On Modelling Long Term Stock Returns with Ergodic Diffusion Processes: Arbitrage and Arbitrage-Free Specifications
Abstract
We investigate the arbitrage-free property of stock price models where the local martingale component is based on an ergodic diffusion with a specified stationary distribution. These models are particularly useful for long horizon asset-liability management as they allow the modelling of long term stock returns with heavy tail ergodic diffusions, with tractable, time homogeneous dynamics, and which moreover admit a complete financial market, leading to unique pricing and hedging strategies. Unfortunately the standard specifications of these models in literature admit arbitrage opportunities. We investigate in detail the features of the existing model specifications which create these arbitrage opportunities and consequently construct a modification that is arbitrage free.
1. Introduction
Ever since the fundamental work of Black and Scholes, there has been extensive work in the literature on alternative stock price models. In a continuous time setting, these include, for example, jump diffusions, Levy processes, stochastic volatility models, and regime switching models. Extensive references can be found in Cont and Tankov [1] and Fouque et al. [2]. These models and tools have proven invaluable for long term asset liability management, in particular with applications to insurance and pensions. These include the modelling and pricing of long term embedded guarantees (see, e.g., Sherris [3], Bauer et al. [4], Milevsky and Salisbury [5], Zaglauer and Bauer [6]) and also with the study of optimal asset allocation problems (see, e.g., Cairns [7], Gerber and Shiu [8], Stamos [9]). Extensive references to the vast literature can also be found in the monographs of Hardy [10], Schmidli [11], Milevsky [12], and Møller and Steffensen [13].
In this paper we investigate the arbitrage-free property of the class of Brownian based stock price models where the local martingale component of the (log) stock returns is assumed to be an ergodic diffusion. This class of models was first investigated by Bibby and Sørensen [14] and Rydberg [15, 16] (henceforth “BSR”) who reported good fit of their models to financial data. The use of ergodic diffusions imply that the marginal distributions over a long horizon will be approximately equal to that of the specified stationary distribution, such as the Student-t (Bibby and Sørensen [14] provide additional discussion of this property). The dynamics of these models are time homogeneous and, as it is based on diffusions, tractable. The financial market under these models will be complete, and hence the valuation of options and guarantees can be performed without requiring extra assumptions regarding the market price of risk. In contrast, most alternative stock price models admit incomplete markets, with no unique pricing of options and guarantees available in general.
A significant drawback of the ergodic diffusion approach however was also noted by BSR (in particular, Bibby and Sørensen [14] and Rydberg [15]) who showed that no standard equivalent local martingale measure can exist for the ergodic diffusion model with a (generalized) hyperbolic ergodic distribution model they considered, and so the model they considered is only arbitrage free up to a stopping time. By the fundamental theorem of asset pricing (Harrison and Kreps [17], Harrison and Pliska [18], Delbaen and Schachermayer [19]) it follows that these models permit arbitrage. Furthermore the discussions of this issue in BSR for the (generalized) hyperbolic class of models further suggest that this feature may perhaps be present in many ergodic diffusion-based models in general.
Following on from the previous discussion in literature, in this paper we provide a detailed proof that any ergodic diffusion process used as a stock return model, and as specified in literature, will admit arbitrage. We further analyze in detail the cause for these arbitrage opportunities and consequently propose a modification that is arbitrage-free. This modification once again opens up the application of ergodic diffusion models to problems in insurance and finance.
The outline of this paper is as follows. In Section 2 we briefly review the construction of local martingales based on ergodic diffusion processes. Section 3 sets out the financial market we consider and defines the economic notions of portfolios and arbitrage. The standard model specification considered in the existing literature is investigated, and associated arbitrage opportunities identified, in Section 4. This analysis is consequently used to construct an alternative, arbitrage-free specification in Section 5. An extension of the arbitrage-free specification to stock markets with a stochastic term structure of interest rates can be found in Section 6. Section 7 concludes.
2. Local Martingales Based on Ergodic Diffusions
Consider an interval (l, r) with −∞ < l < 0 < r < ∞. Let g(·) be a continuous, bounded probability density function which is strictly positive on (l, r) and zero outside (l, r). Typically in applications to stock returns we are interested in the case when (l, r) is (−∞, ∞), and we will make this assumption for the analysis in Sections 4–7.
