Regulation of Immunity to Tuberculosis
Susanna Brighenti
Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
Search for more papers by this authorDiane J. Ordway
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523
Search for more papers by this authorSusanna Brighenti
Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
Search for more papers by this authorDiane J. Ordway
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523
Search for more papers by this authorWilliam R. Jacobs Jr.
Department of Immunology and Microbiology, Albert Einstein School of Medicine, Bronx, New York
Search for more papers by this authorHelen McShane
Cellular Immunology and Vaccine Development Group, Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
Search for more papers by this authorValerie Mizrahi
Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Rondebosch, South Africa
Search for more papers by this authorIan M. Orme
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
Search for more papers by this authorSummary
Homeostasis in the immune system has the essential function to minimize deleterious immune-mediated inflammation caused by commensal microorganisms, immune responses against self and environmental antigens, as well as metabolic inflammatory conditions. Homeostatic regulation is enabled by regulatory T (Treg) cells that mediate immune suppression as a vital mechanism of negative regulation. Treg cells have the capacity to prevent not only potentially damaging autoimmune responses, but also protective immunity, and thus the number of Treg cells is a crucial determinant of the regulatory burden on the immune system. The presence of low numbers of Treg cells can trigger fatal autoimmunity, whereas having high numbers can cause overt immunosuppression. Specifically, this means that the combination of the overall number and specific subsets of regulatory cells maintains the order in the immune system by a process of imposing negative regulation on other cells in the immune system. In this review, we will discuss the role of the distinct regulatory immune cell subsets in the development of tuberculosis (TB).
References
- Sakaguchi, S, Takahashi, T, Nishizuka, Y. 1982. Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med 156: 1565–1576.
- Asano, M, Toda, M, Sakaguchi, N, Sakaguchi, S. 1996. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184: 387–396.
- Sakaguchi, S, Sakaguchi, N, Asano, M, Itoh, M, Toda, M. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155: 1151–1164.
- Hori, S, Nomura, T, Sakaguchi, S. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061.
- Khattri, R, Cox, T, Yasayko, SA, Ramsdell, F. 2003. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4: 337–342.
- Fontenot, JD, Gavin, MA, Rudensky, AY. 2003. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4: 330–336..
- Marson, A, Kretschmer, K, Frampton, GM, Jacobsen, ES, Polansky, JK, MacIsaac, KD, Levine, SS, Fraenkel, E, von Boehmer, H, Young, RA. 2007. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445: 931–935.
- Sharma, R, Jarjour, WN, Zheng, L, Gaskin, F, Fu, SM, Ju, ST. 2007. Large functional repertoire of regulatory T-cell suppressible autoimmune T cells in scurfy mice. J Autoimmun 29: 10–19.
- Ochs, HD, Gambineri, E, Torgerson, TR. 2007. IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunol Res 38: 112–121.
- Mayer, CT, Tian, L, Hesse, C, Kühl, AA, Swallow, M, Kruse, F, Thiele, M, Gershwin, ME, Liston, A, Sparwasser, T. 2014. Anti-CD4 treatment inhibits autoimmunity in scurfy mice through the attenuation of co-stimulatory signals. J Autoimmun 50: 23–32.
- Torgerson, TR, Ochs, HD. 2002. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a model of immune dysregulation. Curr Opin Allergy Clin Immunol 2: 481–487.
- Brunkow, ME, Jeffery, EW, Hjerrild, KA, Paeper, B, Clark, LB, Yasayko, SA, Wilkinson, JE, Galas, D, Ziegler, SF, Ramsdell, F. 2001. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68–73.
- Bennett, CL, Ochs, HD. 2001. IPEX is a unique X-linked syndrome characterized by immune dysfunction, polyendocrinopathy, enteropathy, and a variety of autoimmune phenomena. Curr Opin Pediatr 13: 533–538.
- Li, B, Samanta, A, Song, X, Iacono, KT, Brennan, P, Chatila, TA, Roncador, G, Banham, AH, Riley, JL, Wang, Q, Shen, Y, Saouaf, SJ, Greene, MI. 2007. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol 19: 825–835.
- Caudy, AA, Reddy, ST, Chatila, T, Atkinson, JP, Verbsky, JW. 2007. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 119: 482–487.
- Josefowicz, SZ, Lu, LF, Rudensky, AY. 2012. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30: 531–564.
- Kang, SM, Tang, Q, Bluestone, JA. 2007. CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant 7: 1457–1463.
- Curotto de Lafaille, MA, Lafaille, JJ. 2009. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30: 626–635.
- Groux, H, O'Garra, A, Bigler, M, Rouleau, M, Antonenko, S, de Vries, JE, Roncarolo, MG. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742.
- Sakaguchi, S. 2004. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562.
- Collison, LW, Workman, CJ, Kuo, TT, Boyd, K, Wang, Y, Vignali, KM, Cross, R, Sehy, D, Blumberg, RS, Vignali, DA. 2007. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566–569.
- Shevach, EM. 2009. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30: 636–645.
