Adhesins in Opportunistic Fungal Pathogens
Rebecca Zordan
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
Search for more papers by this authorBrendan Cormack
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
Search for more papers by this authorRebecca Zordan
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
Search for more papers by this authorBrendan Cormack
Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
Search for more papers by this authorRichard A. Calderone
Georgetown University Medical Center, Washington, DC
Search for more papers by this authorCornelius J. Clancy
Department of Medicine, Infectious Diseases Division, University of Pittsburgh, Pittsburgh, PA
Search for more papers by this authorSummary
This chapter deals with cell surface proteins in two Candida species, C. albicans and C. glabrata, and in their nonpathogenic relative Saccharomyces cerevisiae, specifically focusing on the diversity and function of proteins implicated in adherence of the yeasts to each other or to other surfaces, including host cells. The most extensively studied family of adhesins in any Candida species is the one corresponding to the C. albicans ALS gene family, which includes eight family members. Two adhesins in family IV have similarity to the protein corresponding to DAN1 in S. cerevisiae, another subtelomeric adhesin whose expression is regulated by oxygen availability in the environment. Mass spectrometry was identify covalently linked cell wall proteins (CWPs), including adhesins, on the surface of C. glabrata. In total, five adhesins were detected: Epa6 and four uncharacterized proteins that were subsequently named Awp1 to -4 (adhesin-like wall protein). The FLO genes play essential roles during flocculation, a process by which yeast cells bind to the mannose residues on the surface of neighboring cells, forming clusters of cells called flocs, and sediment. CWPs are key to the interaction of fungi with the environment, and not surprisingly, changes within the CWP repertoire accompany the evolutionary adaptation to a particular niche. The relatively limited repertoire of FLO genes in S. cerevisiae primarily serves to mediate yeast-yeast interactions that adapt it to growth in communities/biofilms as well as to respond to nutritional cues.
References
- Almeida, R. S., S. Brunke, A. Albrecht, S. Thewes, M. Laue, J. E. Edwards, S. G. Filler, and B. Hube 2008. The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 4: e1000217.
- Argimon, S., J. A. Wishart, R. Leng, S. Macaskill, A. Mavor, T. Alexandris, S. Nicholls, A. W. Knight, B. Enjalbert, R. Walmsley, F. C. Odds, N. A. Gow, and A. J. Brown 2007. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans . Eukaryot. Cell 6: 682–692.
- Austin, S. J., W. Fujimoto, K. W. Marvin, T. M. Vollberg, L. Lorand, and A. M. Jetten 1996. Cloning and regulation of cornifin β, a new member of the cornifin/spr family. Suppression by retinoic acid receptor-selective retinoids. J. Biol. Chem. 271: 3737–3742.
- Bastidas, R. J., J. Heitman, and M. E. Cardenas 2009. The protein kinase Tor1 regulates adhesin gene expression in Candida albicans . PLoS Pathog. 5: e1000294.
- Bester, M. C., I. S. Pretorius, and F. F. Bauer 2006. The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+-dependent flocculation by Flo8p and Mss11p. Curr. Genet. 49: 375–383.
- Bockmuhl, D. P., and J. F. Ernst 2001. A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans . Genetics 157: 1523–1530.
- Braun, B. R., and A. D. Johnson 2000. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans . Genetics 155: 57–67.
- Braus, G. H., O. Grundmann, S. Bruckner, and H. U. Mosch 2003. Amino acid starvation and Gcn4p regulate adhesive growth and FLO11 gene expression in Saccharomyces cerevisiae . Mol. Biol. Cell 14: 4272–4284.
- Brown, C. A., A. W. Murray, and K. J. Verstrepen 2010. Rapid expansion and functional divergence of subtelomeric gene families in yeasts. Curr. Biol. 20: 895–903.
- Bumgarner, S. L., R. D. Dowell, P. Grisafi, D. K. Gifford, and G. R. Fink 2009. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc. Natl. Acad. Sci. USA 106: 18321–18326.
- Castano, I., S. J. Pan, M. Zupancic, C. Hennequin, B. Dujon, and B. P. Cormack 2005. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata . Mol. Microbiol. 55: 1246–1258.