It is worth noting that the existence of a stationary distribution for (2.1) is closely related to the concept of volatility-induced stationarity in the interest rate modelling literature (Conley et al. [22], Nicolau [23]).
Note that the above is not the only method of constructing a Brownian-based model with a specified distribution. There are two alternative approaches. The first alternative (Bibby et al. [24], Borkovec and Klüppelberg [25]) constructs semimartingales with stationary density g(·) by considering diffusion processes with nonzero drift. We do not pursue this approach as our stock price construction considers local martingales, which necessarily have zero drift. The second alternative (Dupire [26], Madan and Yor [27]) uses the Fokker-Plank equation of a diffusion, with an additional time scaling assumption, to construct a diffusion with a specified marginal distribution. A significant drawback of this second alternative approach however is that the dynamics of the resulting local martingales will be time inhomogeneous in general. In contrast, the dynamics of the local martingale (2.1) is time homogeneous.
3. Financial Market
An extension of our framework to include stochastic interest rates can be found in the Section 6.
4. Arbitrage Opportunities under the Standard Specification
Bibby and Sørensen [14] and Rydberg [15, 16] report a good fit of the generalized hyperbolic ergodic diffusion to financial data. Unfortunately they also noted that no standard equivalent martingale measure can exist for the models they considered. By the fundamental theorem of asset pricing (Harrison and Kreps [17], Harrison and Pliska [18], Delbaen and Schachermayer [19]) it follows that arbitrage opportunities exist in these models. Furthermore, their discussion and proof suggests that the same problem may also apply to any ergodic diffusion-based model of the form (4.1). In the following we provide a detailed proof of the arbitrage opportunity for general ergodic diffusion models and perform further analysis on the technical features of this model specification which created these opportunities. Consequently in Section 5 we construct an alternative model specification that is arbitrage free.
Theorem 4.1. The financial market with stock price modelled by (4.1) admits arbitrage opportunities.
Proof. By Ito′s lemma the process satisfies the stochastic differential equation
The martingale property of Z(·) can be investigated by considering a candidate measure Q (cf. Kadota and Shepp [31], Delbaen and Shirakawa [32], Wong and Heyde [33], Rogers and Veraart [34] for an application of this technique in different settings), which is not assumed to be equivalent to P a priori, with Brownian motion WQ(·), and a process satisfying
Note that can also be represented in terms of a process XQ(·), with
For calculation purposes it is convenient to consider, under the measure P, the related process defined by
5. Arbitrage-Free Specification
In the previous section we have shown that the model specification (4.1) will always admit arbitrage opportunities. In this section we further investigate the technical features of this specification that create the arbitrage and consequently construct a modification that is arbitrage free.
Theorem 5.1. The financial market with stock model (5.6)-(5.7) does not admit arbitrage opportunities.
Proof. Note firstly that we have, by the assumptions on g(·) in Section 2,
From Ito′s lemma the discounted stock price process satisfies
6. Stock Markets with Stochastic Term Structure of Interest Rates
In Sections 3 to 5 we considered a financial market with a constant interest rate for clarity of presentation. In practical applications however the long term nature of many problems (e.g., in insurance and pensions) imply that such an assumption may be inappropriate. In this section we extend Theorem 5.1 to stock markets with a stochastic term structure of interest rates.
Theorem 6.1. The financial market with stock model (6.1)-(6.2) and interest rate term structure modelled by (6.3)–(6.8) does not admit arbitrage opportunities.
Proof. The discounted stock price process satisfies
Consider now the nonnegative local martingale Z(·), with
7. Conclusions
In this paper we investigated the arbitrage-free property of the class of stock price models where the local martingale component is based on an ergodic diffusion with a specified stationary distribution. The dynamics of these models are time homogeneous and, as it is based on Brownian motion, tractable. The financial market under these models will be complete, and hence the valuation of options and guarantees can be performed without requiring extra assumptions regarding the market price of risk. In this paper we provided a detailed proof that any ergodic diffusion process used as a stock return model, and as specified in the existing literature, will admit arbitrage in general. We further analyzed the technical cause for these arbitrage opportunities and consequently constructed a modification that is arbitrage-free. This arbitrage free property is shown to be true in financial markets both with and without stochastic interest rates. Our modification once again opens up the application of ergodic diffusion models to problems in insurance and finance.