- Wood, KJ, Bushell, A, Hester, J. 2012. Regulatory immune cells in transplantation. Nat Rev Immunol 12: 417–430.
- Magnani, CF, Alberigo, G, Bacchetta, R, Serafini, G, Andreani, M, Roncarolo, MG, Gregori, S. 2011. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. Eur J Immunol 41: 1652–1662.
- Rowe, JH, Ertelt, JM, Way, SS. 2012. Foxp3(+) regulatory T cells, immune stimulation and host defence against infection. Immunology 136: 1–10.
- Belkaid, Y, Piccirillo, CA, Mendez, S, Shevach, EM, Sacks, DL. 2002. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420: 502–507.
- Herrera, MT, Torres, M, Nevels, D, Perez-Redondo, CN, Ellner, JJ, Sada, E, Schwander, SK. 2009. Compartmentalized bronchoalveolar IFN-gamma and IL-12 response in human pulmonary tuberculosis. Tuberculosis (Edinb) 89: 38–47.
- Gerosa, F, Nisii, C, Righetti, S, Micciolo, R, Marchesini, M, Cazzadori, A, Trinchieri, G. 1999. CD4(+) T cell clones producing both interferon-gamma and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin Immunol 92: 224–234.
-
Lienhardt, C, Azzurri, A, Amedei, A, Fielding, K, Sillah, J, Sow, OY, Bah, B, Benagiano, M, Diallo, A, Manetti, R, Manneh, K, Gustafson, P, Bennett, S, D'Elios, MM, McAdam, K, Del Prete, G. 2002. Active tuberculosis in Africa is associated with reduced Th1 and increased Th2 activity in vivo. Eur J Immunol 32: 1605–1613.
10.1002/1521-4141(200206)32:6<1605::AID-IMMU1605>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- Sharma, SK, Mitra, DK, Balamurugan, A, Pandey, RM, Mehra, NK. 2002. Cytokine polarization in miliary and pleural tuberculosis. J Clin Immunol 22: 345–352.
- Kaufmann, SH. 2002. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 61(Suppl 2): ii54–ii58.
- Munk, ME, Emoto, M. 1995. Functions of T-cell subsets and cytokines in mycobacterial infections. Eur Respir J Suppl 20: 668s–675s.
- Rook, GA. 2007. Th2 cytokines in susceptibility to tuberculosis. Curr Mol Med 7: 327–337.
- Newcomb, DC, Zhou, W, Moore, ML, Goleniewska, K, Hershey, GK, Kolls, JK, Peebles, RS Jr. 2009. A functional IL-13 receptor is expressed on polarized murine CD4+ Th17 cells and IL-13 signaling attenuates Th17 cytokine production. J Immunol 182: 5317–5321.
- Miller, JD, van der Most, RG, Akondy, RS, Glidewell, JT, Albott, S, Masopust, D, Murali-Krishna, K, Mahar, PL, Edupuganti, S, Lalor, S, Germon, S, Del Rio, C, Mulligan, MJ, Staprans, SI, Altman, JD, Feinberg, MB, Ahmed, R. 2008. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28: 710–722.
- Ribeiro-Rodrigues, R, Resende Co, T, Rojas, R, Toossi, Z, Dietze, R, Boom, WH, Maciel, E, Hirsch, CS. 2006. A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144: 25–34.
- Guyot-Revol, V, Innes, JA, Hackforth, S, Hinks, T, Lalvani, A. 2006. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173: 803–810.
- Chen, X, Zhou, B, Li, M, Deng, Q, Wu, X, Le, X, Wu, C, Larmonier, N, Zhang, W, Zhang, H, Wang, H, Katsanis, E. 2007. CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol 123: 50–59.
- Hougardy, JM, Place, S, Hildebrand, M, Drowart, A, Debrie, AS, Locht, C, Mascart, F. 2007. Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am J Respir Crit Care Med 176: 409–416.
- Fletcher, HA, Pathan, AA, Berthoud, TK, Dunachie, SJ, Whelan, KT, Alder, NC, Sander, CR, Hill, AV, McShane, H. 2008. Boosting BCG vaccination with MVA85A down-regulates the immunoregulatory cytokine TGF-beta1. Vaccine 26: 5269–5275.
- Li, L, Lao, SH, Wu, CY. 2007. Increased frequency of CD4(+)CD25(high) Treg cells inhibit BCG-specific induction of IFN-gamma by CD4(+) T cells from TB patients. Tuberculosis (Edinb) 87: 526–534.
- Periasamy, S, Dhiman, R, Barnes, PF, Paidipally, P, Tvinnereim, A, Bandaru, A, Valluri, VL, Vankayalapati, R. 2011. Programmed death 1 and cytokine inducible SH2-containing protein dependent expansion of regulatory T cells upon stimulation with Mycobacterium tuberculosis. J Infect Dis 203: 1256–1263.
