon. Three ribosomal protein genes are cotranscribed with genes encoding a tRNA(Leu), the enolase, and a putative membrane protein in the archaebacterium Haloarcula (Halobacterium) marismortui., J. Biol. Chem.(1991) 266, 24573–24579.
- R26 Kumar S., Tamura K., and Nei M., MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinform.(2004) 5, 150–163.
- R27 Kyrpides N., Overbeek R., and Ouzounis C., Universal protein families and the functional content of the last universal common ancestor, J. Mol. Evol.(1999) 49, 413–423.
- R28 Laity J.H., Lee B.M., and Wright P.E., Zinc finger proteins: new insights into structural and functional diversity, Curr. Opin. Struct. Biol.(2001) 11, 39–46.
- R29 Lecompte O., Ripp R., Thierry J.C., Moras D., and Poch O., Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale, Nucleic Acids Res.(2002) 30, 5382–5390.
- R30 Makarova K.S. and Koonin E.V., Evolutionary and functional genomics of the Archaea, Curr. Opin. Microbiol.(2005) 8, 586–594.
- R31 Marintchev A. and Wagner G., Translation initiation: structures, mechanisms and evolution, Q. Rev. Biophys.(2004) 37, 197–284.
- R32 Mattheakis L.C. and Nomura M., Feedback regulation of the spc operon in Escherichia coli: translational coupling and mRNA processing, J. Bacteriol.(1988) 170, 4484–4492.
- R33 Mattheakis L., Vu L., Sor F., and Nomura M., Retroregulation of the synthesis of ribosomal proteins L14 and L24 by feedback repressor S8 in Escherichia coli, Proc. Natl. Acad. Sci. USA. (1989) 86, 448–452.
- R34 Mushegian A., Protein content of minimal and ancestral ribosome, Rna. (2005) 11, 1400–1406.
- R35 Mushegian A.R. and Koonin E.V., A minimal gene set for cellular life derived by comparison of complete bacterial genomes, Proc. Natl. Acad. Sci. USA. (1996) 93, 10268–10273.
- R36 Nomura M., Gourse R., and Baughman G., Regulation of the synthesis of ribosomes and ribosomal components, Annu. Rev. Biochem.(1984) 53, 75–117.
- R37 Olsen G.J. and Woese C.R., Archaeal genomics: an overview, Cell. (1997) 89, 991–994.
- R38 Ramirez C., Shimmin L.C., Leggatt P., and Matheson A.T., Structure and transcription of the L11-L1-L10-L12 ribosomal protein gene operon from the extreme thermophilic archaeon Sulfolobus acidocaldarius, J. Mol. Biol.(1994) 244, 242–249.
- R39 Sano K., Taguchi A., Furumoto H., Uda T., and Itoh T., Cloning, sequencing, and characterization of ribosomal protein and RNA polymerase genes from the region analogous to the alpha-operon of Escherichia coli in halophilic archaea, Halobacterium halobium, Biochem. Biophys. Res. Commun.(1999) 264, 24–28.
- R40 Scholzen T. and Arndt E., The alpha-operon equivalent genome region in the extreme halophilic archaebacterium Haloarcula (Halobacterium) marismortui, J. Biol. Chem.(1992) 267, 12123–12130.
- R41 Schroeder S.J., Blaha G., Tirado-Rives J., Steitz T.A., and Moore P.B., The structures of antibiotics bound to the E site region of the 50 S ribosomal subunit of Haloarcula marismortui: 13-deoxytedanolide and girodazole, J. Mol. Biol.(2007) 367, 1471–1479.
- R42 Schuwirth B.S., Borovinskaya M.A., Hau C.W., Zhang W., Vila-Sanjurjo A., Holton J.M., and Cate J.H., Structures of the bacterial ribosome at 3.5 A resolution., Science. (2005) 310, 827–834.
- R43 Siefert J.L., Martin K.A., Abdi F., Widger W.R., and Fox G.E., Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA, J. Mol. Evol.(1997) 45, 467–472.
- R44 Tatusov R.L., Natale D.A., Garkavtsev I.V., Tatusova T.A., Shankavaram U.T., Rao B.S., Kiryutin B., Galperin M.Y., Fedorova N.D., and Koonin E.V., The COG database: new developments in phylogenetic classification of proteins from complete genomes, Nucleic Acids Res.(2001) 29, 22–28.
- R45 Tatusov R.L., Fedorova N.D., Jackson J.D. et al., The COG database: an updated version includes eukaryotes, BMC Bioinformatics. (2003) 4.
- R46 Thompson J.D., Higgins D.G., and Gibson T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res.(1994) 22, 4673–4680.
- R47 Todone F., Brick P., Werner F., Weinzierl R.O., and Onesti S., Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex, Mol. Cell.(2001) 8, 1137–1143.
- R48 Waters E., Hohn M.J., Ahelet Al I. et al., The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism, Proc. Natl. Acad. Sci. USA. (2003) 100, 12984–12988.
- R49 Yang D., Kusser I., Kopke A.K., Koop B.F., and Matheson A.T., The structure and evolution of the ribosomal proteins encoded in the spc operon of the archaeon (Crenarchaeota) Sulfolobus acidocaldarius, Mol. Phylogenet. Evol.(1999) 12, 177–185.
- R50 Zengel J.M. and Lindahl L., Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli, Prog. Nucleic Acid Res. Mol. Biol.(1994) 47, 331–370.