- Chandra, J., D. M. Kuhn, P. K. Mukherjee, L. L. Hoyer, T. McCormick, and M. A. Ghannoum 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183: 5385–5394.
- Cheng, G., K. Wozniak, M. A. Wallig, P. L. Fidel, Jr., S. R. Trupin, and L. L. Hoyer 2005. Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect. Immun. 73: 1656–1663.
- Coleman, D. A., S. H. Oh, X. Zhao, H. Zhao, J. T. Hutchins, J. H. Vernachio, J. M. Patti, and L. L. Hoyer 2009. Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J. Microbiol. Methods 78: 71–78.
- Cormack, B. P., N. Ghori, and S. Falkow 1999. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285: 578–582.
- Cullen, P. J., and G. F. Sprague, Jr. 2000. Glucose depletion causes haploid invasive growth in yeast. Proc. Natl. Acad. Sci. USA 97: 13619–13624.
- Daniels, K. J., S. R. Lockhart, J. F. Staab, P. Sundstrom, and D. R. Soll 2003. The adhesin Hwp1 and the first daughter cell localize to the a/a portion of the conjugation bridge during Candida albicans mating. Mol. Biol. Cell 14: 4920–4930.
- de Boer, A. D., P. W. de Groot, G. Weindl, M. Schaller, D. Riedel, R. Diez-Orejas, F. M. Klis, C. G. de Koster, H. L. Dekker, U. Gross, O. Bader, and M. Weig 2010. The Candida albicans cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence. Yeast 27: 611–624.
- de Groot, P. W., A. D. de Boer, J. Cunningham, H. L. Dekker, L. de Jong, K. J. Hellingwerf, C. de Koster, and F. M. Klis 2004. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot. Cell 3: 955–965.
- de Groot, P. W., K. J. Hellingwerf, and F. M. Klis 2003. Genome-wide identification of fungal GPI proteins. Yeast 20: 781–796.
- de Groot, P. W., E. A. Kraneveld, Q. Y. Yin, H. L. Dekker, U. Gross, W. Crielaard, C. G. de Koster, O. Bader, F. M. Klis, and M. Weig 2008. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot. Cell 7: 1951–1964.
- De Las Penas, A., S. J. Pan, I. Castano, J. Alder, R. Cregg, and B. P. Cormack 2003. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1-and SIR-dependent transcriptional silencing. Genes Dev. 17: 2245–2258.
- de Nobel, J. G., F. M. Klis, J. Priem, T. Munnik, and H. van den Ende 1990. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae . Yeast 6: 491–499.
- Domergue, R., I. Castano, A. De Las Penas, M. Zupancic, V. Lockatell, J. R. Hebel, D. Johnson, and B. P. Cormack 2005. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308: 866–870.
- Ene, I. V., and R. J. Bennett 2009. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans . Eukaryot. Cell 8: 1909–1913.
- Fankhauser, N., and P. Maser 2005. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21: 1846–1852.
- Fichtner, L., F. Schulze, and G. H. Braus 2007. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol. Microbiol. 66: 1276–1289.
- Fidalgo, M., R. R. Barrales, J. I. Ibeas, and J. Jimenez 2006. Adaptive evolution by mutations in the FLO11 gene. Proc. Natl. Acad. Sci. USA 103: 11228–11233.
- Filler, S. G., J. N. Swerdloff, C. Hobbs, and P. M. Luck-ett 1995. Penetration and damage of endothelial cells by Candida albicans . Infect. Immun. 63: 976–983.
- Frank, A. T., C. B. Ramsook, H. N. Otoo, C. Tan, G. Soybelman, J. M. Rauceo, N. K. Gaur, S. A. Klotz, and P. N. Lipke 2010. Structure and function of glycosylated tandem repeats from Candida albicans Als adhesins. Eukaryot. Cell 9: 405–414.
- Frieman, M. B., J. M. McCaffery, and B. P. Cormack 2002. Modular domain structure in the Candida glabrata adhesin Epa1p, a β1,6 glucan-cross-linked cell wall protein. Mol. Microbiol. 46: 479–492.