- Chiacchio, T, Casetti, R, Butera, O, Vanini, V, Carrara, S, Girardi, E, Di Mitri, D, Battistini, L, Martini, F, Borsellino, G, Goletti, D. 2009. Characterization of regulatory T cells identified as CD4(+)CD25(high)CD39(+) in patients with active tuberculosis. Clin Exp Immunol 156: 463–470.
- Hougardy, JM, Verscheure, V, Locht, C, Mascart, F. 2007. In vitro expansion of CD4+CD25highFOXP3+CD127low/- regulatory T cells from peripheral blood lymphocytes of healthy Mycobacterium tuberculosis-infected humans. Microbes Infect 9: 1325–1332.
- He, XY, Xiao, L, Chen, HB, Hao, J, Li, J, Wang, YJ, He, K, Gao, Y, Shi, BY. 2010. T regulatory cells and Th1/Th2 cytokines in peripheral blood from tuberculosis patients. Eur J Clin Microbiol Infect Dis 29: 643–650.
- Mahan, CS, Thomas, JJ, Boom, WH, Rojas, RE. 2009. CD4+ CD25(high) Foxp3+ regulatory T cells downregulate human Vdelta2+ T-lymphocyte function triggered by anti-CD3 or phosphoantigen. Immunology 127: 398–407.
- Dieli, F, Troye-Blomberg, M, Ivanyi, J, Fournié, JJ, Krensky, AM, Bonneville, M, Peyrat, MA, Caccamo, N, Sireci, G, Salerno, A. 2001. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis 184: 1082–1085.
- Semple, PL, Binder, AB, Davids, M, Maredza, A, van Zyl-Smit, RN, Dheda, K. 2013. Regulatory T cells attenuate mycobacterial stasis in alveolar and blood-derived macrophages from patients with tuberculosis. Am J Respir Crit Care Med 187: 1249–1258.
- Babu, S, Bhat, SQ, Kumar, NP, Kumaraswami, V, Nutman, TB. 2010. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results. J Infect Dis 201: 20–31.
- Meintjes, G, Wilkinson, KA, Rangaka, MX, Skolimowska, K, van Veen, K, Abrahams, M, Seldon, R, Pepper, DJ, Rebe, K, Mouton, P, van Cutsem, G, Nicol, MP, Maartens, G, Wilkinson, RJ. 2008. Type 1 helper T cells and FoxP3-positive T cells in HIV-tuberculosis-associated immune reconstitution inflammatory syndrome. Am J Respir Crit Care Med 178: 1083–1089.
- Kumar, NP, Sridhar, R, Banurekha, VV, Jawahar, MS, Nutman, TB, Babu, S. 2013. Expansion of pathogen-specific T-helper 1 and T-helper 17 cells in pulmonary tuberculosis with coincident type 2 diabetes mellitus. J Infect Dis 208: 739–748.
- Wu, YE, Du, ZR, Cai, YM, Peng, WG, Zheng, GZ, Zheng, GL, Wu, LB, Li, K. 2015. Effective expansion of forkhead box P3? regulatory T cells via early secreted antigenic target 6 and antigen 85 complex B from Mycobacterium tuberculosis. Mol Med Rep 11: 3134–3142.
- Kumar, NP, Moideen, K, Banurekha, VV, Nair, D, Sridhar, R, Nutman, TB, Babu, S. 2015. IL-27 and TGFβ mediated expansion of Th1 and adaptive regulatory T cells expressing IL-10 correlates with bacterial burden and disease severity in pulmonary tuberculosis. Immun Inflamm Dis 3: 289–299.
- Garg, A, Barnes, PF, Roy, S, Quiroga, MF, Wu, S, García, VE, Krutzik, SR, Weis, SE, Vankayalapati, R. 2008. Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38: 459–469.
- Trinath, J, Maddur, MS, Kaveri, SV, Balaji, KN, Bayry, J. 2012. Mycobacterium tuberculosis promotes regulatory T-cell expansion via induction of programmed death-1 ligand 1 (PD-L1, CD274) on dendritic cells. J Infect Dis 205: 694–696.
- Wu, C, Zhou, Q, Qin, XJ, Qin, SM, Shi, HZ. 2010. CCL22 is involved in the recruitment of CD4+CD25 high T cells into tuberculous pleural effusions. Respirology 15: 522–529.
- Bayry, J, Tchilian, EZ, Davies, MN, Forbes, EK, Draper, SJ, Kaveri, SV, Hill, AV, Kazatchkine, MD, Beverley, PC, Flower, DR, Tough, DF. 2008. In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci USA 105: 10221–10226.
- Gordon, S. 2003. Alternative activation of macrophages. Nat Rev Immunol 3: 23–35.
- Harris, J, De Haro, SA, Master, SS, Keane, J, Roberts, EA, Delgado, M, Deretic, V. 2007. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27: 505–517.
- Ashenafi, S, Aderaye, G, Bekele, A, Zewdie, M, Aseffa, G, Hoang, AT, Carow, B, Habtamu, M, Wijkander, M, Rottenberg, M, Aseffa, A, Andersson, J, Svensson, M, Brighenti, S. 2014. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 151: 84–99.
- van Crevel, R, Karyadi, E, Preyers, F, Leenders, M, Kullberg, BJ, Nelwan, RH, van der Meer, JW. 2000. Increased production of interleukin 4 by CD4+ and CD8+ T cells from patients with tuberculosis is related to the presence of pulmonary cavities. J Infect Dis 181: 1194–1197.
- Skapenko, A, Kalden, JR, Lipsky, PE, Schulze-Koops, H. 2005. The IL-4 receptor alpha-chain-binding cytokines, IL-4 and IL-13, induce forkhead box P3-expressing CD25+CD4+ regulatory T cells from CD25-CD4+ precursors. J Immunol 175: 6107–6116.
- Roy, S, Barnes, PF, Garg, A, Wu, S, Cosman, D, Vankayalapati, R. 2008. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J Immunol 180: 1729–1736.
- Vankayalapati, R, Wizel, B, Weis, SE, Safi, H, Lakey, DL, Mandelboim, O, Samten, B, Porgador, A, Barnes, PF. 2002. The NKp46 receptor contributes to NK cell lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol 168: 3451–3457.
- Borsellino, G, Kleinewietfeld, M, Di Mitri, D, Sternjak, A, Diamantini, A, Giometto, R, Höpner, S, Centonze, D, Bernardi, G, Dell'Acqua, ML, Rossini, PM, Battistini, L, Rötzschke, O, Falk, K. 2007. Expression of ectonucleoidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110: 1225–1232.
- Lokshin, A, Raskovalova, T, Huang, X, Zacharia, LC, Jackson, EK, Gorelik, E. 2006. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells. Cancer Res 66: 7758–7765.
- Kim, K, Perera, R, Tan, DB, Fernandez, S, Seddiki, N, Waring, J, French, MA. 2014. Circulating mycobacterial-reactive CD4+ T cells with an immunosuppressive phenotype are higher in active tuberculosis than latent tuberculosis infection. Tuberculosis (Edinb) 94: 494–501.
- de Cassan, SC, Pathan, AA, Sander, CR, Minassian, A, Rowland, R, Hill, AV, McShane, H, Fletcher, HA. 2010. Investigating the induction of vaccine-induced Th17 and regulatory T cells in healthy, Mycobacterium bovis BCG-immunized adults vaccinated with a new tuberculosis vaccine, MVA85A. Clin Vaccine Immunol 17: 1066–1073.
- Griffiths, KL, Pathan, AA, Minassian, AM, Sander, CR, Beveridge, NE, Hill, AV, Fletcher, HA, McShane, H. 2011. Th1/Th17 cell induction and corresponding reduction in ATP consumption following vaccination with the novel Mycobacterium tuberculosis vaccine MVA85A. PLoS One 6:e23463.
- Ye, ZJ, Zhou, Q, Du, RH, Li, X, Huang, B, Shi, HZ. 2011. Imbalance of Th17 cells and regulatory T cells in tuberculous pleural effusion. Clin Vaccine Immunol 18: 1608–1615.
- Boer, MC, van Meijgaarden, KE, Bastid, J, Ottenhoff, TH, Joosten, SA. 2013. CD39 is involved in mediating suppression by Mycobacterium bovis BCG-activated human CD8(+) CD39(+) regulatory T cells. Eur J Immunol 43: 1925–1932.
- Sinsimer, D, Huet, G, Manca, C, Tsenova, L, Koo, MS, Kurepina, N, Kana, B, Mathema, B, Marras, SA, Kreiswirth, BN, Guilhot, C, Kaplan, G. 2008. The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun 76: 3027–3036.
- Theus, S, Eisenach, K, Fomukong, N, Silver, RF, Cave, MD. 2007. Beijing family Mycobacterium tuberculosis strains differ in their intracellular growth in THP-1 macrophages. Int J Tuberc Lung Dis 11: 1087–1093.
- Manca, C, Reed, MB, Freeman, S, Mathema, B, Kreiswirth, B, Barry, CE III, Kaplan, G. 2004. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect Immun 72: 5511–5514.
- Geffner, L, Yokobori, N, Basile, J, Schierloh, P, Balboa, L, Romero, MM, Ritacco, V, Vescovo, M, González Montaner, P, Lopez, B, Barrera, L, Alemán, M, Abatte, E, Sasiain, MC, de la Barrera, S. 2009. Patients with multidrug-resistant tuberculosis display impaired Th1 responses and enhanced regulatory T-cell levels in response to an outbreak of multidrug-resistant Mycobacterium tuberculosis M and Ra strains. Infect Immun 77: 5025–5034.
- Basile, JI, Geffner, LJ, Romero, MM, Balboa, L, Sabio, Y García C, Ritacco, V, García, A, Cuffré, M, Abbate, E, López, B, Barrera, L, Ambroggi, M, Alemán, M, Sasiain, MC, de la Barrera, SS. 2011. Outbreaks of mycobacterium tuberculosis MDR strains induce high IL-17 T-cell response in patients with MDR tuberculosis that is closely associated with high antigen load. J Infect Dis 204: 1054–1064.