- Fu, Y., A. S. Ibrahim, D. C. Sheppard, Y. C. Chen, S. W. French, J. E. Cutler, S. G. Filler, and J. E. Edwards, Jr. 2002. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol. Microbiol. 44: 61–72.
- Gagiano, M., M. Bester, D. van Dyk, J. Franken, F. F. Bauer, and I. S. Pretorius 2003. Mss11p is a transcription factor regulating pseudohyphal differentiation, invasive growth and starch metabolism in Saccharomyces cerevisiae in response to nutrient availability. Mol. Microbiol. 47: 119–134.
- Garcia-Sanchez, S., S. Aubert, I. Iraqui, G. Janbon, J. M. Ghigo, and C. d'Enfert 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3: 536–545.
- Gaur, N. K., S. A. Klotz, and R. L. Henderson 1999. Overexpression of the Candida albicans ALA1 gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans . Infect. Immun. 67: 6040–6047.
- Govender, P., J. L. Domingo, M. C. Bester, I. S. Pretorius, and F. F. Bauer 2008. Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae . Appl. Environ. Microbiol. 74: 6041–6052.
- Green, C. B., G. Cheng, J. Chandra, P. Mukherjee, M. A. Ghannoum, and L. L. Hoyer 2004. RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 150: 267–275.
- Green, C. B., S. M. Marretta, G. Cheng, F. F. Faddoul, E. J. Ehrhart, and L. L. Hoyer 2006. RT-PCR analysis of Candida albicans ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients. Med. Mycol. 44: 103–111.
- Green, C. B., X. Zhao, K. M. Yeater, and L. L. Hoyer 2005. Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology 151: 1051–1060.
- Green, S. R., and A. D. Johnson 2004. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae . Mol. Biol. Cell 15: 4191–4202.
- Guo, B., C. A. Styles, Q. Feng, and G. R. Fink 2000. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc. Natl. Acad. Sci. USA 97: 12158–12163.
- Halme, A., S. Bumgarner, C. Styles, and G. R. Fink 2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116: 405–415.
- Heringa, J., and P. Argos 1993. A method to recognize distant repeats in protein sequences. Proteins 17: 391–441.
- Hoyer, L. L. 2001. The ALS gene family of Candida albicans . Trends Microbiol. 9: 176–180.
- Hoyer, L. L., C. B. Green, S. H. Oh, and X. Zhao 2008. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med. Mycol. 46: 1–15.
- Hoyer, L. L., and J. E. Hecht 2001. The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 18: 49–60.
-
Hoyer, L. L., and J. E. Hecht
2000. The ALS6 and ALS7 genes of Candida albicans
. Yeast
16:
847–855.
10.1002/1097-0061(20000630)16:9<847::AID-YEA562>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- Hoyer, L. L., T. L. Payne, M. Bell, A. M. Myers, and S. Scherer 1998. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr. Genet. 33: 451–459.
- Hoyer, L. L., S. Scherer, A. R. Shatzman, and G. P. Livi 1995. Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol. Microbiol. 15: 39–54.
- Ibrahim, A. S., B. J. Spellberg, V. Avanesian, Y. Fu, and J. E. Edwards, Jr. 2006. The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect. Immun. 74: 3039–3041.
- Ibrahim, A. S., B. J. Spellberg, V. Avenissian, Y. Fu, S. G. Filler, and J. E. Edwards, Jr. 2005. Vaccination with recombinant N-terminal domain of Als1p improves survival during murine disseminated candidiasis by enhancing cell-mediated, not humoral, immunity. Infect. Immun. 73: 999–1005.
- Iraqui, I., S. Garcia-Sanchez, S. Aubert, F. Dromer, J. M. Ghigo, C. d'Enfert, and G. Janbon 2005. The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol. Microbiol. 55: 1259–1271.
- Kadosh, D., and A. D. Johnson 2005. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell 16: 2903–2912.
- Kang, S., and H. Choi 2005. Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly(styrene-ran-sulfonic acid) random copolymers. Colloids Surf. B Biointerfaces 46: 70–77.
- Kapteyn, J. C., L. L. Hoyer, J. E. Hecht, W. H. Muller, A. Andel, A. J. Verkleij, M. Makarow, H. Van Den Ende, and F. M. Klis 2000. The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol. Microbiol. 35: 601–611.