- Wergeland, I, Assmus, J, Dyrhol-Riise, AM. 2011. T regulatory cells and immune activation in Mycobacterium tuberculosis infection and the effect of preventive therapy. Scand J Immunol 73: 234–242.
- Lim, HJ, Park, JS, Cho, YJ, Yoon, HI, Park, KU, Lee, CT, Lee, JH. 2013. CD4(+)FoxP3(+) T regulatory cells in drug-susceptible and multidrug-resistant tuberculosis. Tuberculosis (Edinb) 93: 523–528.
- Singh, A, Dey, AB, Mohan, A, Sharma, PK, Mitra, DK. 2012. Foxp3+ regulatory T cells among tuberculosis patients: impact on prognosis and restoration of antigen specific IFN-γ producing T cells. PLoS One 7:e44728.
- Wu, YE, Peng, WG, Cai, YM, Zheng, GZ, Zheng, GL, Lin, JH, Zhang, SW, Li, K. 2010. Decrease in CD4+CD25+FoxP3+ Treg cells after pulmonary resection in the treatment of cavity multidrug-resistant tuberculosis. Int J Infect Dis 14: e815–e822.
- Roberts, T, Beyers, N, Aguirre, A, Walzl, G. 2007. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta, and interleukin-4 mRNA levels. J Infect Dis 195: 870–878.
- Nemeth, J, Winkler, HM, Zwick, RH, Rumetshofer, R, Schenk, P, Burghuber, OC, Graninger, W, Ramharter, M, Winkler, S. 2009. Recruitment of Mycobacterium tuberculosis specific CD4+ T cells to the site of infection for diagnosis of active tuberculosis. J Intern Med 265: 163–168.
- Barnes, PF, Mistry, SD, Cooper, CL, Pirmez, C, Rea, TH, Modlin, RL. 1989. Compartmentalization of a CD4+ T lymphocyte subpopulation in tuberculous pleuritis. J Immunol 142: 1114–1119.
- Brighenti, S, Andersson, J. 2012. Local immune responses in human tuberculosis: learning from the site of infection. J Infect Dis 205(Suppl 2): S316–S324.
- Flynn, JL, Chan, J, Lin, PL. 2011. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4: 271–278.
- Andersson, J, Samarina, A, Fink, J, Rahman, S, Grundström, S. 2007. Impaired expression of perforin and granulysin in CD8+ T cells at the site of infection in human chronic pulmonary tuberculosis. Infect Immun 75: 5210–5222.
- Rahman, S, Gudetta, B, Fink, J, Granath, A, Ashenafi, S, Aseffa, A, Derbew, M, Svensson, M, Andersson, J, Brighenti, SG. 2009. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions. Am J Pathol 174: 2211–2224.
- Larson, RP, Shafiani, S, Urdahl, KB. 2013. Foxp3(+) regulatory T cells in tuberculosis. Adv Exp Med Biol 783: 165–180.
- Kaplan, G, Post, FA, Moreira, AL, Wainwright, H, Kreiswirth, BN, Tanverdi, M, Mathema, B, Ramaswamy, SV, Walther, G, Steyn, LM, Barry, CE III, Bekker, LG. 2003. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 71: 7099–7108.
- Rahman, S, Rehn, A, Rahman, J, Andersson, J, Svensson, M, Brighenti, S. 2015. Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clin Immunol 156: 85–97.
- Sharma, PK, Saha, PK, Singh, A, Sharma, SK, Ghosh, B, Mitra, DK. 2009. FoxP3+ regulatory T cells suppress effector T-cell function at pathologic site in miliary tuberculosis. Am J Respir Crit Care Med 179: 1061–1070.
- Herzmann, C, Ernst, M, Ehlers, S, Stenger, S, Maertzdorf, J, Sotgiu, G, Lange, C. 2012. Increased frequencies of pulmonary regulatory T-cells in latent Mycobacterium tuberculosis infection. Eur Respir J 40: 1450–1457.
- Sun, Q, Zhang, Q, Xiao, H, Cui, H, Su, B. 2012. Significance of the frequency of CD4+CD25+CD127- T-cells in patients with pulmonary tuberculosis and diabetes mellitus. Respirology 17: 876–882.
- Ibrahim, L, Salah, M, Abd El Rahman, A, Zeidan, A, Ragb, M. 2013. Crucial role of CD4+CD 25+ FOXP3+ T regulatory cell, interferon-γ and interleukin-16 in malignant and tuberculous pleural effusions. Immunol Invest 42: 122–136.
- Geffner, L, Basile, JI, Yokobori, N, Sabio, Y García C, Musella, R, Castagnino, J, Sasiain, MC, de la Barrera, S. 2014. CD4(+) CD25(high) forkhead box protein 3(+) regulatory T lymphocytes suppress interferon-γ and CD107 expression in CD4(+) and CD8(+) T cells from tuberculous pleural effusions. Clin Exp Immunol 175: 235–245.
- Orme, IM. 2005. Mouse and guinea pig models for testing new tuberculosis vaccines. Tuberculosis (Edinb) 85: 13–17.
- Lenaerts, A, Barry, CE III, Dartois, V. 2015. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev 264: 288–307.
- Sharpe, SA, Eschelbach, E, Basaraba, RJ, Gleeson, F, Hall, GA, McIntyre, A, Williams, A, Kraft, SL, Clark, S, Gooch, K, Hatch, G, Orme, IM, Marsh, PD, Dennis, MJ. 2009. Determination of lesion volume by MRI and stereology in a macaque model of tuberculosis. Tuberculosis (Edinb) 89: 405–416.
- Quinn, KM, McHugh, RS, Rich, FJ, Goldsack, LM, de Lisle, GW, Buddle, BM, Delahunt, B, Kirman, JR. 2006. Inactivation of CD4+ CD25+ regulatory T cells during early mycobacterial infection increases cytokine production but does not affect pathogen load. Immunol Cell Biol 84: 467–474.
- Ordway, D, Palanisamy, G, Henao-Tamayo, M, Smith, EE, Shanley, C, Orme, IM, Basaraba, RJ. 2007. The cellular immune response to Mycobacterium tuberculosis infection in the guinea pig. J Immunol 179: 2532–2541.
- McMurray, DN. 2003. Hematogenous reseeding of the lung in low-dose, aerosol-infected guinea pigs: unique features of the host-pathogen interface in secondary tubercles. Tuberculosis (Edinb) 83: 131–134.
- Turner, OC, Basaraba, RJ, Orme, IM. 2003. Immunopathogenesis of pulmonary granulomas in the guinea pig after infection with Mycobacterium tuberculosis. Infect Immun 71: 864–871.
- Somashekar, BS, Amin, AG, Tripathi, P, MacKinnon, N, Rithner, CD, Shanley, CA, Basaraba, R, Henao-Tamayo, M, Kato-Maeda, M, Ramamoorthy, A, Orme, IM, Ordway, DJ, Chatterjee, D. 2012. Metabolomic signatures in guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis. J Proteome Res 11: 4873–4884.
- Kato-Maeda, M, Shanley, CA, Ackart, D, Jarlsberg, LG, Shang, S, Obregon-Henao, A, Harton, M, Basaraba, RJ, Henao-Tamayo, M, Barrozo, JC, Rose, J, Kawamura, LM, Coscolla, M, Fofanov, VY, Koshinsky, H, Gagneux, S, Hopewell, PC, Ordway, DJ, Orme, IM. 2012. Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig. Clin Vaccine Immunol 19: 1227–1237.
- Shang, S, Shanley, CA, Caraway, ML, Orme, EA, Henao-Tamayo, M, Hascall-Dove, L, Ackart, D, Orme, IM, Ordway, DJ, Basaraba, RJ. 2012. Drug treatment combined with BCG vaccination reduces disease reactivation in guinea pigs infected with Mycobacterium tuberculosis. Vaccine 30: 1572–1582.
- Ordway, D, Henao-Tamayo, M, Shanley, C, Smith, EE, Palanisamy, G, Wang, B, Basaraba, RJ, Orme, IM. 2008. Influence of Mycobacterium bovis BCG vaccination on cellular immune response of guinea pigs challenged with Mycobacterium tuberculosis . Clin Vaccine Immunol 15: 1248–1258.
- Bertholet, S, Ireton, GC, Ordway, DJ, Windish, HP, Pine, SO, Kahn, M, Phan, T, Orme, IM, Vedvick, TS, Baldwin, SL, Coler, RN, Reed, SG. 2010. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis . Sci Transl Med 2: 53ra74.
- Shang, S, Shanley, CA, Caraway, ML, Orme, EA, Henao-Tamayo, M, Hascall-Dove, L, Ackart, D, Lenaerts, AJ, Basaraba, RJ, Orme, IM, Ordway, DJ. 2011. Activities of TMC207, rifampin, and pyrazinamide against Mycobacterium tuberculosis infection in guinea pigs. Antimicrob Agents Chemother 55: 124–131.
- Flynn, JL, Gideon, HP, Mattila, JT, Lin, PL. 2015. Immunology studies in non-human primate models of tuberculosis. Immunol Rev 264: 60–73.
- Sharpe, SA, McShane, H, Dennis, MJ, Basaraba, RJ, Gleeson, F, Hall, G, McIntyre, A, Gooch, K, Clark, S, Beveridge, NE, Nuth, E, White, A, Marriott, A, Dowall, S, Hill, AV, Williams, A, Marsh, PD. 2010. Establishment of an aerosol challenge model of tuberculosis in rhesus macaques and an evaluation of endpoints for vaccine testing. Clin Vaccine Immunol 17: 1170–1182.