- Kapteyn, J. C., H. Van Den Ende, and F. M. Klis 1999. The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim. Biophys. Acta 1426: 373–383.
- Kaur, R., R. Domergue, M. L. Zupancic, and B. P. Cormack 2005. A yeast by any other name: Candida glabrata and its interaction with the host. Curr. Opin. Microbiol. 8: 378–384.
- Klis, F. M. 1994. Review: cell wall assembly in yeast. Yeast 10: 851–869.
- Klis, F. M., A. Boorsma, and P. W. De Groot 2006. Cell wall construction in Saccharomyces cerevisiae . Yeast 23: 185–202.
- Klis, F. M., L. H. Caro, J. H. Vossen, J. C. Kapteyn, A. F. Ram, R. C. Montijn, M. A. Van Berkel, and H. Van den Ende 1997. Identification and characterization of a major building block in the cell wall of Saccharomyces cerevisiae . Biochem. Soc. Trans. 25: 856–860.
- Klotz, S. A., N. K. Gaur, D. F. Lake, V. Chan, J. Rauceo, and P. N. Lipke 2004. Degenerate peptide recognition by Candida albicans adhesins Als5p and Als1p. Infect. Immun. 72: 2029–2034.
- Kobayashi, O., N. Hayashi, R. Kuroki, and H. Sone 1998. Region of FLO1 proteins responsible for sugar recognition. J. Bacteriol. 180: 6503–6510.
- Kobayashi, O., H. Yoshimoto, and H. Sone 1999. Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae . Curr. Genet. 36: 256–261.
- Kollar, R., B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis, and E. Cabib 1997. Architecture of the yeast cell wall: β(1→6)-glucan interconnects mannoprotein, β(1→3)-glucan, and chitin. J. Biol. Chem. 272: 17762–17775.
- Kumamoto, C. A., and M. D. Vinces 2005. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. Cell. Microbiol. 7: 1546–1554.
- Leng, P., P. R. Lee, H. Wu, and A. J. Brown 2001. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J. Bacteriol. 183: 4090–4093.
- Li, F., and S. P. Palecek 2008. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154: 1193–1203.
- Li, F., and S. P. Palecek 2003. EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot. Cell 2: 1266–1273.
- Li, F., and S. P. Palecek 2005. Identification of Candida albicans genes that induce Saccharomyces cerevisiae cell adhesion and morphogenesis. Biotechnol. Prog. 21: 1601–1609.
- Li, F., M. J. Svarovsky, A. J. Karlsson, J. P. Wagner, K. Marchillo, P. Oshel, D. Andes, and S. P. Palecek 2007. Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot. Cell 6: 931–939.
- Lipke, P. N., and R. Ovalle 1998. Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180: 3735–3740.
- Liu, H., C. A. Styles, and G. R. Fink 1996. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967–978.
- Lo, H. J., J. R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti, and G. R. Fink 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90: 939–949.
- Lott, T. J., B. P. Holloway, D. A. Logan, R. Fundyga, and J. Arnold 1999. Towards understanding the evolution of the human commensal yeast Candida albicans . Microbiology 145(Pt. 5): 1137–1143.
- Loza, L., Y. Fu, A. S. Ibrahim, D. C. Sheppard, S. G. Filler, and J. E. Edwards, Jr. 2004. Functional analysis of the Candida albicans ALS1 gene product. Yeast 21: 473–482.
- Ma, B., S. J. Pan, R. Domergue, T. Rigby, M. Whiteway, D. Johnson, and B. P. Cormack 2009. High-affinity transporters for NAD+ precursors in Candida glabrata are regulated by Hst1 and induced in response to niacin limitation. Mol. Cell. Biol. 29: 4067–4079.
- Ma, B., S. J. Pan, M. L. Zupancic, and B. P. Cormack 2007. Assimilation of NAD+ precursors in Candida glabrata . Mol. Microbiol. 66: 14–25.
- MacCallum, D. M., L. Castillo, K. Nather, C. A. Munro, A. J. Brown, N. A. Gow, and F. C. Odds 2009. Property differences among the four major Candida albicans strain clades. Eukaryot. Cell 8: 373–387.