- Flynn, JL, Capuano, SV, Croix, D, Pawar, S, Myers, A, Zinovik, A, Klein, E. 2003. Non-human primates: a model for tuberculosis research. Tuberculosis (Edinb) 83: 116–118.
- Green, AM, Mattila, JT, Bigbee, CL, Bongers, KS, Lin, PL, Flynn, JL. 2010. CD4(+) regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202: 533–541.
- Ordway, D, Henao-Tamayo, M, Harton, M, Palanisamy, G, Troudt, J, Shanley, C, Basaraba, RJ, Orme, IM. 2007. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol 179: 522–531.
- Scott-Browne, JP, Shafiani, S, Tucker-Heard, G, Ishida-Tsubota, K, Fontenot, JD, Rudensky, AY, Bevan, MJ, Urdahl, KB. 2007. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204: 2159–2169.
- Cooper, AM. 2009. Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27: 393–422.
- Kursar, M, Koch, M, Mittrücker, HW, Nouailles, G, Bonhagen, K, Kamradt, T, Kaufmann, SH. 2007. Cutting Edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis . J Immunol 178: 2661–2665.
- Nunes-Alves, C, Booty, MG, Carpenter, SM, Jayaraman, P, Rothchild, AC, Behar, SM. 2014. In search of a new paradigm for protective immunity to TB. Nat Rev Microbiol 12: 289–299.
- Henao-Tamayo, MI, Obregon-Henao, A, Arnett, K, Shanley, CA, Podell, B, Orme, IM, Ordway, D. 2016. Effect of BCG vaccination on CD4+Foxp3+ T cells during the acquired immune response to Mycobacterium tuberculosis infection. J Leukoc Biol 99: 605–617.
- Orme, IM, Robinson, RT, Cooper, AM. 2015. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol 16: 57–63.
- Lathrop, SK, Bloom, SM, Rao, SM, Nutsch, K, Lio, CW, Santacruz, N, Peterson, DA, Stappenbeck, TS, Hsieh, CS. 2011. Peripheral education of the immune system by colonic commensal microbiota. Nature 478: 250–254.
- Kuhn, KA, Stappenbeck, TS. 2013. Peripheral education of the immune system by the colonic microbiota. Semin Immunol 25: 364–369.
- Shafiani, S, Tucker-Heard, G, Kariyone, A, Takatsu, K, Urdahl, KB. 2010. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207: 1409–1420.
- Wing, K, Onishi, Y, Prieto-Martin, P, Yamaguchi, T, Miyara, M, Fehervari, Z, Nomura, T, Sakaguchi, S. 2008. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322: 271–275.
- Onishi, Y, Fehervari, Z, Yamaguchi, T, Sakaguchi, S. 2008. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 105: 10113–10118.
- Urdahl, KB, Shafiani, S, Ernst, JD. 2011. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 4: 288–293.
- Belkaid, Y, Tarbell, K. 2009. Regulatory T cells in the control of host-microorganism interactions (*). Annu Rev Immunol 27: 551–589.
- Ertelt, JM, Rowe, JH, Johanns, TM, Lai, JC, McLachlan, JB, Way, SS. 2009. Selective priming and expansion of antigen-specific Foxp3- CD4+ T cells during Listeria monocytogenes infection. J Immunol 182: 3032–3038.
- Antunes, I, Tolaini, M, Kissenpfennig, A, Iwashiro, M, Kuribayashi, K, Malissen, B, Hasenkrug, K, Kassiotis, G. 2008. Retrovirus-specificity of regulatory T cells is neither present nor required in preventing retrovirus-induced bone marrow immune pathology. Immunity 29: 782–794.
- Gratz, IK, Campbell, DJ. 2014. Organ-specific and memory treg cells: specificity, development, function, and maintenance. Front Immunol 5:333.
- Koch, MA, Tucker-Heard, G, Perdue, NR, Killebrew, JR, Urdahl, KB, Campbell, DJ. 2009. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10: 595–602.
- Chaudhry, A, Rudra, D, Treuting, P, Samstein, RM, Liang, Y, Kas, A, Rudensky, AY. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326: 986–991.
- Zheng, Y, Chaudhry, A, Kas, A, de Roos, P, Kim, JM, Chu, TT, Corcoran, L, Treuting, P, Klein, U, Rudensky, AY. 2009. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458: 351–356.
- Campbell, DJ, Koch, MA. 2011. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat Rev Immunol 11: 119–130.
- Arvey, A, van der Veeken, J, Samstein, RM, Feng, Y, Stamatoyannopoulos, JA, Rudensky, AY. 2014. Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat Immunol 15: 580–587.
- McBride, A, Konowich, J, Salgame, P. 2013. Host defense and recruitment of Foxp3? T regulatory cells to the lungs in chronic Mycobacterium tuberculosis infection requires toll-like receptor 2. PLoS Pathog 9:e1003397.