- Moreno-Ruiz, E., M. Galan-Diez, W. Zhu, E. Fernandez-Ruiz, C. d'Enfert, S. G. Filler, P. Cossart, and E. Veiga 2009. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell. Microbiol. 11: 1179–1189.
- Mundy, R. D., and B. Cormack 2009. Expression of Candida glabrata adhesins after exposure to chemical preservatives. J. Infect. Dis. 199: 1891–1898.
- Naglik, J. R., F. Fostira, J. Ruprai, J. F. Staab, S. J. Challacombe, and P. Sundstrom 2006. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J. Med. Microbiol. 55: 1323–1327.
- Nailis, H., S. Kucharikova, M. Ricicova, P. Van Dijck, D. Deforce, H. Nelis, and T. Coenye 2010. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol. 10: 114.
- Nailis, H., R. Vandenbroucke, K. Tilleman, D. Deforce, H. Nelis, and T. Coenye 2009. Monitoring ALS1 and ALS3 gene expression during in vitro Candida albicans biofilm formation under continuous flow conditions. Mycopathologia 167: 9–17.
- Nobile, C. J., D. R. Andes, J. E. Nett, F. J. Smith, F. Yue, Q. T. Phan, J. E. Edwards, S. G. Filler, and A. P. Mitchell 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2: e63.
- Nobile, C. J., and A. P. Mitchell 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr. Biol. 15: 1150–1155.
- Nobile, C. J., J. E. Nett, D. R. Andes, and A. P. Mitchell 2006. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot. Cell 5: 1604–1610.
- Nobile, C. J., H. A. Schneider, J. E. Nett, D. C. Sheppard, S. G. Filler, D. R. Andes, and A. P. Mitchell 2008. Complementary adhesin function in C. albicans biofilm formation. Curr. Biol. 18: 1017–1024.
- O'Connor, L., S. Lahiff, F. Casey, M. Glennon, M. Cormican, and M. Maher 2005. Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler. Mol. Cell. Probes 19: 153–162.
- Oh, S. H., G. Cheng, J. A. Nuessen, R. Jajko, K. M. Yeater, X. Zhao, C. Pujol, D. R. Soll, and L. L. Hoyer 2005. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151: 673–681.
- Otoo, H. N., K. G. Lee, W. Qiu, and P. N. Lipke 2008. Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot. Cell 7: 776–782.
- Pan, X., and J. Heitman 2002. Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol. Cell. Biol. 22: 3981–3993.
- Park, H., C. L. Myers, D. C. Sheppard, Q. T. Phan, A. A. Sanchez, J. E. Edwards, and S. G. Filler 2005. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell. Microbiol. 7: 499–510.
- Phan, Q. T., P. H. Belanger, and S. G. Filler 2000. Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect. Immun. 68: 3485–3490.
- Phan, Q. T., C. L. Myers, Y. Fu, D. C. Sheppard, M. R. Yeaman, W. H. Welch, A. S. Ibrahim, J. E. Edwards, Jr., and S. G. Filler 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5: e64.
- Rachidi, N., M. J. Martinez, P. Barre, and B. Blondin 2000. Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol. Microbiol. 35: 1421–1430.
- Ramsook, C. B., C. Tan, M. C. Garcia, R. Fung, G. Soybelman, R. Henry, A. Litewka, S. O'Meally, H. N. Otoo, R. A. Khalaf, A. M. Dranginis, N. K. Gaur, S. A. Klotz, J. M. Rauceo, C. K. Jue, and P. N. Lipke 2010. Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot. Cell 9: 393–404.
- Rauceo, J. M., R. De Armond, H. Otoo, P. C. Kahn, S. A. Klotz, N. K. Gaur, and P. N. Lipke 2006. Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot. Cell 5: 1664–1673.
- Rigden, D. J., L. V. Mello, and M. Y. Galperin 2004. The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem. Sci. 29: 335–339.
- Roberts, R. L., and G. R. Fink 1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8: 2974–2985.
- Rolland, T., B. Dujon, and G. F. Richard 2010. Dynamic evolution of megasatellites in yeasts. Nucleic Acids Res. 38: 4731–4739.
- Rosas-Hernandez, L. L., A. Juarez-Reyes, O. E. Arroyo-Helguera, A. De Las Penas, S. J. Pan, B. P. Cormack, and I. Castano 2008. yKu70/yKu80 and Rif1 regulate silencing differentially at telomeres in Candida glabrata . Eukaryot. Cell 7: 2168–2178.
- Rupp, S., E. Summers, H. J. Lo, H. Madhani, and G. Fink 1999. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18: 1257–1269.
- Sanchez, A. A., D. A. Johnston, C. Myers, J. E. Edwards, Jr., A. P. Mitchell, and S. G. Filler 2004. Relationship between Candida albicans virulence during experimental hematogenously disseminated infection and endothelial cell damage in vitro. Infect. Immun. 72: 598–601.
- Sato, M., H. Maeba, J. Watari, and M. Takashio 2002. Analysis of an inactivated Lg-FLO1 gene present in bottom-fermenting yeast. J. Biosci. Bioeng. 93: 395–398.
- Sheppard, D. C., M. R. Yeaman, W. H. Welch, Q. T. Phan, Y. Fu, A. S. Ibrahim, S. G. Filler, M. Zhang, A. J. Waring, and J. E. Edwards, Jr. 2004. Functional and structural diversity in the Als protein family of Candida albicans . J. Biol. Chem. 279: 30480–30489.
- Sherman, D. J., T. Martin, M. Nikolski, C. Cayla, J. L. Souciet, and P. Durrens 2009. Genolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res. 37: D550–D554.
- Skrzypek, M. S., M. B. Arnaud, M. C. Costanzo, D. O. Inglis, P. Shah, G. Binkley, S. R. Miyasato, and G. Sherlock 2010. New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res. 38: D428–D432.
- Smith, R. L., and A. D. Johnson 2000. Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem. Sci. 25: 325–330.
- Sonneborn, A., D. P. Bockmuhl, M. Gerads, K. Kurpanek, D. Sanglard, and J. F. Ernst 2000. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans . Mol. Microbiol. 35: 386–396.
- Spellberg, B., A. S. Ibrahim, M. R. Yeaman, L. Lin, Y. Fu, V. Avanesian, A. S. Bayer, S. G. Filler, P. Lipke, H. Otoo, and J. E. Edwards, Jr. 2008. The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus . Infect. Immun. 76: 4574–4580.
- Spellberg, B. J., A. S. Ibrahim, V. Avanesian, Y. Fu, C. Myers, Q. T. Phan, S. G. Filler, M. R. Yeaman, and J. E. Edwards, Jr. 2006. Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J. Infect. Dis. 194: 256–260.
- Spellberg, B. J., A. S. Ibrahim, V. Avenissian, S. G. Filler, C. L. Myers, Y. Fu, and J. E. Edwards, Jr. 2005. The anti-Candida albicans vaccine composed of the recombinant N terminus of Als1p reduces fungal burden and improves survival in both immunocompetent and immunocompromised mice. Infect. Immun. 73: 6191–6193.
- Staab, J. F., Y. S. Bahn, C. H. Tai, P. F. Cook, and P. Sundstrom 2004. Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J. Biol. Chem. 279: 40737–40747.
- Staab, J. F., S. D. Bradway, P. L. Fidel, and P. Sund-strom 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 1535–1538.
- Staab, J. F., C. A. Ferrer, and P. Sundstrom 1996. Developmental expression of a tandemly repeated, prolineand glutamine-rich amino acid motif on hyphal surfaces on Candida albicans . J. Biol. Chem. 271: 6298–6305.
-
Staab, J. F., and P. Sundstrom
1998. Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans
. Yeast
14:
681–686.
10.1002/(SICI)1097-0061(199805)14:7<681::AID-YEA256>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- Stoldt, V. R., A. Sonneborn, C. E. Leuker, and J. F. Ernst 1997. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morpho-genetic processes in fungi. EMBO J. 16: 1982–1991.
- Sundstrom, P. 2002. Adhesion in Candida spp. Cell. Microbiol. 4: 461–469.
- Sundstrom, P., E. Balish, and C. M. Allen 2002. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J. Infect. Dis. 185: 521–530.