- Leepiyasakulchai, C, Ignatowicz, L, Pawlowski, A, Källenius, G, Sköld, M. 2012. Failure to recruit anti-inflammatory CD103+ dendritic cells and a diminished CD4+ Foxp3+ regulatory T cell pool in mice that display excessive lung inflammation and increased susceptibility to Mycobacterium tuberculosis . Infect Immun 80: 1128–1139.
- Henao-Tamayo, M, Obregón-Henao, A, Creissen, E, Shanley, C, Orme, I, Ordway, DJ. 2015. Differential Mycobacterium bovis BCG vaccine-derived efficacy in C3Heb/FeJ and C3H/HeOuJ mice exposed to a clinical strain of Mycobacterium tuberculosis . Clin Vaccine Immunol 22: 91–98.
- Bai, X, Shang, S, Henao-Tamayo, M, Basaraba, RJ, Ovrutsky, AR, Matsuda, JL, Takeda, K, Chan, MM, Dakhama, A, Kinney, WH, Trostel, J, Bai, A, Honda, JR, Achcar, R, Hartney, J, Joosten, LA, Kim, SH, Orme, I, Dinarello, CA, Ordway, DJ, Chan, ED. 2015. Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 112: 5111–5116.
- Ndure, J, Flanagan, KL. 2014. Targeting regulatory T cells to improve vaccine immunogenicity in early life. Front Microbiol 5:477.
- Fine, PE. 1995. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346: 1339–1345.
- Pitt, JM, Blankley, S, McShane, H, O'Garra, A. 2013. Vaccination against tuberculosis: how can we better BCG? Microb Pathog 58: 2–16.
- Orme, IM. 2013. Vaccine development for tuberculosis: current progress. Drugs 73: 1015–1024.
- Ordway, DJ, Shang, S, Henao-Tamayo, M, Obregon-Henao, A, Nold, L, Caraway, M, Shanley, CA, Basaraba, RJ, Duncan, CG, Orme, IM. 2011. Mycobacterium bovis BCG-mediated protection against W-Beijing strains of Mycobacterium tuberculosis is diminished concomitant with the emergence of regulatory T cells. Clin Vaccine Immunol 18: 1527–1535.
- Feruglio, SL, Tonby, K, Kvale, D, Dyrhol-Riise, AM. 2015. Early dynamics of T helper cell cytokines and T regulatory cells in response to treatment of active Mycobacterium tuberculosis infection. Clin Exp Immunol 179: 454–465.
- Henao-Tamayo, M, Obregón-Henao, A, Ordway, DJ, Shang, S, Duncan, CG, Orme, IM. 2012. A mouse model of tuberculosis reinfection. Tuberculosis (Edinb) 92: 211–217.
- Shang, S, Harton, M, Tamayo, MH, Shanley, C, Palanisamy, GS, Caraway, M, Chan, ED, Basaraba, RJ, Orme, IM, Ordway, DJ. 2011. Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of M. tuberculosis . Tuberculosis (Edinb) 91: 378–385.
- Podell, BK, Ackart, DF, Obregon-Henao, A, Eck, SP, Henao-Tamayo, M, Richardson, M, Orme, IM, Ordway, DJ, Basaraba, RJ. 2014. Increased severity of tuberculosis in Guinea pigs with type 2 diabetes: a model of diabetes-tuberculosis comorbidity. Am J Pathol 184: 1104–1118.
- Capuano, SV III, Croix, DA, Pawar, S, Zinovik, A, Myers, A, Lin, PL, Bissel, S, Fuhrman, C, Klein, E, Flynn, JL. 2003. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun 71: 5831–5844.
- Lin, PL, Rodgers, M, Smith, L, Bigbee, M, Myers, A, Bigbee, C, Chiosea, I, Capuano, SV, Fuhrman, C, Klein, E, Flynn, JL. 2009. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77: 4631–4642.
- Kaushal, D, Mehra, S, Didier, PJ, Lackner, AA. 2012. The non-human primate model of tuberculosis. J Med Primatol 41: 191–201.
- Phillips, BL, Mehra, S, Ahsan, MH, Selman, M, Khader, SA, Kaushal, D. 2015. LAG3 expression in active Mycobacterium tuberculosis infections. Am J Pathol 185: 820–833.
- Mehra, S, Pahar, B, Dutta, NK, Conerly, CN, Philippi-Falkenstein, K, Alvarez, X, Kaushal, D. 2010. Transcriptional reprogramming in nonhuman primate (rhesus macaque) tuberculosis granulomas. PLoS One 5:e12266.
- Chen, CY, Huang, D, Yao, S, Halliday, L, Zeng, G, Wang, RC, Chen, ZW. 2012. IL-2 simultaneously expands Foxp3+ T regulatory and T effector cells and confers resistance to severe tuberculosis (TB): implicative Treg-T effector cooperation in immunity to TB. J Immunol 188: 4278–4288.
- Gideon, HP, Phuah, J, Myers, AJ, Bryson, BD, Rodgers, MA, Coleman, MT, Maiello, P, Rutledge, T, Marino, S, Fortune, SM, Kirschner, DE, Lin, PL, Flynn, JL. 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 11:e1004603.