- Sundstrom, P., J. E. Cutler, and J. F. Staab 2002. Reevaluation of the role of HWP1 in systemic candidiasis by use of Candida albicans strains with selectable marker URA3 targeted to the ENO1 locus. Infect. Immun. 70: 3281–3283.
- Thierry, A., C. Bouchier, B. Dujon, and G. F. Richard 2008. Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion and pathogenicity in Candida glabrata . Nucleic Acids Res. 36: 5970–5982.
- Thierry, A., B. Dujon, and G. F. Richard 2010. Megasatellites: a new class of large tandem repeats discovered in the pathogenic yeast Candida glabrata . Cell. Mol. Life Sci. 67: 671–676.
- Van Mulders, S. E., E. Christianen, S. M. Saerens, L. Daenen, P. J. Verbelen, R. Willaert, K. J. Verstrepen, and F. R. Delvaux 2009. Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae . FEMS Yeast Res. 9: 178–190.
- Verstrepen, K. J., A. Jansen, F. Lewitter, and G. R. Fink 2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37: 986–990.
- Verstrepen, K. J., and F. M. Klis 2006. Flocculation, adhesion and biofilm formation in yeasts. Mol. Microbiol. 60: 5–15.
- Verstrepen, K. J., T. B. Reynolds, and G. R. Fink 2004. Origins of variation in the fungal cell surface. Nat. Rev. Microbiol. 2: 533–540.
- Wapinski, I., A. Pfeffer, N. Friedman, and A. Regev 2007. Natural history and evolutionary principles of gene duplication in fungi. Nature 449: 54–61.
- Weig, M., L. Jansch, U. Gross, C. G. De Koster, F. M. Klis, and P. W. De Groot 2004. Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata . Microbiology 150: 3129–3144.
- Wheeler, R. T., D. Kombe, S. D. Agarwala, and G. R. Fink 2008. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog. 4: e1000227.
- Wheeler, R. T., M. Kupiec, P. Magnelli, C. Abeijon, and G. R. Fink 2003. A Saccharomyces cerevisiae mutant with increased virulence. Proc. Natl. Acad. Sci. USA 100: 2766–2770.
- Zakikhany, K., J. R. Naglik, A. Schmidt-Westhausen, G. Holland, M. Schaller, and B. Hube 2007. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell. Microbiol. 9: 2938–2954.
- Zhang, N., A. L. Harrex, B. R. Holland, L. E. Fenton, R. D. Cannon, and J. Schmid 2003. Sixty alleles of the ALS7 open reading frame in Candida albicans: ALS7 is a hypermutable contingency locus. Genome Res. 13: 2005–2017.
- Zhang, Z., and J. C. Reese 2004. Redundant mechanisms are used by Ssn6-Tup1 in repressing chromosomal gene transcription in Saccharomyces cerevisiae . J. Biol. Chem. 279: 39240–39250.
- Zhao, X., S. H. Oh, G. Cheng, C. B. Green, J. A. Nuessen, K. Yeater, R. P. Leng, A. J. Brown, and L. L. Hoyer 2004. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology 150: 2415–2428.
- Zhao, X., S. H. Oh, and L. L. Hoyer 2007. Deletion of ALS5, ALS6 or ALS7 increases adhesion of Candida albicans to human vascular endothelial and buccal epithelial cells. Med. Mycol. 45: 429–434.
- Zhao, X., S. H. Oh, and L. L. Hoyer 2007. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology 153: 2342–2350.
- Zhao, X., S. H. Oh, R. Jajko, D. J. Diekema, M. A. Pfaller, C. Pujol, D. R. Soll, and L. L. Hoyer 2007. Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. Fungal Genet. Biol. 44: 1298–1309.
- Zhao, X., S. H. Oh, K. M. Yeater, and L. L. Hoyer 2005. Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151: 1619–1630.
- Zhao, X., C. Pujol, D. R. Soll, and L. L. Hoyer 2003. Allelic variation in the contiguous loci encoding Candida albicans ALS5, ALS1 and ALS9. Microbiology 149: 2947–2960.
- Zupancic, M. L., M. Frieman, D. Smith, R. A. Alvarez, R. D. Cummings, and B. P. Cormack 2008. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol. Microbiol. 68: 547–559.